Contents

1. **General information** .. 4
 1.1 About this documentation .. 4
 1.2 Underlying standards .. 4
 1.3 Structure of the safety notes ... 4
 1.4 Rights to claim under limited warranty .. 5
 1.5 Content of the documentation .. 6
 1.6 Exclusion of liability .. 6
 1.7 Other applicable documentation .. 6
 1.8 Product names and trademarks .. 6
 1.9 Copyright notice ... 6

2. **Integrated safety technology** .. 7
 2.1 Safe condition .. 7
 2.2 Safety concept .. 7
 2.3 Safety functions ... 9
 2.4 Limitations .. 11

3. **Safety conditions** .. 12
 3.1 Approved units .. 13
 3.2 Installation requirements .. 14
 3.3 Requirements on external safety controllers and safety relays .. 16
 3.4 Startup requirements .. 19
 3.5 Operation requirements ... 19

4. **Technical data** .. 20

5. **Appendix** .. 21
 5.1 Unit variants with optional standard brake ... 21
 5.2 Connection variants ... 24
 5.3 Connection of an external safety relay for STO ... 32
 5.4 Connection of an external safety controller for STO ... 36

Index ... 40
General information

1.1 About this documentation

This documentation is an integral part of the product. The documentation is written for all employees who assemble, install, start up, and service this product.

Make sure this documentation is accessible and legible. Ensure that persons responsible for the machinery and its operation as well as persons who work on the product independently have read through the documentation carefully and understood it. If you are unclear about any of the information in this documentation or require further information, contact SEW-EURODRIVE.

1.2 Underlying standards

The safety assessment of the unit is based on the following standards and safety classes:

<table>
<thead>
<tr>
<th>Underlying standards</th>
<th>Safety class/underlying standard</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Performance level (PL) according to EN ISO 13849-1:2008</td>
</tr>
<tr>
<td></td>
<td>Safety Integrity Level (SIL) according to EN 61800-5-2:2007</td>
</tr>
</tbody>
</table>

1.3 Structure of the safety notes

1.3.1 Meaning of signal words

The following table shows the grading and meaning of the signal words for safety notes.

<table>
<thead>
<tr>
<th>Signal word</th>
<th>Meaning</th>
<th>Consequences if disregarded</th>
</tr>
</thead>
<tbody>
<tr>
<td>▲ DANGER</td>
<td>Imminent hazard</td>
<td>Severe or fatal injuries.</td>
</tr>
<tr>
<td>▲ WARNING</td>
<td>Possible dangerous situation</td>
<td>Severe or fatal injuries.</td>
</tr>
<tr>
<td>▲ CAUTION</td>
<td>Possible dangerous situation</td>
<td>Minor injuries</td>
</tr>
<tr>
<td>NOTICE</td>
<td>Possible damage to property</td>
<td>Damage to the drive system or its environment.</td>
</tr>
<tr>
<td>INFORMATION</td>
<td>Useful information or tip: Simplifies handling of the drive system.</td>
<td></td>
</tr>
</tbody>
</table>

1.3.2 Structure of section-related safety notes

Section-related safety notes do not apply to a specific action but to several actions pertaining to one subject. The hazard symbols used either indicate a general hazard or a specific hazard.
This is the formal structure of a safety note for a specific section:

SIGNAL WORD
Type and source of hazard.
Possible consequence(s) if disregarded.
- Measure(s) to prevent the hazard.

Meaning of the hazard symbols

The hazard symbols in the safety notes have the following meaning:

<table>
<thead>
<tr>
<th>Hazard symbol</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>General hazard</td>
</tr>
<tr>
<td></td>
<td>Warning of dangerous electrical voltage</td>
</tr>
<tr>
<td></td>
<td>Warning of hot surfaces</td>
</tr>
<tr>
<td></td>
<td>Warning of risk of crushing</td>
</tr>
<tr>
<td></td>
<td>Warning of suspended load</td>
</tr>
<tr>
<td></td>
<td>Warning of automatic restart</td>
</tr>
</tbody>
</table>

1.3.3 Structure of embedded safety notes

Embedded safety notes are directly integrated into the instructions just before the description of the dangerous action.

This is the formal structure of an embedded safety note:

⚠ **SIGNAL WORD** Type and source of hazard. Possible consequence(s) if disregarded. Measure(s) to prevent the hazard.

1.4 Rights to claim under limited warranty

Read the information in this documentation. This is essential for fault-free operation and fulfillment of any rights to claim under limited warranty. Read the documentation before you start working with the product.
1.5 **Content of the documentation**

The current version of the documentation is the original.
This document contains additional safety-relevant information and conditions for use in safety-related applications.

1.6 **Exclusion of liability**

Read the information in this documentation, otherwise safe operation is impossible. You must comply with the information contained in this documentation to achieve the specified product characteristics and performance features. SEW-EURODRIVE assumes no liability for injury to persons or damage to equipment or property resulting from non-observance of these operating instructions. In such cases, SEW-EURODRIVE assumes no liability for defects.

1.7 **Other applicable documentation**

This document supplements the operating instructions and limits the application notes according to the following information. Use this document only together with the operating instructions.

1.8 **Product names and trademarks**

The brands and product names in this documentation are trademarks or registered trademarks of their respective titleholders.

