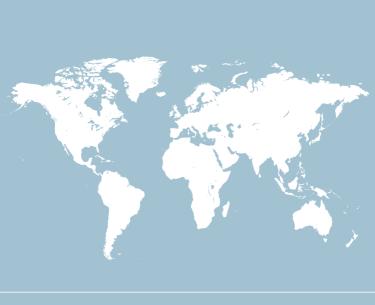


Type Code



Product Training

Type Code Volume 2

Control Cabinet Inverters, Drives, Roller Drives, Industrial Gear Units

Edition 12/2017 24770132/EN

Contents

1	MOV	I-C®	į
	1.1	Product description	į
	1.2	Nameplates of MOVIDRIVE® modular	. 7
	1.3	Type code of MOVIDRIVE® modular	1(
	1.4	Nameplate of MOVIDRIVE® system	
	1.5	Type code of MOVIDRIVE® system	12
	1.6	Nameplate of MOVIDRIVE® technology	13
	1.7	Type code of MOVIDRIVE® technology	14
	1.8	MOVI-C® CONTROLLER standard UHX25A	1
	1.9	MOVI-C® CONTROLLER advanced UHX45A	1
	1.10	MOVI-C® CONTROLLER power/power eco UHX85A/ UHX84A	16
2	MOV	IDRIVE® B	17
	2.1	Description	17
	2.2	Nameplates of MOVIDRIVE® MDX60B/61B	19
	2.3	Type designation	2(
	2.4	MOVIDRIVE MDR60B/61B type designation	2
3	MOV	IAXIS®	22
	3.1	Description	22
	3.2	Structure of the nameplate	22
	3.3	Axis module nameplate	23
	3.4	Nameplate of the power supply module	23
	3.5	Type designation for MOVIAXIS® basic devices	23
	3.6	Type designation for $MOVIAXIS^{\texttt{\$}}$ optional assemblies	26
4	MOV	ITRAC® B	2
	4.1	MOVITRAC® B – compact, versatile and universal	2
	4.2	Type designation	2
	4.3	Nameplate	28
5	MOV	ITRAC® LTE-B+	29
	5.1	Technology	29
	5.2	Type designation	30
6	MOV	ITRAC® LTP-B	3′
	6.1	Markets and applications	3
	6.2	Type designation	3
7	Α	synchronous AC Motors	
	7.1	Description of DR/DRN and EDR/EDRN AC motors 32	
	7.2	DRN motor nameplate	
	7.3	DR, DRN AC brakemotor type designation	
	7.4	Designation of the motors	
	7.5	Nameplates of EDR/EDRN motors	
	7.6	Type designation of EDR, EDRN motors	
	7.7	Designs and options	39

Contents

	7.8	Description of DRL asynchronous servomotors	42
8	S	ynchronous Servomotors	43
	8.1	CMP motors	43
	8.2	CMS/CMSM electric cylinders	47
	8.3	SL2 synchronous linear motors	52
9	S	ynchronous Servo Gearmotors	59
	9.1	Description	59
	9.2	Servo gearmotor nameplate	60
	9.3	Type designation	61
10	G	ear Units and Adapters	62
	10.1	Description of R, F, K, S, W gear units	62
	10.2	Variants and options of R, F, K, S, W gear units	62
	10.3	Nameplate/type designation	65
	10.4	Description of BS.F, PS.F, PS.C gear units	67
	10.5	Variants and options of BS.F, PS.F and PS.C gear units \dots	68
	10.6	Nameplate/unit designation	70
	10.7	Components on the input side	72
	10.8	$\label{lem:constraints} \mbox{Description of gear units for electrified monorall systems} $	74
11	ECDr	iveS [®]	76
	11.1	Characteristics and features	76
	11.2	Type code	76
	11.3	Overview of the roller drives	78
	11.4	Overview of the hardware of the ECC-DFC fieldbus contro 80	ller
	11.5	Overview of the hardware of the ECC-DBC binary control . 81	
12	In	dustrial Gear Units	82
	12.1	X. series	82
	12.2	MC Series	88
	12 3	D 002 D 102 Series	01

SEW

1.1 Product description

With its brand MOVI-C®, SEW-EURODRIVE is launching a new generation of drive and automation technology. MOVI-C® is the modular automation system that enables the highest level of system and machine automation.

MOVI-C® comprises drive technology, MotionControl, control technology and visualization.

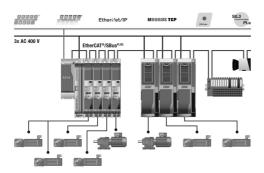
MOVIDRIVE® modular is the modular application inverter for all types of applications, ranging from open-loop speed control to servo drives with kinematic model.

MOVIDRIVE® modular consists of:

- · Supply and regenerative modules.
- · Single-axis and double-axis modules.
- · Capacitor and buffer modules.
- 24 V switched-mode power supply module.
- Assembly modules for integrating MOVI-C[®] CONTROLLER advanced into the axis system.
- · Accessories for EMC-compliant installation.
- · Cards for connecting other I/Os or an additional encoder.
- · Cards for functional safety in functionally different versions.
- Accessories for connecting and controlling of motors and brakes, as well as prefabricated motor and encoder cables.

Especially in the upper power range up to 588 A/315 kW, MOVIDRIVE® system supplements the modular application inverter. For additional information, refer to the MOVIDRIVE® system product manual.

The key features of MOVIDRIVE® modular and MOVIDRIVE® system are:


- A maximum of 15 axis modules at a power supply module, a maximum of 30 drives for double-axis modules.
- Control mode:
 - U/f: for simple applications with asynchronous motors.
 - VFC^{PLUS}: for precise control of asynchronous motors.
 - CFC: for asynchronous and synchronous servomotors.
 - ELSM®: for synchronous motors without encoders.
- · Multi-encoder input in basic unit.
- Speed control, torque control, position control.
- · Expansion slots for I/O, multi-encoder, functional safety.
- Very compact device size, reduced space requirements in the control cabinet.

MOVIDRIVE® modular and system are intended for operation at the MOVI-C® CONTROLLER, the controller from SEW-EURODRIVE.

They offer a powerful clock-synchronous connection via the integrated EtherCAT®/SBusPLUS communication interface. Other EtherCAT® clients from SEW-EURODRIVE or other manufacturers can be controlled and diagnosed by the MOVI-C® CONTROLLER.

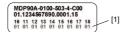
The MOVI-C® CONTROLLER offers the following functionalities:

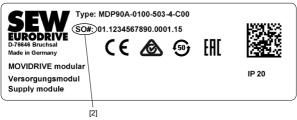
- Freely programmable sequence control in accordance 6with IEC 6-1131-3 for automating drive and logic tasks.
- Central data storage for all MOVI-C[®] inverters from SEW-EURODRIVE at the EtherCAT[®]/SBus^{PLUS}.
- Plug-and-play unit replacement through automatic data recovery.
- Central setpoint input for clock-synchronous drives and for auxiliary drives.
- Motion functions: Speed control, torque specification, position specification, phase-synchronous operation, cams, application modules. kinematic models.
- EtherCAT®/SBus^{PLUS} master for SEW-EURODRIVE components and for third-party components.
- · Fieldbus device connection to higher-level control systems.
- · Diagnostics and visualization of the automation system.

20782812299

The new engineering software MOVISUITE® is the central module of the MOVI-C® modular automation system. MOVISUITE® allows for intuitive operation with modern operating concepts.

The central functions of MOVISUITE® are:

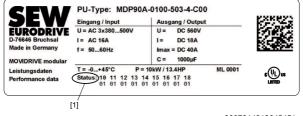

- · Network scan.
- · Unit startup and parameterization.
- · Data storage and data management.
- Scope and diagnostics.
- Programming environment for the MOVI-C® CONTROLLER.
- · Programming environment for functional safety.
- Parameterization and diagnostics environment for application modules.


SEW

1.2 Nameplates of MOVIDRIVE® modular

1.2.1 Power supply module

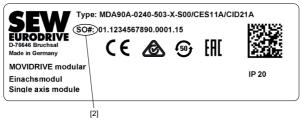
System nameplate



9007214313636491

- [1] Device status
- [2] Serial number

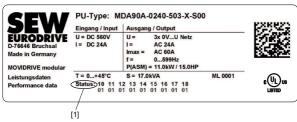
Performance data nameplate


9007214313645451

[1] Device status

1.2.2 Single-axis module

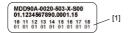
System nameplate

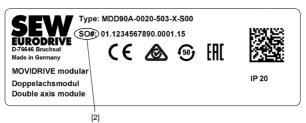


9007214313687563

- [1] Device status
- [2] Serial number

Performance data nameplate

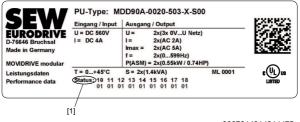

9007214313691915


[1] Device status

SEW

1.2.3 Double-axis module

System nameplate



9007214313696523

- [1] Device status
- [2] Serial number

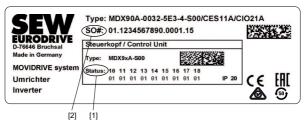
Performance data nameplate

9007214314814475

[1] Device status

Type code of MOVIDRIVE® modular 1.3

The following type code applies to MOVIDRIVE® modular.


Example: MDA90A-0080-503-X-S00				
Product name	MD			
Device type	Α	• A = Single-axis module		
		• D = Double-axis module		
		• P = Power supply module with brake chopper		
		• M = Master module UHX45A/MDM90A		
Series	90	• 90 = Standard design		
Version	Α	• A = Version status A		
Performance	00	• MDA: Nominal output current – e.g. 0080 = 8 A		
class	80	• MDD: Nominal output current – e.g. 0020 = 2 × 2 A		
		• MDP: Nominal power – e.g. 0100 = 10 kW		
Connection voltage	5	• 5 = AC 380 – 500 V		
EMC variant of power section	0	O = Interference suppression integrated		
Number of phases	3	• 3 = 3-phase connection type		
Operating X		• 4 = 4Q operation (with brake chopper)		
mode		• X = Not relevant		
Variants 0 • 0 = No		• 0 = Not relevant		
		• S = Control MOVI-C® CONTROLLER		
		C = Power supply module with integrated brak- ing resistor and capacitor		
		• E = Inverter with CiA402 drive profile		
Designs	00	• 00 = Standard design		
		• 01 = Axis module MDA90A-0640 in size 5		
Options		• /X = MOVIDRIVE® modular without card slots		
		The following list serves as an example:		
		/CES11A = Multi-encoder card		
		• /CID21A, /CIO21A = I/O expansion card		
		• /CSA = Safety card		
		-		

MOVI-C®

1.4 Nameplate of MOVIDRIVE® system

1.4.1 System nameplate



9007214313201675

- [1] Device status
- [2] Serial number

1.4.2 Performance data nameplate

15058465035

[1] Device status

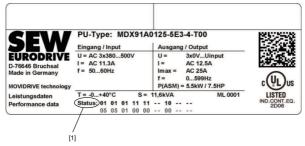
1.5 Type code of MOVIDRIVE® system

The following type code applies to MOVIDRIVE® system.

Example: MDX90A-0125-5E3-X-S00				
Product name	MD	MOVIDRIVE®		
Device type	Х	• X = Single-axis inverter		
Series	90	90 = Without DC 24 V switched-mode power supply		
		• 91 = With DC 24 V switched-mode power supply		
Version	Α	A = Version status of the device series		
Performance class	012 5	• 0125 = nominal output current – e.g. 0125 = 12.5 A		
Connection	5	• 2 = AC 200 – 240 V		
voltage		• 5 = AC 380 – 500 V		
EMC variant of	Е	0 = Basic interference suppression integrated		
power section		• E = EMC filter limit value category C2 acc. to EN 61800-3		
Number of phases	3	• 3 = 3-phase connection type		
Operating	Х	• 4 = 4-quadrant operation		
mode		• X = Not relevant		
Variants	S	• 0 = not relevant		
		• S = MOVIDRIVE® system: Control via MOVI- C® CONTROLLER		
		• T = MOVIDRIVE® technology: Control via field- bus		
		• E = Inverter with CiA402 drive profile		
Designs	00	• 00 = Standard variant		
Options		The following list serves as an example:		
		/CES11A = Multi-encoder card		
		/CID21A, /CIO21A = Input/output cards		
		• /CSA = Safety card MOVISAFE® CSA		

24770132/EN - 12/2017

1.6 Nameplate of MOVIDRIVE® technology


1.6.1 System nameplate

9007220804983691

- [1] Serial number
- [2] Device status

1.6.2 Performance data nameplate

9007220804986123

[1] Device status

1.7 Type code of MOVIDRIVE® technology

The following type code applies to MOVIDRIVE® technology.

	Exar	nple: MDX90A-0125-5E3-X-T00		
Product name	MD	MOVIDRIVE®		
Device type	Х	• X = Single-axis inverter		
Series		• 90 = Without DC 24 V switched-mode power supply		
		• 91 = With DC 24 V switched-mode power supply		
Version	Α	A = Version status of the device series		
Performance class	012 5	• 0125 = nominal output current – e.g. 0125 = 12.5 A		
Connection	5	• 2 = AC 200 – 230 V		
voltage		• 5 = AC 380 – 500 V		
EMC variant of	Е	• 0 = Basic interference suppression integrated		
power section		• E = EMC filter limit value category C2 acc. to EN 61800-3		
Number of phases	3	• 3 = 3-phase connection type		
Operating	Х	• 4 = 4-quadrant operation		
mode		• X = Not relevant		
Variants	Т	• 0 = not relevant		
		• S = MOVIDRIVE® system: Control via MOVI- C® CONTROLLER		
		• T = MOVIDRIVE [®] technology: Control via field- bus		
		• E = Inverter with CiA402 drive profile		
Designs	00	• 00 = Standard variant		
Options		The following list serves as an example:		
		/CES11A = Multi-encoder card		
		/CID21A, /CIO21A = Input/output cards		
		• /CFE21A = EtherNet/IP™ and Modbus TCP		
		• /CFN21A = PROFINET		
		• /CFP21A = PROFIBUS		

1.8 MOVI-C® CONTROLLER standard UHX25A

The MOVI-C® CONTROLLER in the performance class "standard" is a motion controller for demanding automation tasks. The real-time operating system guarantees very short response times as well as a highperformance connection of system buses from SEW-EURODRIVE and standard fieldbuses.

The MOVI-C® CONTROLLER is suitable for automating machines and cells for up to 2 interpolating axes and 6 auxiliary axes depending on the size of the application program. It can be used as a module controller for complex motion functions such as electronic cams and robotics.

1.9 MOVI-C® CONTROLLER advanced UHX45A

The MOVI-C® CONTROLLER in the performance class "advanced" is a motion controller for demanding automation tasks. The real-time operating system guarantees very short response times as well as a highperformance connection of system buses from SEW-EURODRIVE and standard fieldbuses.

The MOVI-C® CONTROLLER is suitable for automating machines and cells for up to 8 interpolating axes and 8 auxiliary axes depending on the size of the application program. It can be used as a module controller for complex motion functions such as electronic cams and robotics.

1.10 MOVI-C® CONTROLLER power/power eco UHX85A/UHX84A

1.10.1 Freely programmable MOVI-C® CONTROLLER

The MOVI-C® CONTROLLER can be programmed freely by using OM-H85A type CFast memory cards. It allows drive solutions, logic processes and sequence controls to be automated simply and efficiently using IEC 61131-3 compliant programming languages.

- The freely programmable MOVI-C® CONTROLLER is a universal solution because it is able to control the entire portfolio of SEW-EURODRIVE inverters and offers a simple upgrade to a more powerful controller due to universal execution of the programs.
- The freely programmable MOVI-C® CONTROLLER is scalable due to several different hardware platforms (standard, advanced, etc.) and modular software concepts (libraries for numerous applications).
- The freely programmable MOVI-C® CONTROLLER is powerful due to extensive technologies (such as electronic cam, synchronous operation) and the control of demanding applications (such as material handling).

Performance class "power eco"

The MOVI-C® CONTROLLER power eco UHX84A is characterized by a higher level of performance and is suitable for automating machines and cells for up to 16 interpolating axes and 16 auxiliary axes.

Performance class "power"

The MOVI-C® CONTROLLER power UHX85A is the high-end motion controller for demanding automation tasks. The real-time operating system guarantees very short response times as well as a high-performance connection of system buses from SEW-EURODRIVE and standard fieldbuses. Demanding visualization solutions can be realized via the Windows® operating system that is running in parallel.

The MOVI-C® CONTROLLER power eco UHX84A is suitable for automating machines and cells for up to 32 interpolating axes and 32 auxiliary axes. It is suited as a module controller for complex motion functions such as electronic cams and robotics, as well as for the complete automation of machines and systems.

2 MOVIDRIVE® B

2.1 Description

This documentation describes the MOVIDRIVE® MDX60B/61B drive inverters by SEW-EURODRIVE. The drive inverters of the MOVIDRIVE® B series impress with their proven basic functions and the modular device concept.

Three-phase drives in the power range $0.55-315~\mathrm{kW}$ can be flexibly operated in combination with inverter technology. The levels of dynamic performance and control quality that can now be achieved with MOVIDRIVE® for asynchronous AC motors were only possible using servo drives or DC motors in the past. The integrated control functionality and the option to extend the drive using technology and communication options creates drive systems that are designed to be particularly cost-effective with regards to the diversity of applications, project planning, startup and operation.

2.1.1 Product family

MDX61B:

The MOVIDRIVE® device family includes three series:

• MOVIDRIVE® Drive inverter for asynchronous AC motors MDX60B: without encoder feedback. The devices are

not option-capable.

MOVIDRIVE®
 Drive inverter for asynchronous AC motors

with or without encoder feedback, or for asynchronous and synchronous servomotors. The devices are option-capable.

MOVIDRIVE® Regenerative power supply; MOVIDRIVE® MDR60A/61B: drive inverters (400/500 V devices) operate

drive inverters (400/500 V devices) operate in regenerative mode to feed energy back

into the supply system.

2.1.2 MOVIDRIVE® MDX61B device family, sizes 0 to 7

The following figure shows the MOVIDRIVE $^{\circ}$ MDX61B drive inverter, sizes 0 to 7

3193709067

2.1.3 MOVIDRIVE® MDR60A/61B device family, sizes 2 to 7

The following figure shows the MOVIDRIVE® MDR60A/61B regenerative power supply units, sizes 2 to 7

9007200709048587

2.1.4 Unit variants

MOVIDRIVE® MDX60B/61B size 0 - 6 drive inverters are available in two variants, namely the standard design and the technology version. MOVIDRIVE® MDX60B/61B size 7 drive inverters are only available as technology version with coated PCBs (-0T/L).

Standard design

The devices are equipped with integrated IPOSPLUS® positioning and sequence control as standard. MOVIDRIVE® MDX61B can be expanded with the available options.

The standard version is indicated by the "00" digits at the end of the type designation.

Technology version

In addition to the features of the standard design, these devices include the electronic cam and internal synchronous operation technology functions. Furthermore, you can use all the application modules available in the MOVITOOLS® MotionStudio engineering software with the devices in application version.

The technology version is indicated by "0T" following the type designation.

Variants with coated printed circuit boards

The devices are designed for use in harsh environments. The coating of the printed circuit boards increases their resistivity against environmental influences.

The design with coated PCBs is indicated by "/L" at the end of the type designation.

2.2 Nameplates of MOVIDRIVE® MDX60B/61B

2.2.1 System nameplate size 0

The system nameplate for MDX60B/61B size 0 is attached to the side of the device.

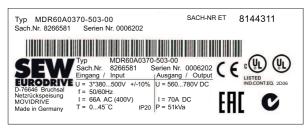
27021599563947147

2.2.2 System nameplate for sizes 1 - 7

The system nameplate is attached to MDX61B.. as follows:

- On the side of the device in size 1-6
- On the upper front cover of size 7

18014400309212299


Type designation 2.3

71				
Example: MDX61B0011-5A3-4-00				
Product name	M DX	MDX = MOVIDRIVE®		
Device type	60	60 = No options can be installed61 = Options can be installed		
Version	В	B = Version status B		
Recommended motor power	00 11	• 0011 = 1.1 kW		
Connection voltage	5	 2 = AC 200 - 230 V 5 = AC 380 - 500 V 		
Radio interfer- ence suppres- sion	А	O = No radio interference suppression A = Radio interference suppression C2 B = Radio interference suppression C1		
Number of phases	3	1 = 1-Phase3 = 3-Phase		
Quadrants	4	4 = 4-Quadrant operation		
Designs	00	00 = Standard 01 = Technology XX = Special unit XX/L = Coated PCBs		

2.4 MOVIDRIVE MDR60B/61B type designation

2.4.1 Example: Nameplate sizes 2 to 4

With MDR60A sizes 2 to 4, the nameplate is located on the front of the device.

9007201131741707

2.4.2 Type designation

	-			
Example: MDR60A0370-5A3-00				
Product name MD R		MDR = MOVIDRIVE® regenerative power supply unit		
Device type	60	• 60 = Type designation up to size 6		
		• 61 = Type designation for size 7		
Version	Α	• A = Version status up to size 6		
		B = Version status for size 7		
Recommended	03	• 0370 = 37 kW		
inverter	70			
Connection	5	• 2 = AC 200 – 230 V		
voltage		• 5 = AC 380 – 500 V		
Radio interference suppression Number of phases		0 = No radio interference suppression		
		• 3 = 3-Phase		
Quadrants	4	• 4 = 4-Quadrant operation		
Designs	00	• 00 = Standard		
		• 00/L = Coated PCBs		

MOVIAXIS® 3

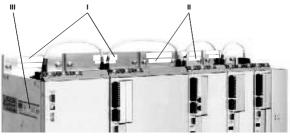
3.1 Description

MOVIAXIS® multi-axis servo inverters have been designed for compact machine and plant automation systems at the highest stage. Productivity and intelligence are combined in an ideal way, allowing for a wide range of application.

3.2 Structure of the nameplate

The nameplate is divided into up to three parts depending on the module.

- Part "I" of the nameplate indicates the type designation, production number and status.
- Part "II" of the nameplate indicates the factory-installed options and the version status.
- Part "III" of the nameplate (system nameplate) contains the technical data of the module.

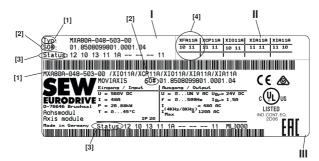

The system nameplate is located on the side of the unit for the power supply module and axis module.

The nameplate contains a description of the version and the scope of supply of the multi-axis servo inverter at the time of delivery.

There may be deviations if:

- Option cards are installed or removed at a later time, for example
- The unit firmware is updated

Location of the nameplate.

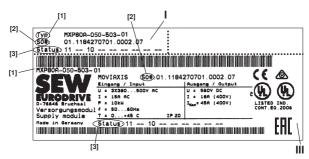


1402316683

- Part "I" of the nameplate
- Ш Part "II" of the nameplate
- Part "III" of the nameplate (system nameplate)

3.3 Axis module nameplate

The following figure shows the nameplate of the axis module:



27021599166542091

- Part "I" of the nameplate: Located on the upper fastening plate of the module
- [1] Type designation
- Part "II" of the nameplate: Located on the upper fastening plate of the module
- [2] Production number
- Part "III" of the nameplate: Located on the side of the module housing
- [3] Status
- [4] Communication slots, firmware status

3.4 Nameplate of the power supply module

The following figure shows the nameplate of the power supply module:

18014399911932555

- Part "I" of the nameplate: Located on the up- [1] Type designaper fastening plate of the module
 - tion
- Part "III" of the nameplate: Located on the side of the module housing
- [2] Production number
- [3] Status

3.5 Type designation for MOVIAXIS® basic devices

j	Example: MXA80A004-503-00				
5	Product name	MX	• MX = MOVIAXIS®		

Device type	Α	• A = Axis module			
		• B = Buffer module			
		• C = Capacitor module			
		• M = Master module			
		• P = Master module with brake chopper			
		• R = Power supply module with supply and regenerative power supply			
		• S = 24 V switched-mode power supply module			
		• Z = DC link discharge module			
Series	80	• 80 = Standard design			
		80 = Sinusoidal regenerative power supply			
		81 = Design with one safety relay in the axis module			
		81 = Compact power supply module (integ- rated BW and capacitor)			
		81 = Block-shaped regenerative power supply unit MXR			
		82 = Design with two safety relays in the axis module			
Version	Α	• A = Version status A			
Performance class	004	004 = For axis modules the nominal current, such as 004 = 4 A			
		00011 00 00 1 171			
		• 050 = For DC link discharge modules the energy quantity that can be dissipated, such as 050 = 5000 Ws			
		050 = For DC link discharge modules the energy quantity that can be dissipated, such as			
		• 050 = For DC link discharge modules the energy quantity that can be dissipated, such as 050 = 5000 Ws • 010 = For power supply modules the nominal			
		• 050 = For DC link discharge modules the energy quantity that can be dissipated, such as 050 = 5000 Ws • 010 = For power supply modules the nominal power, such as 010 = 10 kW • 050 = For capacitor, buffer and damping mod-			
Connection voltage	50	 050 = For DC link discharge modules the energy quantity that can be dissipated, such as 050 = 5000 Ws 010 = For power supply modules the nominal power, such as 010 = 10 kW 050 = For capacitor, buffer and damping modules the capacity, such as 050 = 5000 µF 060 = Power for 24 V switched-mode power 			
	50	 • 050 = For DC link discharge modules the energy quantity that can be dissipated, such as 050 = 5000 Ws • 010 = For power supply modules the nominal power, such as 010 = 10 kW • 050 = For capacitor, buffer and damping modules the capacity, such as 050 = 5000 μF • 060 = Power for 24 V switched-mode power supply modules, such as 060 = 600 W 			
voltage Number of		 050 = For DC link discharge modules the energy quantity that can be dissipated, such as 050 = 5000 Ws 010 = For power supply modules the nominal power, such as 010 = 10 kW 050 = For capacitor, buffer and damping modules the capacity, such as 050 = 5000 µF 060 = Power for 24 V switched-mode power supply modules, such as 060 = 600 W 50 = AC 380 - 500 V 			