1.9 **Copyright notice**

© 2016 SEW-EURODRIVE. All rights reserved. Unauthorized reproduction, modification, distribution or any other use of the whole or any part of this documentation is strictly prohibited.
2 Integrated safety technology

The safety technology of the DRC.. drive unit described below has been developed and tested in accordance with the following safety requirements:

- SIL 3 according to EN 61800-5-2:2007
- PL e according to EN ISO 13849-1:2008

This was certified by TÜV Nord. Copies of the TÜV certificate and the corresponding report are available from SEW-EURODRIVE on request.

2.1 Safe condition

For safety-related operation of DRC.. drive units, safe torque off is defined as safe condition (see STO safety function). The safety concept is based on this definition.

2.2 Safety concept

- The DRC.. drive unit can be connected to an external safety controller or safety relay. This disconnects the safety-related STO input via a 2-pole 24 V switching signal (sourcing/sinking) when a connected control device (e.g. emergency stop button with latching function) is activated. This activates the STO function (safe disconnection) of the DRC.. drive unit.
- An internal, dual-channel structure with diagnostics prevents the generation of pulse trains at the power output stage (IGBT). On the one hand, the internal supply voltage for controlling the upper and lower IGBTs is disconnected, and on the other hand the controlling pulse patterns are short-circuited. This means that the output stage can no longer supply power to the motor for generating torque.
- Instead of galvanic separation of the drive from the supply system by means of contactors or switches, the disconnection of the STO input described here safely prevents the control of the power semiconductors in the output stage. The rotary-field generation for the respective motor is deactivated even though the line voltage is still present.
2.2.1 **Schematic representation "Safety concept for DRC.."**

The following figure shows a schematic representation of the safety concept for the DRC.. drive unit:

![Schematic representation of the safety concept for DRC..](image)

[1] Safety controller/safety relay external
[2] Connection "STO+"
[3] Connection "STO-"
2.3 Safety functions

The following drive-related safety functions can be used:

2.3.1 STO

- **STO** (safe torque off according to EN 61800-5-2) by disconnecting the STO input.

 If the STO function is activated, the frequency inverter no longer supplies power to the motor for generating torque. This safety function corresponds to a non-controlled stop according to EN 60204-1, stop category 0.

 The STO input must be disabled by a suitable external safety controller/safety relay.

The following figure shows the STO function:

![STO Function Diagram](2463228171)

<table>
<thead>
<tr>
<th>v</th>
<th>Velocity</th>
</tr>
</thead>
<tbody>
<tr>
<td>t</td>
<td>Time</td>
</tr>
<tr>
<td>t₁</td>
<td>Time at which STO is triggered</td>
</tr>
<tr>
<td></td>
<td>Disconnection range</td>
</tr>
</tbody>
</table>
2.3.2 SS1(c)

- **SS1(c)** (safe stop 1, function variant c according to EN 61800-5-2) by means of suitable external control (e.g. safety relay with delayed disconnection).

The following sequence is mandatory:

- Decelerate the drive using an appropriate brake ramp specified via setpoint inputs.
- Disconnect the STO input (= triggering the STO function) after a specified safety-related time delay.

This safety function corresponds to a controlled stop according to EN 60204-1, stop category 1.

The following figure illustrates the SS1(c) function:

![Graph illustrating SS1(c) function](image)

- **v**: Velocity
- **t**: Time
- **t₁**: Point of time when the brake ramp is initiated
- **t₂**: Point of time when STO is triggered
- **Δt**: Time between initiating the brake ramp and STO

- **Safe time delay range**
- **Disconnection range**
2.4 Limitations

⚠️ WARNING

The safety concept is only suitable for performing mechanical work on driven system/machine components.

When the STO signal is disconnected, the line voltage is still present at the DC link of the DRC.. drive unit.

- Before working on the electric part of the drive system, disconnect it from the supply voltage using an appropriate external disconnecting device and secure it against unintentional reconnection to the voltage supply.

- The standard brake, which is optionally integrated in DRC.. drive units, is not safety-related. It is not part of the safety functions mentioned above. If the brake controller and/or the motor brake fails, the drive can coast for much longer depending on the application (i.e. the friction and inertia of the system). In case of regenerative loads (e.g. lifting axes, declining conveying lines), the drive can even accelerate. This must be taken into account for a risk analysis of the system/machine. Additional safety measures might have to be implemented (e.g. safety brake system).

→ The DRC.. drive unit cannot be used without an additional brake system for application-specific safety functions that require active deceleration (braking) of the dangerous movement.

- When using the SS1(c) function as described in chapter "Safety functions", the brake ramp of the drive is not monitored with respect to safety. In case of a fault, the drive might not be decelerated after the delay time, or it might be accelerated in the worst case. In this case, the STO function (see chapter "Safety functions") is only activated after the set time delay has elapsed. The resulting danger must be taken into account in the risk assessment of the system/machine. Additional safety measures might have to be implemented.
The requirement for safe operation is that the safety functions of the DRC.. drive unit are properly integrated into an application-specific higher-level safety function. A system/machine-specific risk assessment must be carried out through the system/machine manufacturer and taken into account for the use of the drive system with DRC.. drive units.

The system/machine manufacturer and the operator are responsible for compliance of the system/machine with applicable safety regulations.

The following requirements are mandatory when installing and operating the DRC.. drive unit in safety-related applications.