Type designation for the axis module:

MX-Axis module with 4 A nominal current A80A-004-503-00

MX- = Axis module with 4 A nominal current and integrated SBus^{plus} system bus

Type designation for the buffer module component

MXB80A-050-503- = Buffer module with a capacity of 5000 μ F 00

Type designation for the capacitor module component

MX- = Capacitor module with a capacity of 5000 μ F C80A-050-503-00

Type designation for master module with fieldbus gateway component:

MXM80A-000-000- = Master module with PROFIBUS/DeviceNet 00/UFF41B

MXM80A-000-000- = Master module with EtherNet/IP™ / PROFINET 00/UFR41B Modbus TCP

Type designation for master module with controller component:

MXM80A-000-000- = Master module with PROFIBUS/DeviceNet 00/DHF41B/OM-H41B

MXM80A-000-000- = Master module with EtherNet/IP™ / PROFINET 00/DHR41B/OM- Modbus TCP

H41B

Designs: T0 - T25

Type designation of power supply module:

MX- = 10 kW compact power supply module with in-P81A-010-503-00 tegrated C and BW

MX- = 10 kW power supply module

P80A-010-503-00

MXR80A-075-503- = 50/75 kW supply and regenerative power sup-

ply module, sinusoidal

MXR81A-075-503- = 50/75 kW supply and regenerative power sup-00 ply module, block-shaped

Type designation for the 24 V switched-mode power supply module component

MX- = 24 V switched-mode power supply module S80A-060-503-00

Type designation DC link discharge module component:

MXZ80A-050-503- = DC link discharge module with a dissipatable

00 energy quantity of 5000 Ws

Type designation for MOVIAXIS® optional 3.6 assemblies

Example: XGH11A				
Product name	Product name X • X = Optional assemblies for MOVIAXIS®			
Device type	GH	GH = Multi-encoder card		
		GS = PROFIBUS DP V1 fieldbus interface		
		• FP = K-Net fieldbus interface		
		• FA = EtherCAT® fieldbus interface		
		• FE = EtherCAT®-compatible system bus		
		• SE = EtherCAT®-compatible system bus		
		• IO = Input/output card		
		• IA = Input/output card		
Series	11	• 11 = 11 series		
Version	Α	• A = Version status A		

4 MOVITRAC® B

4.1 MOVITRAC® B – compact, versatile and universal

The percentage of adjustable-speed three-phase drives with inverter technology is constantly increasing. In addition to machine-conserving drive technology, these units offer all options to optimize system and machine concepts in correspondence with the process sequences. The expanse of these different fields of application shows that it is difficult to meet the technological and economic requirements with one universal inverter class.

The drive electronics in asynchronous AC motors are separated into standard inverters, for simple applications, e.g. materials handling, and application inverters, for more complex technological applications, e.g. positioning and handling applications. This differentiation of the units facilitates scaling to different applications while staying with a certain budget.

Operation, parameter setting, diagnostics and integration in automation concepts must offer unit-comprehensive and therefore universal engineering and communication support. Engineering tools for project planning, parameter setting and startup as well as the availability of communication interfaces (fieldbuses and Industrial Ethernet) offer users a solution-oriented and unit-independent user interface.

4.2 Type designation

Example: MC07B0022-2B1-4-00/T				
Product name	МС	• MC = MOVITRAC®		
Device type	07	Series 07		
Version	В	B = Version status B		
Recommended motor power	00 22	• 0022 = 2.2 kW		
Connection	2	• 2 = AC 200 – 240 V		
voltage		• 5 = AC 380 – 500 V		
Radio interfer-	В	• 0 = No radio interference suppression		
ence suppression		• A = Radio interference suppression C2		
		B = Radio interference suppression C1		
Number of		• 1 = 1-Phase		
phases		• 3 = 3-Phase		
Quadrants	4	• 4 = 4-Quadrant operation		
Designs	00	• 00 = Standard		
		• S0 = Safe stop		
Options	/T	• /T = Technology unit		
		/L = Partially coated PCBs		
		• /S = SBus address 1		

4 MOVITRAC® B Nameplate

4.3 Nameplate

The following figure shows a nameplate:

18014401695029643

f Nominal line frequency

Output U Output voltage

100% operation

I Nominal output current

100% operation

Output frequency

The unit status is indicated above the lower barcode. It documents the bardware and software states of the unit

5 MOVITRAC® LTE-B+

5.1 Technology

The MOVITRAC® LTE-B+ device family is the entry level product series of the powerful frequency inverter portfolio from SEW-EURODRIVE. The devices are characterized by a simple installation and startup philosophy, together with a powerful range of functions for this class.

The power spectrum ranges from 0.37 kW up to a maximum rating of 11 kW for the IP20 design.

Inverters are available with an IP66 degree of protection for use in environments that are heavily subjected to dust and splash water. These inverters are available with and without integrated switches.

All variants feature an integrated keypad as standard, which, in combination with the removable "Helpcard", enables simple and intuitive startup and operating procedures.

In addition to a simple V/f voltage control system, all LTE-B+ devices are also equipped with a field-oriented open-loop vector control unit, which enables both the optimized operation of AC asynchronous motors, as well as the additional operation of other motor types, such as the LSPM (Line Start Permanent Magnet Motor) IE4 drive from SEW-EURODRIVE:

Extensive diagnostics methods are available to the user to guarantee smooth operation of the system and to ensure minimal downtime. In addition to 40 diagnostics parameters, MOVITRAC® LTE-B+ also offers a powerful scope function, which can be operated via the LT Shell software.

The extensive functionality is rounded off by the standard bus systems, namely Modbus RTU, CANopen, and SEW-EURODRIVE SBus, which enable the MOVITRAC® LTE-B+ to be easily integrated into the field-bus network on the system side.

Type designation 5.2

Example: MCLTE-1-B 0015-201-1-00				
Product name	MCLT E	MOVITRAC® LTE-B		
Version	В	Version status of the device series		
Motor	1	Only single-phase motors		
Recommended motor power	0015	0015 = 1.5 kW		
Connection voltage	2	• 1 = 115 V		
		• 2 = 200 – 240 V		
		• 5 = 380 – 480 V		
Interference sup-	0	• 0 = Class 0		
pression on the in- put		• A = C2 (class A)		
Put		• B = C1 (class B)		
Connection type	1	• 1 = 1-Phase		
		• 3 = 3-Phase		
Quadrants	1	• 1 = 1-Quadrant operation without brake chopper		
		• 4 = 4-Quadrant operation with brake chopper		
Design	00	• 00 = Standard IP20 housing		
		• 30 = IP66/NEMA-4X housing without switch		
		• 40 = IP66/NEMA-4X housing with switch		
Country-specific variant	(60 Hz	60 Hz = 60 Hz design		

6 MOVITRAC® LTP-B

6.1 Markets and applications

Frequency inverters of the MOVITRAC® LTP-B series are optimally matched to meet the requirements of indoor applications outside a control cabinet.

They have been designed and developed for controlling the speed of asynchronous and synchronous motors without encoder and are particularly economical in conveyor applications, hoists, as well as in fans and pumps.

For applications in dirty or moist environments indoors, MOVITRAC® LTP-B is also available in degree of protection IP55 in the power range from 0.75 kW to 160 kW. Optionally, it is available up to 11 kW with a control cabinet housing in degree of protection IP20.

6.2 Type designation

Example: MCLTP-B 0015-2B1-4-00 (60 Hz)				
Product name	MCLT P	MOVITRAC® LTP-B		
Version	В	Version status of the device series		
Recommended motor power	0015	0015 = 1.5 kW		
Connection voltage	2	2 = 200 – 240 V		
		5 = 380 – 480 V		
		6 = 500 - 600 V		
Interference suppression on the input	В	0 = Class 0		
		A = Class C2		
		B = Class C1		
Connection type	1	1 = 1-Phase		
		3 = 3-Phase		
Quadrants	4	4 = 4-Quadrant operation		
Design	00	00 = Standard IP20 housing		
		10 = IP66/NEMA-4X housing		
		10 = IP55/NEMA-12K housing		
		15 = Devices for operation on IT systems		
Country-specific variant	(60 Hz)	60 Hz design		

7 **Asynchronous AC Motors**

7.1 Description of DR.../DRN.. and EDR../EDRN.. AC motors

7.1.1 Motor

The asynchronous motor consists of a stator with a three-phase winding and a laminated rotor. The rotor slots are usually lined with aluminum and short-circuited at the front ends using a short-circuit ring. Variants with die-cast copper are also available. The nominal speed at line frequency can be defined by the number of poles.

The main advantages can be described as follows:

- Long service life
- Low maintenance (no brush wear)
- Temporary high overload capacity
- Nearly constant speed (no "overspeed" in no-load operation)
- Comparatively low production costs

The following image shows a DR.. AC motor:

2998238987

SEW

7.2 DRN.. motor nameplate

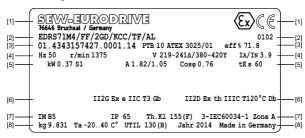
The following figure shows an example of a nameplate:

	21007777010
Line	Information
[1]	Manufacturer, address
	CE marking
[2]	Type designation
[3]	Serial number
	Suitability for inverter operation
	 Number of phases and underlying rating and performance standards (IEC 60034-X and/or equivalent national standard)
[4]	Rated frequency
	Rated speed
	Nominal voltage
[5]	Rated power, operating mode
	Rated current
	• IE class
[6]	Power factor for AC motors
	Degree of protection according to IEC 60034-5
[7]	Thermal class
	Rated efficiency for motors included in the scope of the IEC 60034-30-1 standard
[10]	• Flange
	Shaft end
[11]	Mounting position
[12]	Weight
	Part number nameplate
	Country of manufacture

DR.., DRN.. AC brakemotor type designation 7.3

The following diagram shows a type designation example:

DRN132M4/BE11/HR/FI/TF		
Product family		
Code for product line identification		
Size		
Number of poles		
Brake		
Manual brake release		
Output option		
Thermal motor protection		


7.4 Designation of the motors

Designation	
DRS	Standard motor, Standard efficiency IE1
DR2S	Standard motor, Standard efficiency IE1 (second generation)
DRE	Energy-efficient motor, High Efficiency IE2
DRP	Energy-efficient motor, Premium Efficiency IE3
DRN	Energy-efficient motor, Premium Efficiency IE3
DRU	Energy-efficient motor, Super Premium Efficiency IE4
DRL	Asynchronous servomotor
DRK	Single-phase operation with running capacitor
DRM	Torque motor: AC motor for operation at speed $n = 0$
DRJ	Line Start Permanent Magnet motor
63 – 315	Nominal sizes: 63, 71, 80, 90, 100, 112, 132, 160, 180, 200, 225, 250, 280, 315
K, S, M, L, MC, LC, ME, MS, MK, H, LS, LM	Lengths
2, 4, 6, 8, 8/2, 8/4, 4/2, 12	Number of poles

7.5 Nameplates of EDR../EDRN.. motors

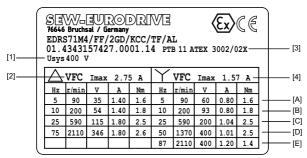
7.5.1 EDR../EDRN.. motor nameplate

The following figure shows an example of the nameplate of an EDRS motor in design 2GD:

9007212378182283

Line	Information
[1]	Manufacturer, address
	Explosion protection mark, CE mark
	The identification on the upper edge of the nameplate are only present when the motor has been certified accordingly or when it includes the relevant components.
[2]	Type designation
	Number of the approval authority
[3]	Serial number
	EU type examination certificate for line operation
	Rated efficiency for motors included in the scope of the IEC 60034-30-1 standard
[4]	Rated frequency
	Rated speed
	Nominal voltage
	Relation between starting current and rated current
[5]	Rated power, operating mode
	Rated current
	Power factor for AC motors
	Heating time

Line Information [6] • II = Equipment group II (above ground) 2 = Equipment category 2 G = Areas containing potentially explosive mixtures of gas, steam, fog, and air Ex e = Protection type IIC = Gas group T3 = temperature class (gas) Gb = EPL (Equipment Protection Level) • II = Equipment group II (above ground) 2 = Equipment category 2 D = For areas where dust may create potentially explosive atmospheres Ex tb = protection type IIIC = dust group T120 °C = Surface temperature (dust) Db = EPL (Equipment Protection Level) [7] Mounting position Degree of protection according to IEC/EN 60034-5 Thermal class · Number of phases and underlying rating and performance standards (IEC/EN 60034X and/or equivalent national standard) Zone A = Section A from IEC/EN 60034-1 [81 · Motor weight · Ambient temperature


· Thermal capacity utilization of the motor

· Year of manufacture · Country of manufacture

SEW

7.5.2 Additional nameplate for EDR../EDRN.. motors in frequency inverter operation

The following figure shows an example of the additional nameplate for an EDRS motor in design 2GD for frequency inverter operation (short additional FI nameplate):

9007212378184715

Line	Information
[1]	System voltage – line voltage of frequency inverter
[2]	(Voltage Mode Flux Control) Voltage controlled control mode of the frequency inverter
[3]	EU type examination certificate for frequency inverter operation
[4]	maximum permitted peak current, e.g. when accelerating with VFC control mode
[A]	The additional FI nameplate lists the thermal limit characteristic
[B]	curve of the motor (item A – E) considering voltage and frequency, see chapter Limit characteristic curves of EDRS and
[C]	EDRE motors in inverter operation.
[D]	The minimum and maximum frequency may deviate depending
[E]	on the option.

Type designation of EDR.., EDRN.. motors 7.6

The following diagram shows the structure of the motor type designation:

EDRS71S4 /BE2 /FI /3GD /KCC /TF /ES7S	
E	Explosion-proof design
DR	Product family
s	Code for product line identification
71S	Size and length
4	Number of poles
/BE2	Brake
/FI	Output options
/3GD	Explosion protection design
/KCC	Connection options
/TF	Thermal motor protection
/ES7S	Encoder

7.6.1 Designation of the motors

Designation	
EDRS	Explosion-proof AC motor, Standard Efficiency IE1
EDRE	Explosion-proof AC motor, High Efficiency IE2
EDRN	Explosion-proof AC motor, Premium Efficiency IE3
71 to 315	Sizes: 71, 80, 90, 100, 112, 132, 160, 180, 200, 225, 250, 280, 315
S, M, L, LC, ME, H, LS, LM, K	Lengths
4	Number of poles

7.7 **Designs and options**

7.7.1 **Output variants**

Designation	Description
/FI	IEC foot-mounted motor
/F.A /F.B	Universal foot-mounted motor
/FG	7series integral motor, as stand-alone motor
/FF	IEC flange-mounted motor with bore
/FT	IEC flange-mounted motor with threads
/FL	General flange-mounted motor (other than IEC)
/FM	7-series integral motor with IEC feet
/FE	IEC flange-mounted motor with bore and IEC feet
/FY	IEC flange-mounted motor with threads and IEC feet
/FK	General flange-mounted motor (deviating from IEC) with feet
/FC	C-face flange-mounted motor, dimensions in inch

7.7.2 Mechanical attachments

Designation	Description
/BE ¹⁾	Spring-loaded brake with specification of size
/HR	Manual brake release of the brake, re-engaging
/HF	Manual brake release, lockable
/RS	Backstop
/MSW	MOVISWITCH®
/MM03 – MM40	MOVIMOT®
/MO	MOVIMOT® option(s)
/MI	Motor identification module for MOVIMOT®

¹⁾ Also available in design for functional safety

7.7.3 Encoder

Designation	Description
/ES7S ¹⁾ /EG7S ¹⁾ /EH7S /EV7S	Add-on speed sensor with sin/cos interface
/ES7R /EG7R /EH7R	Add-on speed sensor with TTL(RS422) interface, U = $9-26$ V
/EI7C ²⁾ /EI76 / EI72 /EI71	Built-in incremental encoder with HTL interface and 24 / 6 / 2 / 1 period(s)
/EI8R	Built-in incremental encoder with TTL (RS422) interface and 1024 periods
/EI8C	Built-in incremental encoder with HTL interface and 1024 periods
/AS7W ¹⁾ /AG7W ¹⁾	Add-on absolute encoder, RS485 interface (multi-turn) and sin/cos interface
/AS7Y ¹⁾ /AG7Y ¹⁾ / AH7Y	Add-on absolute encoder, SSI interface (multi-turn) and sin/cos interface
/ES7A /EG7A	Mounting adapter for speed sensors

Designation	Description
/EV2T /EV2R /EV2S /EV2C	Add-on incremental encoder with solid shaft
/XV.A	Mounting adapter for third-party speed sensors
/XV	Mounted third-party speed sensors
/XH.A	Mounting adapter for third-party hollow-shaft encoders

- Also available in design for functional safety
 Also available in design for functional safety

7.7.4 Temperature sensor / temperature detection

Designation	Description
/TF	Temperature sensor (PTC thermistor or PTC resistor)
/TH	Thermostat (bimetallic switch)
/KY	1 KTY84 – 130 sensor
/PT	1 or 3 PT100 sensor(s)
/PK	PT1000 temperature sensor

7.7.5 Connection alternatives

Designation	Description
/IS	Integrated plug connector
/ISU	Integrated plug connector – Design with only the lower part of the plug connector
/ASE.	HAN 10ES plug connector on terminal box with single locking latch (cage clamp contacts on the motor side)
/ASB.	HAN 10ES plug connector on terminal box with double locking latch (cage clamp contacts on the motor side)
/ACE.	HAN 10E plug connector on terminal box with single locking latch (crimp contacts on the motor side)
/ACB.	HAN 10E plug connector on terminal box with double locking latch (crimp contacts on the motor side)
/AME. /ABE. /ADE. /AKE.	HAN Modular 10B plug connector on terminal box with single locking latch (crimp contacts on the motor side)
/AMB. /ABB. /ADB. /AKB.	HAN Modular 10B plug connector on terminal box with double locking latch (crimp contacts on the motor side)
/KCC	6 or 10-pole terminal strip with cage clamp contacts
/KC1	C1-profile-compliant connection of the electrified monorail drive (VDI guideline 3643), for more compact connection areas.
/IV	Other industrial plug connectors according to customer specifications

7.7.6 Ventilation

Designation	Description
N	Forced cooling fan

Designation	Description
/Z	Additional inertia (flywheel fan)
/AL	Metal fan
/U	Non-ventilated (without fan)
/OL	Non-ventilated (closed B-side)
/C	Canopy for the fan guard
/LF	Air filter
/LN	Low-noise fan guard

7.7.7 Bearing

Designation	Description
/NS	Relubrication device
/ERF	Reinforced bearings on A-side with rolling bearing
/NIB	Insulated bearing B-side

7.7.8 Condition monitoring

Designation	Description
/DUB	Mount-on microswitch for monitoring function and wear of the brake (Diagnostic Unit Brake)
/DUE	Eddy-current sensor for function and wear monitoring of the brake (Diagnostic Unit Eddy Current)

7.7.9 Explosion-proof motors

Designation	Description
/2GD	Motors according to 94/9/EC, category 2 (gas / dust)
/3GD	Motors according to 94/9/EC, category 3 (gas / dust)
/3D	Motors according to 94/9/EC, category 3 (dust)
ΝE	Forced cooling fan for motors according to 94/9/EC, category 3 (gas / dust)

Explosion-proof motors are dealt with in separate operating instructions.

7.7.10 Other additional features

Designation	Description	
/DH	Condensation drain hole	
/RI	Reinforced winding insulation Reinforced winding insulation with increased resis ance against partial discharge	
/RI2		
/2W	2nd shaft end on the motor/brakemotor	

7.8 Description of DRL.. asynchronous servomotors

7.8.1 Description

Asynchronous servomotors are the link between the classical asynchronous AC asynchronous motors for supply system and inverter operation and the highly dynamic synchronous servomotors with permanent magnets.

2998238987

Designs of DRL.. motors

DRL.. asynchronous servomotors are a drive package made up from the many options of the modular system for asynchronous motors.

In its basic variant, the drive package always contains

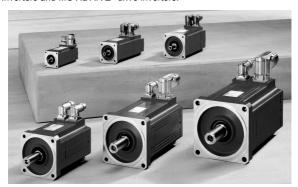
- An encoder, sine signals, and electronic nameplate
- Thermal motor protection
- Dynamics package
- Various connection options
- Winding optimized with respect to speed

Depending on the application and requirements, the following elements can be added:

- Forced cooling fan
- Connection via plug connectors instead of terminals
- Temperature detection
- and other things.

Alternatives can be selected instead of the elements of the basic variant, e.g. an absolute encoder instead of the sine encoder.

8 Synchronous Servomotors


8.1 CMP.. motors

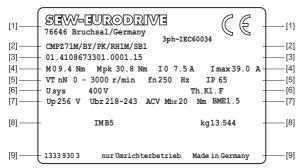
8.1.1 Description of CMP.. motors

The CMP.. servomotor series combines high dynamics, high torques, and precision in a compact design.

Their innovative design with the latest in winding and magnet technology offers a motor system with optimum dynamics and the best control characteristics at the smallest space. The cast stator protects the motor against vibrations and humidity.

CMP.. servomotors can be combined with MOVIAXIS® multi-axis servo inverters and MOVIDRIVE® drive inverters.

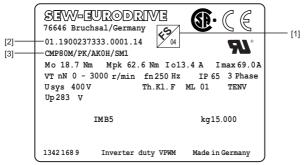
2997677835


8.1.2 Description of CMPZ.. motors

CMPZ.. synchronous servomotors are equipped with an internal additional flywheel mass. These motors combine high torques and precision in a compact design and provide particularly favorable control characteristics with high external masses. Furthermore, the internal higher moment of inertial allows for a smaller gear ratio.

In addition to the above mentioned features of the CMP.. motors, CMPZ.. motors are optionally available with a powerful working brake with high working capacity and optional manual brake release.

8.1.3 Nameplate of CMP.. motors


The following figure shows the nameplate of a CMP.. motor:

27021605947857931

The nameplate only contains the FS logo if safety-rated components are used.

The following figure shows a nameplate of a motor with UL and CSA approvals and safety-rated components:

27021605947859851

- FS logo including number [1]
- [2] Motor identification number
- [3] Type designation

8.1.4 Unit designation of the plug connectors

The following diagram shows a type designation:

s	M	1	2	
s				S: Connector
	M			M: Motor, B: Brakemotor
		1		1: Connector size 1 (1.5 – 4 mm²), B : Connector size 1.5 (6 – 16 mm²), C : Connector size 3 (16 – 35 mm²)
			2	Cross section
				1 : 1.5 mm ² , 2 : 2.5 mm ² , 4 : 4 mm ² , 6 : 6 mm ² , 10 : 10 mm ² , 16 : 16 mm ² , 25 : 25 mm ² , 35 : 35 mm ²

8.1.5 Sample type designation of a servomotor

The following table shows the example of a type designation:

Example: P6BG52-012/X/H1/99 CSC100S/BK/PK/AK0H/SB1		
	P6BG52	Size
	012	Gear ratio
Servo gear units	Х	Special rotational clearance
Corve godi dimo	H1	Food-grade lubricant
	99	Identification of special measure
Synchronous servomotor	CSC100	Flange-mounted motor size 100
Length	S	Short
Mechanical attachments	/BK	BK holding brake
Standard equipment temperature sensor	/PK	PK temperature sensor
Encoder motor option	/AK0H	Absolute encoder
Plug connector motor option	/SB1	Plug connector brakemotor M23

8.1.6 Designs and options of CMP.. motors

Synchronous servomotors

Designation	
CMP	Flange motor size 40 / 50 / 63 / 71 / 80 / 100 / 112
CMPZ	Flange motor size 71 / 80 / 100 with additional inertia/increased mass moment of inertia
S – E	S = Small / M = Medium / L = Long / H = Huge / E = Extra long

Mechanical attachments

	Designation	Option
	/BP	Holding brake for CMP71 – 100
-	/BK	Holding brake for CMP40 – 63
ì	/BY	Working brake for CMPZ71 – 100, CMP112
i		Optionally available as safety-rated brake for CMPZ71 – 100.
	/HR	BY manual brake release for CMP71 – 100, CMP112, re-engaging

Temperature sensor/temperature detection

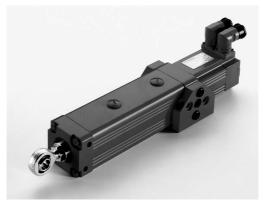
Designation	Option
/PK	Temperature sensor (PT1000)

Encoders

Designation	Option	
/RH1M	Resolver (standard)	
/EK0H	Single-turn Hiperface® encoder, cone shaft, for CMP40	
/AK0H	Multi-turn Hiperface® encoder, cone shaft, for CMP40– 63, CMP71 – 100, CMP112, optionally available as safety-rated encoder	
/EK1H	Single-turn Hiperface® encoder, cone shaft, high resolution, for CMP50 – 63, CMP71 – 100, CMP112	
/AK1H	Multi-turn HIPERFACE® encoder, cone shaft, high resolution, for CMP50 – 63, CMP71 – 100, CMP112, optionally available as safety-rated encoder	

Connection options

Designation	Option
/SM1	M23 motor plug connector, socket on motor side only, pluggable motor and encoder cables (standard)
/SMB	M40 motor plug connector, socket on motor side only, pluggable motor and encoder cables (standard)
/SMC	M58 motor plug connector, socket on motor side only, pluggable motor and encoder cables (standard)
/SB1	M23 brakemotor plug connector, socket on motor side only, pluggable motor and encoder cables (standard)
/SBB	M40 brakemotor plug connector, socket on motor side only, pluggable motor and encoder cables (standard)
/SBC	M58 brakemotor plug connector, socket on motor side only, pluggable motor and encoder cables (standard)
/KK	Terminal box for CMP50, CMP63, CMP71 – 100, CMP112, clampable motor and encoder cable
/KKS	Terminal box for CMP71 – 100, CMP112, clampable motor cable and pluggable encoder cable


Ventilation

Designation	Option	1
∕VR	Forced cooling fan (from size 50)	200

8.2 CMS../CMSM.. electric cylinders

8.2.1 Description


Electric cylinders of the CMS../CMSM.. series are equipped with permanent magnet rotors and operate particularly precise, powerful and fast. Combined with drive electronics from SEW-EURODRIVE, they provide economical, energy-efficient drive solutions that ensure a high level of process reliability in system operation and are easy to integrate into existing automation facilities, such as welding systems and robotic systems.