The requirements are divided into:

• Approved units
• Installation requirements
• Requirements on external safety controllers and safety relays
• Startup requirements
• Operational requirements
3.1 Approved units

Only the following unit variants of DRC.. drive units are permitted for safety-related applications.

<table>
<thead>
<tr>
<th>Type code example</th>
<th>Description</th>
<th>DRC</th>
<th>2-</th>
<th>015-</th>
<th>SNI-</th>
<th>A</th>
<th>ECR</th>
<th>/XX</th>
<th>Options</th>
</tr>
</thead>
<tbody>
<tr>
<td>Permitted variants</td>
<td>Product family</td>
<td>Size</td>
<td>Power</td>
<td>Installation technology</td>
<td>Version</td>
<td>Extended control range (standard)</td>
<td>Options</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>1</td>
<td>005</td>
<td>SNI</td>
<td>A</td>
<td>ECR</td>
<td>/IV</td>
<td>BY1C</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>015</td>
<td>DSC</td>
<td></td>
<td>ACR</td>
<td>/BY2C</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>030</td>
<td>DAC</td>
<td></td>
<td></td>
<td>/BY4C</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>4</td>
<td>040</td>
<td>DBC</td>
<td></td>
<td></td>
<td>/BW1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>/BW2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>/BW3</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>/PE</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>/URM</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Permitted application options:
- GIO12B
- GIO13B
3.2 Installation requirements

- Power lines and STO control lines have to be routed in separate cables. This does not apply to cables approved by SEW-EURODRIVE specifically for this case of application.
- The length of the cable from the safety controller to the DRC.. drive unit must not exceed 100 m.
- The wiring technology used must comply with EN 60204-1.
- The STO control lines must be routed according to EMC guidelines and as follows:
 - Outside an electrical installation space: Shielded cables must be routed permanently (fixed) and protected against external damage, or equivalent measures have to be taken.
 - Inside an electrical installation space: Individual conductors can be routed.
 - Adhere to the relevant regulations in force for the application.
- Observe the values specified for safety components when designing the safety circuits.
- The STO signal may not be used for feedback.
- Observe the notes in the “DRC.. Electronic Motor” operating instructions for EMC-compliant installation.

 It is important that the shielding of the STO control cable is connected to the housing at both ends.
- Only use grounded voltage sources with safe disconnection (PELV) according to VDE 0100 for all signal interfaces (SBus, digital inputs, digital output, etc.) of the DRC.. drive unit and all SBus stations.

 According to EN 61131-2, the voltage between the outputs or between any output and grounded parts may not exceed DC 60 V in case of a single fault in the voltage supply.
- When planning the installation, observe the technical data of the DRC.. drive unit.
- Do not use the DC 24 V output of the DRC.. drive unit for safety-related applications with DRC.. drive units.

⚠️ WARNING

No safety-related disconnection of the DRC.. drive unit.

Severe or fatal injuries.

- Do not use the 24 V output for safety-related applications with DRC.. drive units.
- You may only jumper the STO input with 24 V when the DRC.. drive unit is not used to fulfill any safety functions.

- For safety-related applications with DRC.. drive units, you have to remove the jumpers labeled "Caution, remove jumper for safety operation", see following figures (jumpers are not installed in unit variants with STO plug connectors X5502 and X5503):
DRC DBC-B and DAC-B (shown with size 1/2 as an example)
Remove the jumpers between STO input (terminals 1/2) and 24 V output (terminals 4/5):

DRC DSC-B and SNI-B (shown with size 1/2 as an example)
Remove the jumpers between STO input (terminals 1/2) and 24 V output (terminals 5/15):
3.3 Requirements on external safety controllers and safety relays

A safety relay can be used as an alternative to a safety controller. The following requirements apply analogously.

- The safety controller and all other safety-related subsystems must be approved and tested for at least that safety class which is required in the overall system for the respective, application-related safety function.

The following table shows an example of the required safety class of the safety controller:

<table>
<thead>
<tr>
<th>Application</th>
<th>Safety controller requirements</th>
</tr>
</thead>
<tbody>
<tr>
<td>Performance level e according to EN ISO 13849-1</td>
<td>Performance level e according to EN ISO 13849-1</td>
</tr>
<tr>
<td>SIL 3 according to EN 61508</td>
<td>SIL 3 according to EN 61508</td>
</tr>
<tr>
<td>SIL 3 according to EN 62061</td>
<td>Performance level e according to EN ISO 13849-1</td>
</tr>
<tr>
<td></td>
<td>SIL 3 according to EN 61508</td>
</tr>
</tbody>
</table>

- The wiring of the safety controller must be suitable for the required safety class, (see manufacturer documentation). The STO input of the DRC.. drive unit requires 2-pole disconnection (sourcing/sinking).

- The DRC.. drive unit does not detect short circuits in the STO control cables. For this reason, the safety control or the safety relay must detect crossfaults and interference voltage of the STO control cable against any external potential, also cross-faults and interference voltage against mass or PE.

- The values specified for the safety controller must be strictly adhered to when designing the circuit.

- The switching capacity of the safety relays or the relay outputs of the safety controller must correspond at least to the maximally permitted, limited output current of the 24 V voltage supply.

 Observe the manufacturer’s instructions concerning the permitted contact loads and fusing that may be required for the safety contacts. If the manufacturer provides no specific information, the contacts must be protected with 0.6 times the nominal value of the maximum contact rating specified by the manufacturer.

- To ensure protection against unintended restart in accordance with EN 1037, the safe control system must be designed and connected in such a way that resetting the control device alone does not lead to a restart. A restart may only be carried out after a manual reset of the safety circuit.

- Note the following for two-pole disconnection of the DRC.. drive unit with tested, safe outputs:
 - When disconnected, the switch-on test pulses may never occur at the plus and minus output at the same time.
– When connected, the switch-off test pulses may not be longer than 1 ms. The next pulse blanking cannot reoccur earlier than after 20 ms.
3.3.1 "Safety relay" switching example

The following figure shows the basic connection of an external safety relay (according to the requirements listed above) to the DRC.. drive unit.

The information in the respective manufacturer's data sheets must be observed for connection.

![Safety relay switching example diagram]

[1] Safety relay with approval
[2] DC 24 V voltage supply
[3] Fuses in accordance with the manufacturer's specifications of the safety relay
[4] STO signal
[5] Reset button for manual reset
[6] Permitted emergency stop actuating device
3.4 Startup requirements

- To validate the implemented safety functions, they must be documented and checked after successful startup (validation).

 Observe the limitations for safety functions in chapter "Limitations" for the validation of the safety functions. Non-safety-relevant parts and components that affect the result of the validation test must be deactivated, if necessary.

- For using the DRC.. drive unit in safety-relevant applications, it is essential that you perform and record startup checks for the disconnecting device and correct wiring.

3.5 Operation requirements

- Operation is only allowed within the limits specified in the data sheets. This principle applies to the external safety controller as well as to the DRC.. drive unit and approved options.

- The built-in diagnostic function is limited in case of a permanently enabled or permanently disabled STO input. Only when the STO signal is activated ("Low" to "High"), extended diagnostic functions are performed. This means that the STO input must be switched at least once in three months while the supply system is connected to achieve a complete test coverage. Follow this test procedure:

 - High: no STO
 - Low: STO active
 - Internal diagnostics
 - max. 3 months
 - >500 ms
 - >500 ms

- To achieve complete test coverage after a unit reset (e.g. after connecting the supply system), the test transition (STO active → not active) can only be started min. 10 seconds later. The unit must (already) be signaling "ready for operation" or "STO – safe torque off" and may not be in error state.

- A detected hardware fault in the internal switch-off channels for STO will lead to a locking error state of the DRC.. drive unit. When the error is reset (e.g. by switching the power supply off and back on), a complete internal diagnostics test run must be performed according to the above test procedure. If the error re-occurs, replace the unit or contact SEW Service (for detailed information about possible error states, refer to the respective DRC.. Electronic Motors operating instructions).
4 Technical data

The table below shows the technical data for the DRC.. drive unit relating to the integrated safety technology. The technical data and approvals in the respective DRC.. Electronic Motors operating instructions must be observed in addition.

<table>
<thead>
<tr>
<th>Technical data of the STO input</th>
<th>Min.</th>
<th>Typical</th>
<th>Max.</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input voltage range</td>
<td>-24</td>
<td>24</td>
<td>30</td>
<td>V DC</td>
</tr>
<tr>
<td>Input impedance</td>
<td>990</td>
<td></td>
<td></td>
<td>Ohm</td>
</tr>
<tr>
<td>Capacitance of the STO input</td>
<td>≤ 10</td>
<td></td>
<td></td>
<td>nF</td>
</tr>
<tr>
<td>(capacitance between STO+ and STO-)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Switch-on/switch-off threshold</td>
<td>11</td>
<td></td>
<td></td>
<td>V</td>
</tr>
<tr>
<td>Input voltage for ON status (STO)</td>
<td>15</td>
<td></td>
<td></td>
<td>V</td>
</tr>
<tr>
<td>Input voltage for OFF status (STO)</td>
<td></td>
<td>5</td>
<td></td>
<td>V</td>
</tr>
<tr>
<td>Permitted leakage current of the external safety controller</td>
<td>0</td>
<td>2</td>
<td></td>
<td>mA</td>
</tr>
<tr>
<td>Required current for STO-IN supply</td>
<td>26</td>
<td></td>
<td></td>
<td>mA</td>
</tr>
<tr>
<td>Time from disconnecting the safety voltage until the deactivation of the rotating field</td>
<td>4</td>
<td>20</td>
<td></td>
<td>ms</td>
</tr>
<tr>
<td>Time from connecting the safety voltage until the activation of the rotating field</td>
<td>220</td>
<td>300</td>
<td></td>
<td>ms</td>
</tr>
<tr>
<td>Test interval for STO function: See test procedure in chapter "Operation requirements"</td>
<td></td>
<td></td>
<td>3</td>
<td>Months</td>
</tr>
</tbody>
</table>

Safety characteristics

<table>
<thead>
<tr>
<th>Approved safety classes</th>
<th>SIL 3 according to EN 61800-5-2</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Performance level e according to EN ISO 13849-1</td>
</tr>
<tr>
<td>Probability of a dangerous failure per hour (= PFH value)</td>
<td>2×10^{-9} 1/h</td>
</tr>
<tr>
<td>Service life</td>
<td>20 years, after which the component must be replaced with a new one.</td>
</tr>
<tr>
<td>Safe condition safe torque off (STO)</td>
<td>Safe torque off (STO)</td>
</tr>
</tbody>
</table>
5 Appendix

5.1 Unit variants with optional standard brake

The standard brake, which is optionally integrated in DRC.. drive units, is not safety-related. It is not part of the safety functions described in chapter "Safety functions".