2997873547

8.2.2 CMS.. standard electric cylinders - Nameplate

Each electric cylinder has a nameplate that provides important information. The following figure shows an example of a CMS.. standard electric cylinder nameplate:

18014410760880523

Line	Information
[1]	Manufacturer, address
	CE marking
[2]	Type designation
[3]	Serial number
	 Number of phases and underlying rating and performance standards (IEC 60034 X and/or equivalent national standard)
[4]	• M ₀ : Standstill torque
	• M _{pk} : Dynamic limit torque
	• I _{max} : Maximum permitted motor current
[5]	VT: Variable torque
	• F _{pk} : Peak feed force
	Th. Cl.: Thermal class
	IP: Degree of protection
	°C: Permitted ambient temperature
[6]	• U _{sys} : System voltage
	• n _N : Rated speed
	• f _n : Rated frequency
[7]	• U _p : Internal voltage
	 n_{pk}: Maximum mechanically permitted speed
	IM: Mounting position
[8]	• U _{br} : Brake voltage
	• M _{br} : Nominal braking torque
	• kg: Weight
[9]	Spindle: Spindle
	Stroke: Stroke length
[10]	• Coloricant, lubricant quantity

Line	Information
[11]	Part number nameplate
	Suitability for inverter operation
	Country of manufacture

8.2.3 Nameplate of CMSM.. modular electric cylinder

CMSM.. modular electric cylinders have a nameplate attached to the modular unit. The nameplate shows the most important characteristics. The following figure shows an example of the nameplate of the modular unit.

27021610015623435

Line	Information
[1]	Manufacturer, address
[2]	Type designation
[3]	Serial number
[4]	M _{epk} : Max. permitted input torque
	°C: Permitted ambient temperature
	IM: Mounting position
[5]	• F _{pk} : Peak feed force
	IP: Degree of protection
	• kg: Weight
[6]	n _{epk} : Maximum permitted input speed
[9]	Spindle: Spindle
	Stroke: Stroke length
[10]	• Cubricant, lubricant quantity
[11]	Part number nameplate
	Country of manufacture

If the modular unit is combined with a CMP motor, an additional nameplate that shows the motor characteristic data is attached to the motor.

8.2.4 Type designation CMSM.. modular electric cylinders

The following diagram shows an example of a type designation for a CMSM.. modular electric cylinder:

Example: CMSMB63/ACA		
Product	CMS M	CMSM modular electric cylinders
Generation	В	With oil bath lubrication
Size	63	
Mounting position	/ACA	Motor with key (CMP)
	-	Stroke length:
		• CMSMB50: 70, 100, 150, 200, 300, 400, 600
		• CMSMB63: 60, 100, 160, 180, 200, 400, 600
		• CMSMB71: 100, 160, 200, 400, 600, 800, 1000, 1200

8.2.5 Designs and options for the CMS.. electric cylinders Electric cylinders

Designation	Description
CMS	Standard electric cylinders size 50/63/71
CMSM	Electric cylinder, modular
В	Feature of the generation: with oil bath lubrication If the designation does not include a B: with grease lubrication
S-L	S = Small M = Medium
	L = Long

Adapter

Designation	Description
/ACA	For mounting on motor with key (CMP)
/ACH	For mounting on motor smooth shaft (CMP)
/AP	Design with parallel axes

Mechanical attachments

Designation	Description
/BP	Holding brake for CMSB71
/BK	Holding brake for CMSB50 – 63
/BS	Holding brake for CMS71

Temperature sensor / temperature detection

Designation	Description
/KY	Temperature sensor for CMS50 – 71 (standard)
/TF	Temperature sensor for CMS71 (standard)
/TH	Thermostat (bimetallic switch) for CMS71

Designation	Description
/PK	Temperature sensor PT1000 for CMS50 – 71

Encoders

Designation	Description
/RH1M	Resolver (standard)
/AK0H	Multi-turn HIPERFACE® encoder, cone shaft, for CMSB50/63/71, CMS71
/EK1H	Single-turn HIPERFACE® encoder, cone shaft, high resolution, for CMSB50/63/71, CMS71
/AK1H	Multi-turn HIPERFACE® encoder, cone shaft, high resolution, for CMSB50/63/71, CMS71

Connection options

Designation	Description
Designation	Description
/SM1	M23 motor plug connector, socket on the motor side only, pluggable motor and encoder cables (standard)
/SB1	M23 brakemotor plug connector, socket on the motor side only, pluggable motor and encoder cables (standard)
/KK	Terminal box for CMSM modular electric cylinder

Cooling

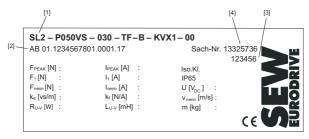
Designation	Description
/VR	Forced cooling fan
/LC	Water cooling

Generation

Designation	Description
В	With bath lubrication
	If the designation does not include a B: with grease lubrication

8.3 SL2 synchronous linear motors

8.3.1 Description


2997988619

SL2 synchronous linear motors are available in three designs for speed classes 1, 3 and 6 m/s: SL2 Basic, SL2 Advance System and SL2 Power System. For longer travel paths, secondaries are available in different lengths and can be easily lined up with one another. The SL2 Advance System features a motor cooling unit, which provides even better cooling than SL2 Basic. A forced cooling fan gives the SL2 Power System a further power boost.

8.3.2 Nameplate

Nameplates that show the technical data are attached to the primaries and secondaries of the linear motor:

Exemplary representation of a nameplate

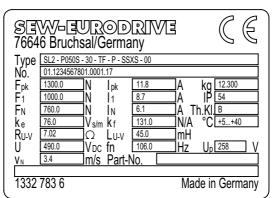
5298356747

- [1] Type code
- [2] Customer order number
- Production number [3]
- [4] Part number F_{PFAK} Maximum force
- F₄ Maximum force available up to v₁

 $\boldsymbol{F}_{\text{nominal}}$ Rated force

 $k_{\rm e}$ Voltage constant $R_{\text{U-V}}$ Winding resistance1) I_{PEAK} Maximum current

Current at F₁ I_1 Inominal Rated current $k_{\rm f}$ Force factor Inductance1) L_{U-V} Iso.KI. Thermal class


IΡ Degree of protection

DC link voltage V_{nominal} Nominal speed

Weight m

1) Half the conductor value (UV value) is used for startup.

Nameplate of SL2-Advanced System and SL2-Power System

20509321867

Type Type code

Customer order number no.

Fpk Maximum force

F₁ Maximum force available up to v₁

Rated force Voltage constant k, $R_{\text{U-V}}$ Winding resistance1) U DC link voltage Nominal speed V_N Maximum current Current at F₁ Rated current I_N Force factor Inductance

Part no. Part number Weight kg

ΙP Degree of protection

Thermal class

°C Ambient temperature range V_D Internal voltage at V_N

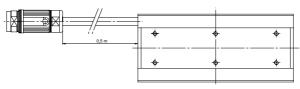
 f_n Rated frequency Transitional speed

1) Half the conductor value (UV value) is used for startup.

- [1] Type code
- [2] Customer order number
- [3] Date of production
- [4] Production number
- [5] Part number

8.3.3 Type code

Primary


Exam	ple: S	L2-P050VS-030-TF-B-KVX1-00		
Product name	SL2	 Second-generation synchronous linear motor 		
Motor component	Р	• P = Primary		
Active width of	050	• 025 = 25 mm		
the primary		• 050 = 50 mm		
		• 100 = 100 mm		
		• 150 = 150 mm		
		• 200 = 200 mm		
		• 250 = 250 mm		
Length of the	VS	VS = Very short		
primary		• S = Short		
		• M = Medium		
		• ML = Medium long		
Speed class	030	• 010 = 1 m/s		
		• 030 = 3 m/s		
		• 060 = 6 m/s		
Motor protection	TF	• TF = PTC thermistor		
		KY = Continuous motor temperature monit- oring		
		• PK = PT1000 ¹⁾		
Motor design	В	• B = SL2-Basic		
		A = SL2-Advanced System		
		• P = SL2-Power System		
Connection	KVX 1	KVX1 = Cable extension (SL2 Basic)		
		AVX0 = Cable extension with connector (SL2-Basic)		
		SSXS = Connector (SL2-Power System, SL2-Advanced System)		
Design	00	• 00 = Standard		
		• 01 = With modified winding		

¹⁾ Not available for all part numbers, but additional part numbers can be added.

Cable extension SL2-Basic

	Exar	nple: SL2KVX1
Connection type	K	• K = Cable extension
		• A = Connector
Electrical connection	V	• V = Connected
Cable outlet posi-	Х	• X = Standard
tion		X
Cable extension	1	• 1 = 1 m (standard)
length		• 4 = 4 m (can be ordered)
		• 0 = 0.5 m (cable length only with connector design)

The SL2-Basic version with $I_{nominal} \le 26$ A is available with Intercontec round connector \rightarrow type AVX0

20687053707

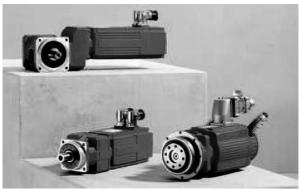
Connector positions of SL2-Advanced System and SL2 -Power System

Example: SL2SSXS					
Connection type	S	• S = Connector			
Mechanical design	S	• S = Standard			
Position of con- nector	Х	• X = Standard			
riector		Not available for the following motors/plug-in connections:			
		SL2-050 Power System with connector position Z¹)			
		SL2-100 Power System with connector position W¹			
		SL2-150 Power System with connector position Z ¹⁾			
		x — Y W			
Design	S	• S = Standard			

1) Collision with M12 24 V connector

Secondary

Example: SL2-S050-128		
Product name	SL2	Second-generation synchronous linear motor
Part designation	S	Secondary
Active magnet width of the sec-	050	• 025 = 25 mm
ondary		• 050 = 50 mm
		• 100 = 100 mm
		• 150 = 150 mm
		• 200 = 200 mm
		• 250 = 250 mm
Length of the sec-	64	• 064 = 64 mm
ondary		• 128 = 128 mm
		• 256 = 256 mm
		• 512 = 512 mm


Length measuring system

Example: AL1H		
Encoder type	Α	• A = Absolute encoder
Measuring sys- tem	L	L = Linear measuring system
Encoder variant	1	• 1 = L230
		• 2 = TTK70
Encoder inter- faces	Н	• HIPERFACE®

Synchronous Servo Gearmotors 9

Description

The following figure depicts servo gearmotors:

3727038859

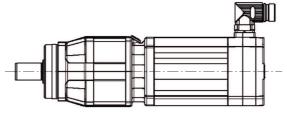
9.2 Servo gearmotor nameplate

9.2.1 Nameplate for PS.C.. servo gearmotors

The following figure depicts the nameplate for a gearmotor:

3613171339

1/	
n	ev


i		Gear unit ratio	n_N	[1/ min]	Rated speed
IM		Mounting position	M_{o}	[Nm]	Rated torque
IP		Degree of protection	I_o	[A]	Rated current
$n_{\scriptscriptstyle epk}$	[1/ min]	Maximum permitted input speed	I_{max}	[A]	Maximum permitted current
n_{apk}	[1/ min]	Maximum permitted output speed	f_N	[Hz]	Nominal frequency
M_{apk}	[Nm]	Maximum permitted output torque	U_{Max}	[V]	Maximum permitted voltage

The nameplate of servo gearmotors is fixed to the servomotor.