We recommend activation with SS1 (c); the standard brake is applied when the speed is 0.

For this purpose, the factory settings of the following parameters must not be changed:

<table>
<thead>
<tr>
<th>Index</th>
<th>Parameter</th>
<th>Factory setting</th>
</tr>
</thead>
<tbody>
<tr>
<td>8584.0</td>
<td>Brake function</td>
<td>1 = ON: The drive decelerates along the set ramp. When the speed is "0", the brake is applied.</td>
</tr>
<tr>
<td>9833.20</td>
<td>Brake application for STO</td>
<td>1 = YES: The brake is applied (not safety-related) when STO is activated.</td>
</tr>
</tbody>
</table>

![Diagram of DRC Deceleration Ramp](image-url)

- **t**: Time
- **t₁**: Point of time when the brake ramp is initiated
- **t₂**: Point of time when STO is triggered
- **Δt**: Time between initiating the brake ramp and STO
- **Safe time delay range**
- **Disconnection range**
5.1.1 Activation of STO before standstill

If STO is activated before the motor has come to a standstill, the brake behaves as set in parameter "9833.20 – Brake application with STO":

[1] Parameter "9833.20 – Brake application with STO" = 1 (factory setting)
• The brake is applied (not safety-related) when STO is activated

INFORMATION

Note the information about permitted "emergency braking operations" in the operating instructions in chapter "Technical Data".

[2] Parameter "9833.20 – Brake application with STO" = 0
• The motor coasts to a halt
• The brake status remains the same
• The deceleration distance is not defined
Unit variants with optional standard brake

Parameter "9833.20 – Brake application with STO" = 1 (factory setting)

Parameter "9833.20 – Brake application with STO" = 0

\(t \) Time
\(t_1 \) Point of time when the brake ramp is initiated
\(t_2 \) Point of time when STO is triggered
\(\Delta t \) Time between initiating the brake ramp and STO

- Safe time delay range
- Disconnection range

Activating the STO function during the execution of the ramp aborts the controlled ramp-down:

Possible reasons for premature activation of STO:
- Deceleration time \(\Delta t \) too short
- Extension of the deceleration ramp due to current limit, e.g. load too high
5.2 Connection variants

5.2.1 Position of the terminals for safe torque off (STO)

The following figure shows an example of the terminal positions for safe torque off (STO) of the DRC.. drive unit:

![Terminal positions for STO](image)

5.2.2 Assignment of the terminals for safe torque off (STO)

The following figure shows the terminal assignment for safe torque off (STO) of the DRC.. drive unit:

<table>
<thead>
<tr>
<th>Assignment No.</th>
<th>Name</th>
<th>Color</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>STO +</td>
<td>Yellow</td>
<td>Input STO +</td>
</tr>
<tr>
<td>2</td>
<td>STO −</td>
<td>Yellow</td>
<td>Input STO −</td>
</tr>
<tr>
<td>11</td>
<td>STO +</td>
<td>Yellow</td>
<td>Output STO + (to loop through)</td>
</tr>
<tr>
<td>12</td>
<td>STO −</td>
<td>Yellow</td>
<td>Output STO − (to loop through)</td>
</tr>
</tbody>
</table>

INFORMATION

For information about looping STO through, refer to chapter "Connecting an external safety relay for STO".

Connection cable

INFORMATION

Use only shielded cables for this connection.
5.2.3 Position of the optional plug connectors for safe torque off (STO)

The following figure shows an example of the position of the STO plug connectors X5502 "STO" and X5503 "STO". The plug connectors are always in "position 3".

<table>
<thead>
<tr>
<th>Plug connector</th>
<th>Color</th>
<th>Position</th>
<th>Position</th>
</tr>
</thead>
<tbody>
<tr>
<td>X5502: STO</td>
<td>Orange</td>
<td>Fixed</td>
<td>3 (left)</td>
</tr>
<tr>
<td>X5503: STO</td>
<td>Orange</td>
<td>Fixed</td>
<td>3 (right)</td>
</tr>
</tbody>
</table>

INFORMATION

For information about looping STO through, refer to chapter "Connecting an external safety relay for STO".
5.2.4 Assignment of the optional plug connectors for safe torque off (STO)

X5502: STO

⚠️ WARNING

No safe disconnection of the DRC.. drive unit.
Severe or fatal injuries.

- Do not use the 24 V output (pins 1 and 3) for safety-related applications with DRC.. drive units.
- You may only jumper the STO connection with 24 V when the DRC.. drive unit is not used to fulfill any safety functions.

The following table shows information about this connection:

<table>
<thead>
<tr>
<th>Function</th>
<th>Connection type</th>
<th>Wiring diagram</th>
</tr>
</thead>
<tbody>
<tr>
<td>Connection for safe disconnection (STO)</td>
<td>M12, 5-pin, female, A-coded</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Assignment</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>No.</td>
<td>Name</td>
<td>Function</td>
</tr>
<tr>
<td>1</td>
<td>+24V_O</td>
<td>DC 24 V output</td>
</tr>
<tr>
<td>2</td>
<td>STO -</td>
<td>STO – connection</td>
</tr>
<tr>
<td>3</td>
<td>0V24_O</td>
<td>0V24 reference potential</td>
</tr>
<tr>
<td>4</td>
<td>STO +</td>
<td>STO + connection</td>
</tr>
<tr>
<td>5</td>
<td>Res.</td>
<td>Reserved</td>
</tr>
</tbody>
</table>
INFORMATION

Use only shielded cables for this connection and only appropriate plug connectors that connect the shield with the unit in an HF-compatible manner.

The following table shows the cables available for this connection:

<table>
<thead>
<tr>
<th>Connection cable</th>
<th>Conformity/part number</th>
<th>Cable type</th>
<th>Length/installation type</th>
<th>Cable cross section/operating voltage</th>
</tr>
</thead>
<tbody>
<tr>
<td>M12, 5-pin, A-coded, female</td>
<td>CE: 18124968</td>
<td>LEONI BETAflam® – 145C-flex</td>
<td>Variable</td>
<td>2 × 0.75 mm² / DC 60 V</td>
</tr>
<tr>
<td>M12, 5-pin, A-coded, male</td>
<td>CE/UL: 18147402</td>
<td>HELU-KABEL® SUPER-PAAR-TRONIC 340-C-PUR</td>
<td>Variable</td>
<td>2 × 0.75 mm² / DC 60 V</td>
</tr>
<tr>
<td>Open</td>
<td>CE: 18124976</td>
<td>LEONI BETAflam® – 145C-flex</td>
<td>Variable</td>
<td>2 × 0.75 mm² / DC 60 V</td>
</tr>
<tr>
<td>M12, 5-pin, A-coded, male</td>
<td>CE/UL: 18147690</td>
<td>HELU-KABEL® SUPER-PAAR-TRONIC 340-C-PUR</td>
<td>Variable</td>
<td>2 × 0.75 mm² / DC 60 V</td>
</tr>
<tr>
<td>M12, 5-pin, A-coded, female</td>
<td>CE/UL: 18164390</td>
<td>HELU-KABEL® SUPER-PAAR-TRONIC 340-C-PUR</td>
<td>Variable</td>
<td>2 × 0.75 mm² / DC 60 V</td>
</tr>
</tbody>
</table>
Appendix

Connection variants

<table>
<thead>
<tr>
<th>Connection cable</th>
<th>Conformity/part number</th>
<th>Cable type</th>
<th>Length/installation type</th>
<th>Cable cross section/operating voltage</th>
</tr>
</thead>
<tbody>
<tr>
<td>M12, 5-pin, A-coded, female</td>
<td>CE: 18127401</td>
<td>LEONI BETAflam® – 145C-flex</td>
<td>Variable</td>
<td>2 × 0.75 mm² / DC 60 V</td>
</tr>
<tr>
<td>M12, 5-pin, A-coded, male</td>
<td>CE/UL: 18147704</td>
<td>HELU-KABEL® SUPER-PAAR-TRONIC 340-C-PUR</td>
<td>Variable</td>
<td></td>
</tr>
<tr>
<td>Open</td>
<td>CE: 18127398</td>
<td>LEONI BETAflam® – 145C-flex</td>
<td>Variable</td>
<td>2 × 0.75 mm² / DC 60 V</td>
</tr>
<tr>
<td>M12, 5-pin, A-coded, female</td>
<td>CE/UL: 18153445</td>
<td>HELU-KABEL® SUPER-PAAR-TRONIC 340-C-PUR</td>
<td>Variable</td>
<td></td>
</tr>
<tr>
<td>Open</td>
<td>CE: 18164315</td>
<td>LEONI BETAflam® – 145C-flex</td>
<td>Variable</td>
<td>2 × 0.75 mm² / DC 60 V</td>
</tr>
</tbody>
</table>
Connection of cables with open end

The following table shows the conductor assignment of cables with the following part numbers:

- 18124976
- 18147690
- 18164390
- 18127398
- 18153445
- 18164315

<table>
<thead>
<tr>
<th>Signal name</th>
<th>Core color/designation</th>
</tr>
</thead>
<tbody>
<tr>
<td>STO −</td>
<td>Black/1</td>
</tr>
<tr>
<td>STO +</td>
<td>Black/2</td>
</tr>
</tbody>
</table>
X5503: STO

The following table shows information about this connection:

<table>
<thead>
<tr>
<th>Function</th>
<th>Connection for safe disconnection (STO)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Connection type</td>
<td>M12, 5-pin, male, A-coded</td>
</tr>
<tr>
<td>Wiring diagram</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Assignment</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>No.</td>
<td>Name</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>1</td>
<td>Res.</td>
</tr>
<tr>
<td>2</td>
<td>STO −</td>
</tr>
<tr>
<td>3</td>
<td>Res.</td>
</tr>
<tr>
<td>4</td>
<td>STO +</td>
</tr>
<tr>
<td>5</td>
<td>Res.</td>
</tr>
</tbody>
</table>
INFORMATION

Use only shielded cables for this connection and only appropriate plug connectors that connect the shield with the unit in an HF-compatible manner.