9.3 Type designation

9.3.1 Type designation of a servo gearmotor

Example: Order code servo gearmotor PS.C..

15429760523

For example, a servo gearmotor with brake, manual brake release, PTC thermistor and plug connector has the following type designation:

Example: PSC321CMF	P50M/BK/PK/AK1H/SB	1
Gear unit type	PSC	Gear unit
Gear unit size	321	
Motor series	CMP	Motor
Motor size	50	
Length	M	
Brake	/BK	Options
Temperature sensor	/PK	
Multi-turn absolute encoder	/AK1H	
Plug connector for motor and brake, con- nector housing with axial encoder cable entry	/SB1	

10 **Gear Units and Adapters**

10.1 Description of R, F, K, S, W gear units

Torque and permissible overhung loads are incomparably high in relation to the structural volume of the motor. This was made possible by the compact and torsionally rigid housing with its low weight and optimum power flow. The sealing surfaces are not subject to any load pressure as the force flows through the one-piece housing.

For maximum safety during use, all the shaft-hub connection in the gearmotors are positive connections. Precision positioning tasks are taken care of by the helical, parallel and helical-bevel gearmotors, also available in reduced backlash design.

The following figure illustrates R, F, K, S, and W gear units:

3727480715

10.2 Variants and options of R, F, K, S, W gear units

Below an overview of type designations for R, F, K, S, and W gear units and their options.

10.2.1 Helical gear units

The following table shows possible helical gear unit designs:

Designation	
RX	Single-stage foot-mounted design
RXF	Single-stage B5 flange-mounted design
R	Foot-mounted design
RF	Foot-mounted and B5 flange-mounted design
RF	B5 flange-mounted design
RZ	B14 flange-mounted design
RM	B5 flange-mounted design with extended bearing hub

10.2.2 Parallel shaft helical gear units

The following table shows possible parallel-shaft helical gear unit designs:

Designation	
F	Foot-mounted design
FAB	Foot-mounted design and hollow shaft
FHB	Foot-mounted design and hollow shaft with shrink disk
FVB	Foot-mounted design and splined hollow shaft to DIN 5480
FF	B5 flange-mounted design
FAF	B5 flange-mounted design and hollow shaft
FHF	B5 flange-mounted design and hollow shaft with shrink disk
FVF	B5 flange-mounted design and hollow shaft with splined hollow shaft to DIN 5480
FA	Hollow shaft
FH	Hollow shaft with shrink disk
FT	Hollow shaft with TorqLOC® hollow shaft mounting system
FV	Splined hollow shaft to DIN 5480
FAZ	B14 flange-mounted design and hollow shaft
FHZ	B14 flange-mounted design and hollow shaft with shrink disk
FVZ	B14 flange-mounted design and hollow shaft with splined hollow shaft to DIN 5480

10.2.3 Helical-bevel gear units

The following table shows possible helical-bevel gear unit designs:

Designation	
K	Foot-mounted design
KAB	Foot-mounted design and hollow shaft
KHB	Foot-mounted design and hollow shaft with shrink disk
KVB	Foot-mounted design and splined hollow shaft to DIN 5480
KF	B5 flange-mounted design
KAF	B5 flange-mounted design and hollow shaft
KHF	B5 flange-mounted design and hollow shaft with shrink disk
KVF	B5 flange-mounted design and hollow shaft with splined hollow shaft to DIN 5480
KA	Hollow shaft
KH	Hollow shaft with shrink disk
KT	Hollow shaft with TorqLOC® hollow shaft mounting system
KV	Splined hollow shaft to DIN 5480
KAZ	B14 flange-mounted design and hollow shaft
KHZ	B14 flange-mounted design and hollow shaft with

Designation	
	B14 flange-mounted design and hollow shaft with splined hollow shaft to DIN 5480

10.2.4 Helical-worm gear units

The following table shows possible helical-worm gear unit designs:

Designation	
S	Foot-mounted design
SF	B5 flange-mounted design
SAF	B5 flange-mounted design and hollow shaft
SHF	B5 flange-mounted design and hollow shaft with shrink disk
SA	Hollow shaft
SH	Hollow shaft with shrink disk
ST	Hollow shaft with TorqLOC® hollow shaft mounting system
SAZ	B14 flange-mounted design and hollow shaft
SHZ	B14 flange-mounted design and hollow shaft with shrink disk

SPIROPLAN® gear units

The following table shows possible SPIROPLAN® gear unit designs:

Designation	
W	Foot-mounted design
WF	Flange-mounted design
WAF	Flange-mounted design and hollow shaft
WA	Hollow shaft
WAB	Foot-mounted design and hollow shaft
WHB	Foot-mounted design and hollow shaft with shrink disk
WHF	Flange-mounted design and hollow shaft with shrink disk
WH	Hollow shaft with shrink disk
WT	Hollow shaft with TorqLOC® hollow shaft mounting system

10.2.6 Options

The following table shows possible option designs for R, F, and K gear units:

Designation	
/R	Reduced backlash

The following table shows possible option designs for K, S, and W gear units:

Designation	
/T	With torque arm

The following table shows possible option designs for F gear units:

Designation	
/G	With rubber buffer

10.2.7 Condition monitoring

The following table shows possible monitoring device designs:

Designation	Option	
/DUO	Diagnostic Unit Oil = Oil aging sensor	
/DUV	Diagnostic Unit Vibration = Vibration sensor	

10.3 Nameplate/type designation

10.3.1 Nameplate

The following figure shows a nameplate:

SEW-EURODRIVE 76646 Bruchsal / Germany K57 AQH140/1 IM M3B 01.1234567890.0001.08 0 _{19,34} O ΙP 65 na pk r/min 232 ne pk r/min 4500 Mapk Nm 665 kg 32 Made in Germany CLP HC 220 Synth.Öl / 2,4L 0641 543 1

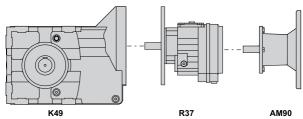
9007199879642891

i Gear unit ratio

IM Mounting position

IP Degree of protection

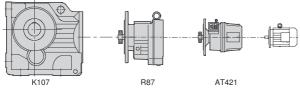
n_{epk} [1/ Maximum permitted input speed min]


n_{apk} [1/ Maximum permitted output speed min]

M_{ank} [Nm] Maximum permitted output torque

10.3.2 Type designation of a gear unit

The type designation of the gear unit starts from the component on the output side. For example, a helical-bevel compound gear unit with adapter for IEC motors has the following type designation:


Example: K49R37AM90		
Gear unit type	K	1. Gear unit
Gear unit size	49	
Gear unit series	R	2. Gear unit
Gear unit size	37	
Adapter for installation of IEC motors	AM	Gear unit component on the input side
Adapter size	90	

21431260555

Examples:

The type designation of the gear unit starts from the component on the output side. For example, a helical-bevel compound gear unit with hydraulic start-up coupling has the following type designation:

4325123467

Example: K107R87AT421/BMG		
Gear unit type	K	1. Gear unit
Gear unit size	107	
Gear unit type	R	2. Gear unit
Gear unit size	87	
Type of the gear unit component on the input side	AT	
Size of the gear unit component on the input side	421	
Option of the gear unit component on the input side	/BMG	

10.4 Description of BS.F, PS.F, PS.C gear units

High processing speeds, increased accuracy, and greater acceleration are the features of BS.F, PS.F, PS.C gear units. In conjunction with consistently low rotational clearance, high stiffness, and a high level of efficiency, these highly precise and extremely powerful servo gear units form the basis for a variety of servo drives.

Servo gear units have the following additional features:

- · Direct motor mounting:
 - Positive direct mounting (without terminal adapter) of the SEW servomotor series CMP, CM and DS
- Motor Adapter:
 - EPH motor adapters for PS.F and PS.C planetary servo gear units, ECH motor adapters for PS.C planetary servo gear units, and EBH motor adapters for BS.F helical-bevel servo gear units.
- · Reduced backlash:
 - Optionally for PS.F planetary servo gear units and BS.F helicalbevel servo gear units with significantly smaller rotational clearance
- · Minimized rotational clearance:
 - Optionally for PS.F planetary servo gear units with even more reduced rotational clearance

The following figures show the BS.F and PS.F gear units:

Variants and options of BS.F, PS.F and PS.C gear 10.5 units

BS.F helical-bevel gear units

The following table shows possible designs for BS.F helical-bevel gear units:

Designation	
BSF	Solid shaft with key
BSKF	Solid shaft with key
BSBF	Solid shaft with flange block shaft
BSHF	Hollow shaft with shrink disk
BSAF	Hollow shaft with keyway
BSKFB	Solid shaft with key and foot/front-end mounting
BSBFB	Solid shaft with flange block shaft and foot/front-end mounting
BSHFB	Hollow shaft with shrink disk and foot/front-end mounting
BSAFB	Hollow shaft with keyway and foot/front-end mounting

10.5.2 PS..F planetary gear units

The following table shows possible designs for PS.F planetary gear units:

Designation	
PSF	Solid shaft with key
PSKF	Solid shaft with key
PSBF	Solid shaft with flange block shaft

10.5.3 PS.C planetary gear units

The following table shows possible designs for PS.C planetary gear units:

Designation	
PSC	Solid shaft with key
PSKC	B5 output flange, solid shaft with key
PSCZ	B14 output flange, solid shaft
PSKCZ	B14 output flange, solid shaft with key

10.5.4 Options

The following table shows possible option designs for BS.F gear units:

Designation	
/R	Reduced backlash
/T	Torque arm
/I	Hollow shaft and shrink disk at the output side

The following table shows possible option designs for PS.F gear units:

_	
Designation	
/R	Reduced backlash
/M	Minimized backlash

10.6 Nameplate/unit designation

10.6.1 Nameplate of a PS.C.. planetary gear unit with ECH.. adapter

The following figure shows an example of a nameplate:

	/							٦
	SEV	/-EU	RODRIN	/E		i	10	
			en/German			kg	5,9	
	PSC32	1 ECH	03/13/11	-		ΙP	65	
	01.3215	26420	1.0001.08		IM		M0	
	na pk	r/min	650	ne pk	r/min	65	00	
	Ma pk	Nm	81					
ı					Mad	o in C	orman	

CLP PG 220 Synth.Öl / 0,091L

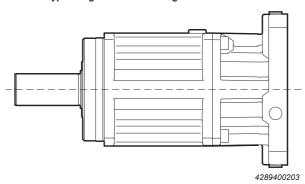
Maximum permitted output speed

Made in Germany L 0117 899 7

1872039435

Gear unit ratio

IM Mounting position
IP Degree of protection


 $n_{\mbox{\scriptsize epk}}$ [1/ Maximum permitted input speed

min] n_{apk} [1/

min]

M_{abk} [Nm] Maximum permitted output torque

24770132/EN - 12/2017

For example, a planetary servo gear unit with adapter has the following type designation:

type designation.			
PSF521 /R E	PSF521 /R EPH07/21/13		
PSF	Gear unit type:		
	• PSF		
	• PSKF or		
	• PSBF		
521	Gear unit size: e.g.: 521		
/R Option for all planetary servo gear units:			
	/R: Reduced rotational clearance		
	/M: Minimized rotational clearance		
EPH	Adapter designation for planetary servo gear units		
07	Code for performance class		
/21	Flange geometry (centering, hole circle)		
/13	Coupling hole classification		

10.7 Components on the input side

The following table provides an overview of output side components:

The following table provides an overview of output side components:						
IEC or NEMA adapter AM	50	For mounting motors in accord- ance with IEC or NEMA standard				
		• IEC motors: Adapter for sizes 63 – 280				
		NEMA motors: Adapter for sizes 56 – 365.				
		Positive torque transmission via impact resistant claw coupling.				
AR adapter		Non-positive torque transmission				
with slip clutch	2 1 6	Adjustable slip torque				
		The coupling slips in case of over- load to avoid damage				
Adapter with		Adapter for heavy starting systems				
hydraulic start- up coupling AT	416	Overload protection during start-up phase				
		Smooth start-up				
		Installation with touch guard				
		It is possible to mount SEW motor sizes 71 – 180. Helical-bevel gear units with a hydraulic start-up coupling on a swing base are available for motors of size 200 – 280.				
		Preferred speeds: 1400 1/min and 2800 1/min				
Adapter with	17	Adapter for defined braking.				
hydraulic start- up coupling and optional disk brake AT/ BM(G)		The DC-operated electromagnetic disk brake meets the safety re- quirements of braking in case of a power failure.				
		Braking torques may vary.				
		Available with connection for DC and AC voltage				
		Optional manual brake release				
Adapters with		For motors size 200 and larger				
hydraulic start- up coupling on a swing base		Optional brake				
AD input shaft assembly		For drives via the exposed shaft- end				

- · Input shafts have metric dimen-
- sions according to IEC standard. · Input shaft is manufactured with a centering bore at the face end
- · High overhung loads caused by solid bearing of the input shaft

SEW

33924

AD input shaft assembly with motor mount- ing platform /P	

- Compact installation using an adjustable motor platform.
- Parallel alignment to the input shaft
- With tapped holes for IEC standard motor

3392818955

AQ adapter for servomotors

- For mounting servomotors to R, F, K, S, and W gear units
- Torque transmission via claw coupling

Description of gear units for electrified monorail systems

10.8 Description of gear units for electrified monorail systems

10.8.1 Description

Specific requirements are placed on gear units for operating electrified monorail systems (EMS). With the gear unit series HW..., HS.. helicalworm gear unit, and HK..helical-bevel gear unit, SEW-EURODRIVE supplies drives that are specifically tailored to meet the requirements for light and heavy load applications. The performance characteristics of both groups of gear units meet the specific requirements, such as conveying capacity, conveying speed or payload.