The following table shows the cables available for this connection:

<table>
<thead>
<tr>
<th>Connection cable</th>
<th>Conformity/ part number</th>
<th>Cable type</th>
<th>Length/installation type</th>
<th>Cable cross section/ operating voltage</th>
</tr>
</thead>
<tbody>
<tr>
<td>M12, 5-pin, A-coded, male</td>
<td>CE: 18124968</td>
<td>LEONI BETAflam® – 145C-flex</td>
<td>Variable</td>
<td>2 × 0.75 mm² / DC 60 V</td>
</tr>
<tr>
<td>M12, 5-pin, A-coded, female</td>
<td>CE/UL: 18147402</td>
<td>HELU-KABEL® SUPER-PAAR-TRONIC 340-C-PUR</td>
<td>Variable</td>
<td></td>
</tr>
<tr>
<td>M12, 5-pin, A-coded, male</td>
<td>CE: 18127401</td>
<td>LEONI BETAflam® – 145C-flex</td>
<td>Variable</td>
<td>2 × 0.75 mm² / DC 60 V</td>
</tr>
<tr>
<td>M12, 5-pin, A-coded, female</td>
<td>CE/UL: 18147704</td>
<td>HELU-KABEL® SUPER-PAAR-TRONIC 340-C-PUR</td>
<td>Variable</td>
<td></td>
</tr>
</tbody>
</table>
5.3 Connection of an external safety relay for STO

5.3.1 Connection via terminals

The following figure shows a connection example with a safety relay and disconnection of all poles:

- [1] Installation space
- [2] Safety relay
- [3] DRC.. drive unit
- [4] Connection terminals for STO

5.3.2 Connection via M12 plug connector

The following figure shows a connection example with a safety relay and disconnection of all poles:

- [1] Installation space
- [2] Safety relay
- [3] DRC.. drive unit
- [4] Plug connector for STO

INFORMATION

When wiring the STO signals, possible faults in plug connectors and cables/lines have to be considered (see EN ISO 13849-2) and the installation has to be designed according to the required safety class. The DRC.. drive unit does not detect short circuits or interference voltage in the supply line. SEW-EURODRIVE therefore recommends to connect only STO signals to the STO input using a two-core cable, as shown in the figure.
5.3.3 Connection via terminals – group disconnection

The following figure shows a connection example for disconnection of group drives with a safety relay:

[1] Installation space
[2] Safety relay
[3] DRC.. drive unit
[4] Connection terminals for STO
5.3.4 Connection via M12 plug connectors – group disconnection

The following figure shows a connection example for disconnection of group drives with a safety relay:

![Connection diagram]

INFORMATION

When wiring the STO signals, possible faults in plug connectors and cables/lines have to be considered (see EN ISO 13849-2) and the installation has to be designed according to the required safety class. The DRC.. drive unit does not detect short circuits or interference voltage in the supply line. SEW-EURODRIVE therefore recommends to connect only STO signals to the STO input using a two-core cable, as shown in the figure.
5.3.5 STO signal for group disconnection

Requirements

For group drives, the STO signal for several DRC.. drive units can be provided by a single safety relay. The following requirements must be met:

- For EMC reasons, the maximum cable length is limited to max. 100 m. Other instructions published by the manufacturer on the use of safety relays (for specific applications) must also be observed.
- The maximum output current/the maximally permitted contact load of the safety relay must be observed.
- You must observe the permitted signal levels at the STO input and all other technical data of the DRC.. drive unit. The routing of the STO control cables and the voltage drop must be considered.
- Other requirements of the safety relay manufacturer (such as protecting the output contacts against welding) must be strictly observed. You must also observe the basic cable routing requirements from chapter "Installation requirements".
- A calculation based on the technical data of the DRC.. drive unit must be performed separately for each case of group drive disconnection.
5.4 Connection of an external safety controller for STO

5.4.1 Connection via terminals

The following figure shows a connection example with a safety controller and disconnection of all poles for STO:

![Connection diagram via terminals]

1. Installation space
2. Safety controller
3. DRC.. drive unit
4. Connection terminals for STO

5.4.2 Connection via plug connectors

The following figure shows a connection example with a safety controller and disconnection of all poles for STO:

![Connection diagram via plug connectors]

1. Installation space
2. Safety controller
3. DRC.. drive unit
4. Plug connector for STO

INFORMATION

When wiring the STO signals, possible faults in plug connectors and cables/lines have to be considered (see EN ISO 13849-2) and the installation has to be designed according to the required safety class. The DRC.. drive unit does not detect short circuits or interference voltage in the supply line. SEW-EURODRIVE therefore recommends to connect only STO signals to the STO input using a two-core cable, as shown in the figure.
5.4.3 Connection via terminals – group disconnection

The following figure shows a connection example for disconnection of group drives with a safety controller:

[Diagram showing connection example]

- [1] Installation space
- [2] Safety controller
- [3] DRC.. drive unit
- [4] Connection terminals for STO
5.4.4 Connection via M12 plug connectors – group disconnection

The following figure shows a connection example for disconnection of group drives with a safety controller:

INFORMATION

When wiring the STO signals, possible faults in plug connectors and cables/lines have to be considered (see EN ISO 13849-2) and the installation has to be designed according to the required safety class. The DRC.. drive unit does not detect short circuits or interference voltage in the supply line. SEW-EURODRIVE therefore recommends to connect only STO signals to the STO input using a two-core cable, as shown in the figure.
5.4.5 STO signal for group disconnection

Requirements

For group drives, the STO signal for several DRC.. drive units can be provided by a single safety controller. The following requirements must be met:

• For EMC reasons, the maximum cable length is limited to max. 100 m. Other instructions published by the manufacturer on the use of the safety controller (for the respective application) must also be observed.