All gear units for electrified monorail systems are additionally equipped with an integrated coupling.

Both groups of gear units have the following characteristics:

- High permitted overhung loads for maximum working loads
- Energy-efficient operating principle of gear units and motors
- Reproducible stopping accuracy by using disk brakes

10.8.2 Nameplate

The following figure shows an example of a nameplate:

SEWDEURODRIVE	
HS 41	IM M3A
01.1240523809.00001.08	
na r/min 1380/16	
Ma max Nm 137	kg 13
	i 84
	IP 65
	Made in Germany
CLP 680 Miner. ÖI /0,8 I	06415431

9007200625004427

= Gear unit ratio IM = Mounting position = Degree of protection n_a rpm = Output speed = Output torque M_{amax} Nm

SEW

10.8.3 Type designation

HK40-DRS8	HK40-DRS80M4/BE1/TF			
Н	Electrified monorail gear unit			
K	W = SPIROPLAN® gear unit			
	S = Helical-worm gear unit			
	K = Helical-bevel gear unit			
40	Gear unit size			
DRS	Motor series DRN, DRP, DRE, DRS			
80M4	Motor size and number of poles			
/BE1	Motor option: brake			
/TF	Motor option thermal motor protection			

ECDriveS® 11

11.1 Characteristics and features

The ECDriveS® 24 V drive system by SEW-EURODRIVE consists of a brushless DC gearmotor that can be directly integrated into a conveyor roller, or be universally used as gearmotor.

The drive is controlled by remote commutation electronics with Ethernet-based ECC-DFC zone control or by the ECC-DBC binary control.

The Ethernet control is characterized by an integrated conveyor logic capable of decentralized realization of zero pressure accumulation and many other conveyor tasks.

The driving roller ECR and the ECG gearmotor can be operated in two modes, in ECO mode and in BOOST mode.

ECO mode and BOOST mode differ in speed and torque. ECO mode offers the optimum performance characteristics for most of the applications of the container conveyor technology. However, BOOST mode with increased short-term torque is the right choice if a high starting torque is required.

11.2 Type code

11.2.1 Type code ECR roller drive

E	xam	ple: ECR-A2M-50-450-045-Z-A-V0
Product family	EC	• EC = Device family ECDriveS®
Product type	R	• R = Roller
	Α	• A = IP54 degree of protection – standard
Design		• W = IP66 degree of protection – wet area application
		• Z = Operation to -30 °C – deep-freezing application
Voltage	2	• 2 = 24 V
Motor connection	М	Motor cable M8, 1000 mm
Roller diameter	50	• 50 mm
Length between frames	45 0	Length between frames according to table Minimum roller length.

11.2.2 Type code ECG gearmotor

Example: ECG-A2M-67-A-K0		
Product family EC • EC = Device family ECDriveS®		
Product type	G	• G = Gearmotor

Overview of the roller drives

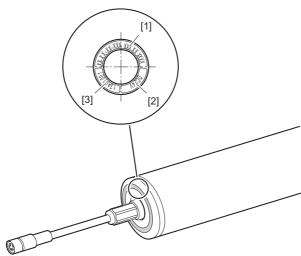
Example: ECG-A2M-67-A-K0			
Design	Α	• A = IP54 degree of protection	
Voltage	2	2 = 24 V	
motor options	М	M8 plug connector	
	67	Gear ratio i =	
		• 67	
		• 45	
		• 33	
Gear unit ratio		• 27	
		• 18	
		• 15	
		• 11	
		• 9	
Version	Α	• A = Standard	
Output shaft	K0	• K = Key	
	Χ	Special design	

11.2.3 Type designation of the controls


- ECC-DBC-24-00 = Binary control
- ECC-DFC-24-00 = Fieldbus control
- ECC-DFC-24-10 = EtherCAT®-compatible control
- ECIO-8-24-00 = IO module PROFINET, Ethernet/IP™, Modbus/ **TCP**
- ECIO-8-24-10 = IO module EtherCAT®

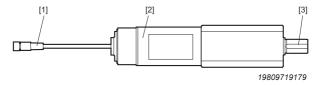
11.2.4 Type designation of the engineering software

ECShell

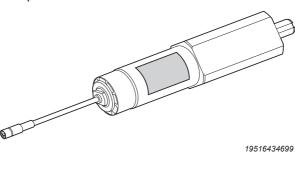

11.3 Overview of the roller drives

11.3.1 ECR roller drive

- [1] Electrical connection
- [2] Axis journal
- [3] Motor roller

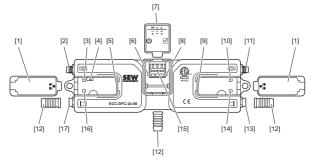

Nameplate

19516478219


- [1] Type designation, e.g.: ECR-A2M-50-450-045-Z-B-V0
- [2] Voltage
- [3] Serial number

11.3.2 ECG gearmotor

- [1] Electrical connection
- [2] Gearmotor
- [3] Motor shaft

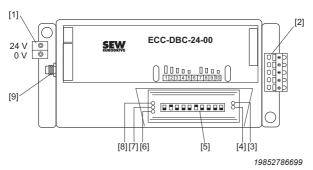

Nameplate

11.4 Overview of the hardware of the ECC-DFC fieldbus controller

ECC-DFC modules are designed such that they can be installed and integrated in the side frame of the conveyor belt.

ECC-DFC modules can be used to control up to 2 motor roller zones of the conveyor belt. Each ECC-DFC has interfaces for 2 motor roller zones with the associated 2 photo sensors and an upstream and downstream network. There are also discrete connecting locations for setting up a complete control system for the motor roller conveyor systems, which are divided up into zones.

19516380555


- [1] Removable IP54 cover for Ethernet connections
- [2] Left motor connection, 4-pin M8 connector for motor roller connection
- [3] "Left motor" LED motor status indicator
- [4] Button for module exchange
- [5] Left connection RJ45 Ethernet network connection between modules
- [6] Power LED indicator of the module
- [7] Removable IP54 cover for the power wiring compartment
- [8] Status LED indicator of the module
- [9] Right connection RJ45 Ethernet network connection between modules
- [10] "Right motor" LED motor status indicator
- [11] Right motor connection, 4-pin M8 connector for motor roller connection
- [12] 1 x power wiring cable gland for degree of protection IP54, 2 x RJ45 protective casing for degree of protection IP54
- [13] Right sensor connection, M8 connection for zone photo sensor
- [14] Right sensor status LED indicator
- [15] DC 24 V power connections with LED indicator
- [16] Left sensor status LED indicator
- [17] Left sensor connection, M8 connection for zone photo sensor

INFORMATION

The designations "left" and "right" for the module connections are based on the shown view of the module and must not be confused with the product flow direction on the conveyor belt. The direction of the product flow is designated using "upstream" or "downstream".

Overview of the hardware of the ECC-DBC binary 11.5 control

- [1] Removable feed-in terminal 24 V
- [2] Removable I/O terminal strip
- [3] LED "Overtemperature"
- [4] Operation LED
- [5] DIP switch
- [6] LED "Start"
- [7] LED "Hold"
- [8] LED "Stop"
- [9] ECR or ECG roller drive connection

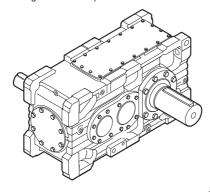
Industrial Gear Units

X.. series

Industrial Gear Units 12

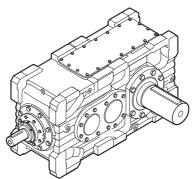
12.1 X., series

12.1.1 Description

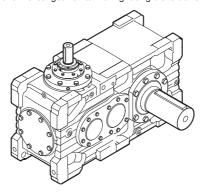

Robust and universal gear unit series which can be optimally adjusted to the task due to finely stepped torque ratings. The universal modular system concept sets new standards with respect to availability and offers a broad range of application options, e.g. for conveyor systems, ball mills and agitators. Application gear units, such as for bucket elevators, complete the range.

SEW

12.1.2 Gear unit type


SEW-EURODRIVE distinguishes between 3 gear unit types:

· X.F..: Helical gear units with parallel shafts


3542987787

· X.K..: Bevel-helical gear units with right-angle shaft arrangement

3542989963

· X.T..: Bevel-helical gear units with right-angle shaft arrangement

3542992139

12.1.3 Nameplate

The following figure shows a nameplate:

0 8	SEV	V-EU	RODI	RIVE	7664	6 Bru	chsal/Germany	0
Туре	X3FS1	190/B					•	
Nr.	01.123	4567812.00	001.06					
		min	nom.	max.	i:		-39.06	
Pk1	[kw]	36	180	180	Fs		1.5	H
Mk2	[Nm]	43300	43300	43300	PM1	[kW]	0	
n1	1/min	296	1480	1480	Ta	[°C]		
n2	1/min	7.6	37.9	37.9			1743 895 0.13	Н
IM [M4-M1	//4-M1/9°			닏			
Mad	e by S	EW						
Oty of	greasing p	points 2	Fans 0	Mass [k	g] [134	10	Year 20	18
2	Synth	etic Oil CLP	HC460 90	ltr.				
(

99079192220796427

Туре		Type designation
No. 1		Serial number
P _{K1}	[kW]	Operating power on the input shaft (HSS)
M _{K2}	[Nm]	Gear unit output torque
n ₁	[1/ min]	Input speed (HSS)
n ₂	[1/ min]	Output speed (LSS)
norm.		Normal operating point
min.		Operating point at minimum speed
Max.		Operating point at maximum speed
i		Exact gear unit ratio
Fs		Service factor
F _{R1}	[N]	Actual overhung load acting on the input shaft
F _{R2}	[N]	Actual overhung load acting on the output shaft
F _{A1}	[N]	Actual axial load acting on the input shaft
F _{A2}	[N]	Actual axial load acting on the output shaft
Mass	[kg]	Weight of the gear unit
Qty. of greasing points		Number of greasing points
Fans		Number of installed fans
		Oil grade and viscosity class/oil quantity
Year		Year of manufacture
IM	_	Mounting position and mounting surface

12.1.4 Type designations

Gear units

The following example shows the structure of the type designation:

X3KS2	50 /HU /B
Х	Industrial gear unit series
3	Number of gear unit stages
	• 2 = 2 stages
	• 3 = 3 stages
	• 4 = 4 stages
K	Gear unit variant
	• F = Helical gear unit
	• K = Bevel-helical gear unit
	• T = Bevel-helical gear unit
S	Type of output shaft
	• S = Solid shaft with key
	• R = Smooth solid shaft
	• L = Splined solid shaft
	• A = Hollow shaft with keyway
	H = Hollow shaft with shrink disk
	• V = Splined hollow shaft
250	Gear unit sizes
	• 100 – 320
HU	Housing design
	HU = Universal housing
	HH = Horizontal housing
	HA = Agitator housing
	HT = Thermal housing
В	Gear unit mounting
	• /B = Foot
	• /T = Torque arm
	• /F = Flange

Oil supply systems

The gear unit can be equipped with an oil supply system for cooling and lubrication purposes. The following example shows the structure of the type designation.

OWC02	20-00/M
0	Oil supply system
W	Cooling medium
	• W = Water
	• A = Air
	• N= Motor pump
С	Туре
	C = Circulation cooling
	P = Pressure lubrication
020	Size
	• 005 – 070
	Application
-0	Mounting positions
	• 0 = M1/M2/M3/M4
	• 1 = M5/M6
0	Option
	• 0 = 50 Hz
	• 1 = 60 Hz
	• 2 = 50 Hz / 60 Hz
	• 9 = Special design
M	Mounting type
	M = Mounted to the gear unit
	S = For separate installation

Flange couplings

The following example shows the structure of the type designation.