• The maximum output current/the maximally permitted contact load of the safety controller must be observed.

• You must observe the permitted signal levels at the STO input and all other technical data of the DRC.. drive unit. The routing of the STO control cables and the voltage drop must be considered.

• Other requirements stipulated by the manufacturer of the safety controller must be strictly observed. You must also observe the basic cable routing requirements from chapter "Installation requirements".

• A calculation based on the technical data of the DRC.. drive unit must be performed separately for each case of group drive disconnection.
Index

A
Application options, approved 13

B
Brake ... 21

C
Cable length .. 35, 39
Checking the disconnection device 19
Conditions, safety ... 12
 External safety controller requirements 16
 Installation requirements 14
 Operational requirements 19
 Startup requirements 19
 Units, approved ... 13
Connection
 External safety controller for STO 36
 External safety relay for STO 32
Connection via M12 plug connector
 External safety controller 36
 External safety controller - group disconnection ... 38
 External safety relay 32
 External safety relay - group disconnection ... 34
Connection via terminals
 External safety controller 36
 External safety controller - group disconnection ... 37
 External safety relay 32
 External safety relay - group disconnection ... 33
Copyright notice ... 6

E
Embedded safety notes 5
EMC conditions .. 14
Exclusion of liability 6
External safety controller, requirements 16
External safety relay, requirements 16

G
Group disconnection
 Connection via M12 plug connector 34, 38
 Connection via terminals 33, 37
 STO signal for group disconnection 35, 39

H
Hazard symbols
 Meaning ... 5

I
Information
 Designation in the documentation 4
 Installation instructions 14

N
Notes
 Meaning of the hazard symbols 5

P
Plug connector for STO, optional 25
 Position ... 25
 Product names ... 6
 Pulse sampling .. 16

R
Removing jumpers .. 14
Requirements
 For installation ... 14
 For operation .. 19
 For startup ... 19
 To the external safety controller 16
Restrictions .. 11
Rights to claim under limited warranty 5

S
Safe condition .. 7
Safe stop 1, function variant c (SS1(c)) 10
Safe torque off (STO) 9
Safety concept ... 7
Safety concept illustration, schematic 8
Safety conditions .. 12
Safety controller, requirements 16
Safety notes
 Designation in the documentation 4
 Meaning of the hazard symbols 5
 Structure of embedded 5
 Structure of the section-related 4
Safety relay
 Requirements .. 16
 Sample circuit ... 18
<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Safety technology</td>
<td></td>
</tr>
<tr>
<td>Restrictions</td>
<td>11</td>
</tr>
<tr>
<td>Safe condition</td>
<td>7</td>
</tr>
<tr>
<td>Safety concept</td>
<td>7</td>
</tr>
<tr>
<td>Schematic representation</td>
<td>8</td>
</tr>
<tr>
<td>Section-related safety notes</td>
<td>4</td>
</tr>
<tr>
<td>Signal words in safety notes</td>
<td>4</td>
</tr>
<tr>
<td>SS1(c) (safe stop 1, function variant c)</td>
<td>10</td>
</tr>
<tr>
<td>Standards</td>
<td>4</td>
</tr>
<tr>
<td>STO (safe torque off)</td>
<td>9</td>
</tr>
<tr>
<td>STO signal for group disconnection</td>
<td>35, 39</td>
</tr>
<tr>
<td>Switching capacity of the safety relay</td>
<td>16</td>
</tr>
<tr>
<td>Technical data</td>
<td></td>
</tr>
<tr>
<td>STO input</td>
<td>20</td>
</tr>
<tr>
<td>Terminals for STO</td>
<td>24</td>
</tr>
<tr>
<td>Assignment</td>
<td>24</td>
</tr>
<tr>
<td>Position</td>
<td>24</td>
</tr>
<tr>
<td>Test procedure</td>
<td>19</td>
</tr>
<tr>
<td>Trademarks</td>
<td>6</td>
</tr>
<tr>
<td>Units, approved</td>
<td>13</td>
</tr>
<tr>
<td>Validating the safety functions</td>
<td>19</td>
</tr>
<tr>
<td>Validation</td>
<td>19</td>
</tr>
<tr>
<td>Validity</td>
<td>4</td>
</tr>
<tr>
<td>Wiring specifications</td>
<td>14</td>
</tr>
<tr>
<td>Validating the safety functions</td>
<td>19</td>
</tr>
<tr>
<td>Validation</td>
<td>19</td>
</tr>
<tr>
<td>Validity</td>
<td>4</td>
</tr>
<tr>
<td>Wiring specifications</td>
<td>14</td>
</tr>
<tr>
<td>X5502</td>
<td></td>
</tr>
<tr>
<td>Assignment</td>
<td>26</td>
</tr>
<tr>
<td>Connection cables, available</td>
<td>27</td>
</tr>
<tr>
<td>X5503</td>
<td></td>
</tr>
<tr>
<td>Assignment</td>
<td>30</td>
</tr>
<tr>
<td>Connection cables, available</td>
<td>31</td>
</tr>
</tbody>
</table>