	5 1 71 5				
FC530/	FC530/175SM				
FC	Rigid flange coupling				
530	Outer diameter of the flange				
175	Bore diameter				
S	Type of shaft-hub connection:				
	• S = Cylindrical interference fit				
	• K = Keyed connection				
	• T = Conical interference fit				
М	Type of centering:				
	M = External centering				
	• F = Internal centering				

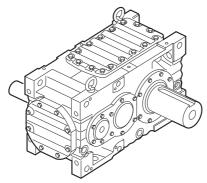
Abbreviations for optional accessories

The table shows the abbreviations used and what they mean.

Abbrevi- ation	Meaning
BF	Base frame
BS	Backstop
APL	Torque-limited backstop
CCV	Water cooling cover
ССТ	Water cooling cartridge
F	Mounting flange
FC	Flange coupling
FAN	Fan
FAN-ADV	Fan, Advanced design
SP	Oil expansion tank
НН	Horizontal housing
HU	Universal housing
HA	Agitator housing
HT	Thermal housing
HSST	Through-going input shaft
LSST	Through-going output shaft
MA	Motor adapter
SB	Swing base
SEP	Shaft end pump
Т	Torque arm
OAC	Circulation cooling oil-air cooler with motor pump
owc	Circulation cooling oil-water cooler with motor pump
OAP	Circulation cooling oil-air cooler with pressure lubrication and motor pump
OWP	Circulation cooling oil-water cooler with pressure lubrication and motor pump
ONP	Pressure lubrication and motor pump
ONP1	Pressure lubrication and motor pump
ONP1L	Pressure lubrication and motor pump
OD	Oil dipstick
ODV	Oil drain valve
OLG	Oil level glass
ОН	Oil heater
VBD	V-belt drives

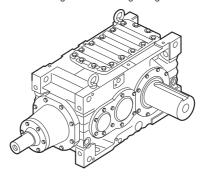
All options are not part of the type designation except for mounting flange, torque arm, horizontal and universal housing.

12.2 MC.. Series


12.2.1 Description

MC series industrial gear units are particularly compact helical and bevel-helical gear units. The 7 sizes available in the MC series cover the 6 to 65 kNm torque range. Their parallel shaft design offers plenty of flexibility in system design and requires remarkably little space. MC gear units can be used in applications such as materials handling, transporting heavy loads, mixing, crane drives and shredders. A design based on this series, with extended bearing distance and reinforced output shaft, is also available.

12.2.2 Gear unit type


SEW-EURODRIVE distinguishes between 2 gear unit types:

MC.P..: Helical gear units with parallel shafts

3546970251

MC.R..: Bevel-helical gear units with right-angle shaft arrangement

3546972427

The following figure shows a nameplate:

O SEW-EURODRIVE Bruchsal/Germany O							
Type MC	Type MC3RLSF02						
Nr. 1 033	0764647			Nr. 2	K346	3	
	norm.	min.	max.	i	1:	20.3123	
PK1 [kW]	16.5	16.5	16.5	FS		3.64	
MK2 [kNr	n] 2.04	2.04	2.04	FR1	[kN]	0	
n1 [1/m	in] 1500	1500	1500	FR2	[kN]	0	
n2 [1/m	in] 73.8	73.8	73.8	FA1	[kN]	0	
Operation instructione have to be observed! FA2 [kN] 0							
Made by SEW-Finland				Mass	[kg]	219	
Qty of greasing points 2 Fans 0							
Lubricant Mineral Oil ISO VG 460 EPPAO - 7 ltr. Year 2003							
0							

3545338379

Туре			Type designation		
No. 1			Serial number 1: Order number (e.g. SAP order number)		
No. 2			Serial number 2: (Manufacturer number of the plant/assembly plant)		
P _{K1}	nor m.	[kW]	Operating power at the input shaft @ n ₁ norm.		
	min.		Operating power at the output shaft @ n ₁ min.		
	Max.		Operating power at the output shaft @ n ₁ max.		
M _{K2}	nor m.	[kNm]	Operating torque at LSS @ n₁ norm.		
	min.		Operating torque at LSS @ n ₁ min.		
	Max.		Operating torque at LSS @ n ₁ max.		
n ₁ nor m.		[1/ min]	Input speed (HSS)		
	min.		Minimum input speed (HSS)		
Max.			Maximum input speed (HSS)		
		[1/ min]	Output speed (LSS)		
	min.		Minimum output speed (LSS)		
	Max.		Maximum output speed (LSS)		
Made b	y		Location of the gear unit assembly / production		
norm.			Normal operating point		
min.			Minimum operating point		
Max.			Maximum operating point		
i			Exact gear unit reduction ratio		
			Service factor		
F _{R1} [kN]		[kN]	Radial load present at the HSS		
F _{R2} [kN]		[kN]	Radial load present at the LSS		

F _{A1}	[kN]	Axial load present at the HSS		
F _{A2}	[kN]	Axial load present at the LSS		
Mass	[kg]	Gear unit weight		
Qty. of greasing points:		Number of relubrication points (e.g. regreasable labyrinth seal or drywell sealing system)		
Fans		Number of fans mounted to the gear unit		
Lubricant		Oil grade and viscosity class/oil quantity		
Year		Year of manufacture		
IM		Mounting position: Housing position and mounting surface		
TU		Permitted ambient temperature		

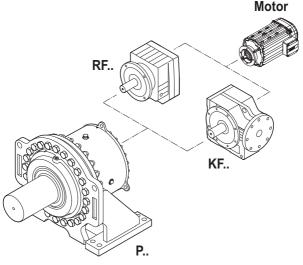
12.2.4 Type designation

The following example shows the structure of the type designation:

MC2RLSF05			
MC	Industrial gear unit series		
2	Number of gear unit stages		
	• 2 = 2-stage		
	• 3 = 3-stage		
R	Gear unit design		
	• R = Bevel-helical gear unit		
	• P = Helical gear unit		
L	Mounting position		
	• L = horizontal		
	• V = vertical		
	• E = upright		
S	Type of output shaft		
	• S = Solid shaft with key		
	• R = Hollow shaft (with key or shrink disk connection)		
F	Gear unit mounting		
	• F = Foot mounting		
	• T = Torque arm		
05	Sizes 02 – 09		

P.002 - P.102 Series 12.3

12.3.1 Description


Planetary gearmotors are a combination of

- P.. series planetary gear unit Output stage
- Primary gear unit RF.. or KF..
- Mount-on components: Motor, coupling, adapter, and backstop

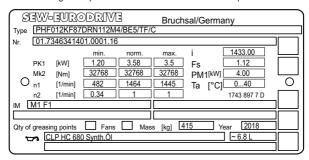
The planetary gear unit series comprises 11 sizes with a nominal torque from 24,830 Nm to 631300 Nm.

The load distribution to several planet gears results in a significantly higher power density and consequently in smaller dimensions compared to helical and bevel-helical gear units.

The following figure shows a sample combination of a planetary gear unit, a primary gear unit and a motor.

3543065611

Р.. Planetary gear unit


RF.. Helical gear unit (flange-mounted design)

KF.. Helical-bevel gear unit (flange-mounted design)

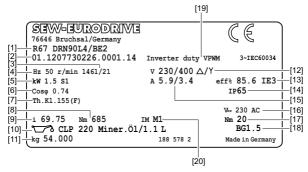
12.3.2 Nameplate

Planetary gear units

The following example shows the structure of the nameplate.

9007217843554955

	Type designation
	Production number
kW	Operating power on the input shaft (HSS)
Nm	Gear unit output torque
rpm	Input speed (HSS)
rpm	Output speed (LSS)
	Operating point at minimum speed
	Normal operating point
	Operating point at maximum speed
	Exact gear unit ratio
	Service factor
kW	Nominal motor power
°C	Deviation from standard temperature range (-20 °C - +40 °C)
kg	Gear unit weight
	Number of regreasing points
	Oil grade and viscosity class/approx. oil quantity
	Year of manufacture
	Mounting position and mounting surface
	Nm rpm rpm


Primary gearmotor

Nm

[17] [18]

[19] [20]

The following figure shows an example of the nameplate of a DRN... gearmotor.

651

		270216111372966
[1] [2]		Type designation gearmotor Serial number
[3]	min ⁻¹	Rated speed of the motor / speed of the gear unit output shaft
[4]	Hz	Nominal frequency
[5]	kW	Rated power/operating mode
[6]		Power factor
[7]		Thermal class
[8]	Nm	Output torque
[9]		Gear unit ratio
[10]		Oil type and oil fill volume
[11]	kg	Weight
[12]	V	Nominal voltage
[13]		Efficiency and energy efficiency class
[14]		Degree of protection according to IEC 60034-5
[15]		Rated current
[16]	V	Brake voltage

Nominal braking torque

Suitability for inverter operation

Brake control

Mounting position

KF.. primary gear units

The following example shows the structure of the nameplate.

18014404889304459

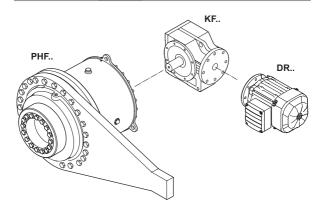
Туре		Type designation
[1]		Type designation
[2]		Serial number of primary gear unit
Pe	kW	Input power of the gear unit
Ma max	Nm	Output speed
na	rpm	Input/output speed
IM		Mounting position
i		Gear ratio
kg	kg	Mass

RF../KF.. primary gear unit as gearmotor

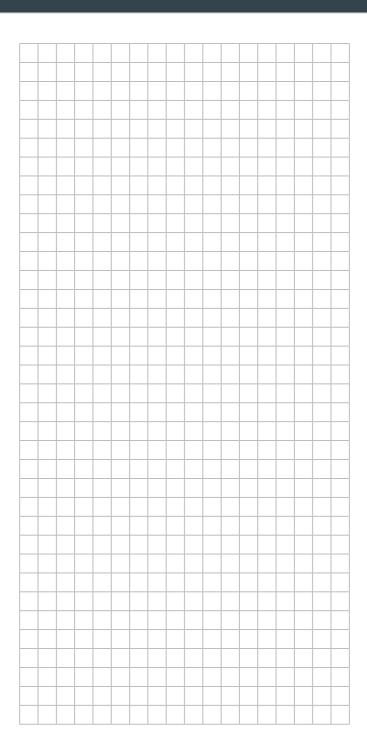
The following example shows the structure of the nameplate.

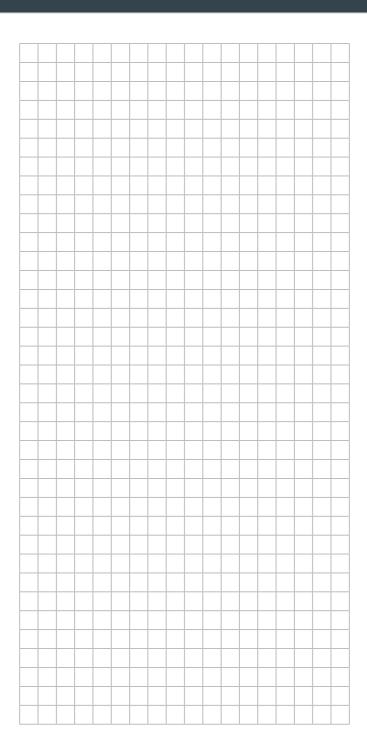
18014404889307147

	10014404009307147
Туре	Type designation
[1]	Type designation
[2]	Serial number of primary gear unit
i	Gear ratio
rpm	Input/output speed
Nm	Output torque
kW	Input power of the gear unit
S1	Operating mode
cos φ	Power factor of the motor
V	Supply voltage in delta/star connection
A	Rated motor current in delta/star connection
eff%	IE class and nominal efficiency for motors in- cluded in the scope of the IEC 60034-30-1 stand- ard
Hz	Line frequency
IM	Mounting position
kg	Weight of the primary gearmotor
IP	Degree of protection of the motor
[3]	Brake connection voltage
[4] Nm	Braking torque
	Oil grade and viscosity class/oil quantity


12.3.3 Type designation

The type designation of the gearmotor starts from the component on the output end.


Example: Type designation for a PHF.. planetary gear unit with KF.. primary gear unit


The type designation of the gear unit is structured as follows:


Example: PHF012/T KF77 DRN112M4			
Planetary gear	Р	Gear unit type	
unit	Н	Hollow shaft	
	F	Flange-mounted design	
	012	Gear unit size	
	/T	Torque arm	
Primary gear unit	KF	Series	
	77	Gear unit size	
Motor	DRN	Series	
	112M4	Size + number of poles	

SEW

SEW-EURODRIVE GMBH & CO KG Ernst-Blickle-Str. 42 76646 BRUCHSAL GERMANY TAL 40 7951 75-0

Fax +49 7251 75-1970 sew@sew-eurodrive.com

→ www.sew-eurodrive.com