Addendum to the Assembly and Operating Instructions

Industrial Gear Units
Helical and Bevel-Helical Gear Units
X.. Series
Oil/Water Cooler with Splash Lubrication /OWC

Edition 04/2013
1 Important Information

INFORMATION

This addendum describes amendments to the "Industrial Gear Units, Helical and Bevel Gear Units" operating instructions. Please use the data specified in this document.

This document does not replace the detailed operating instructions.
2 Oil/water cooler for splash lubrication /OWC

2.1 Structure/function

2.1.1 Structure

An oil-water cooling system can be used if the thermal rating of the naturally cooled gear unit or cooling using a fan on the input shaft is not sufficient. The prerequisite for using an oil-water cooling system is that appropriate cooling water is available on site.

INFORMATION

- Consult SEW-EURODRIVE if you use chemically aggressive cooling media, such as brackish water or salt water.
- The following information applies to gear units with splash lubrication. The cooling system with motor pump only cools the gear unit oil.
- Also refer to the operating instructions of the cooling system manufacturer.

SEW-EURODRIVE uses two different types of heat exchangers:

- For gear unit sizes X140 – X170, a plate heat exchanger is used for oil supply systems OWC 005/015/025.

Diagram:

- [1] Motor
- [2] Pump
- [3] Oil-water heat exchanger
- [4] Suction pipe (not visible in this view)
- [5] Pressure pipe
- [6] Temperature switch with two switching points (TSK2)
- [7] Water supply
- [8] Water return

• For gear unit sizes X180 – X320, a shell and tube heat exchanger is used for oil supply systems OWC 10/20/30/40/50/60/70.

[1] Motor (provided by the customer)
[2] Pump
[3] Oil-water heat exchanger
[4] Suction pipe
[5] Pressure pipe
[6] Temperature switch with two switching points (TSK2)
[7] Water supply
[8] Water return
The following figure shows an example of the unit design.

Also observe the manufacturer’s documentation.

[1] Motor
[2] Pump
[3] Oil-water heat exchanger
[4] Suction pipe
[5] Pressure pipe
[6] Temperature switch with two switching points (TSK2)
[7] Water supply
[8] Water return
2.1.2 General Information

The cooling system is delivered as a complete unit but without electrical connections.

The standard design of the basic cooling system comprises:

- Pump with directly mounted asynchronous motor
- Oil-water heat exchanger
- Temperature switch with 2 switching points for
 - Controlled startup of the pump motor with an oil temperature $> 40 \, ^\circ C$
 - Monitoring of the cooling group, i.e. warning or gear unit shutdown when the oil temperature exceeds $90 \, ^\circ C$

The following cooling system types are available:

- Directly mounted on the gear unit, including cooling circuit piping, or
- On the mounting frame, for separate installation, but without piping to the gear unit

The customer has to perform the following electrical wiring:

- Between temperature switch and pump motor
- Pump motor

2.1.3 Function

Observe the following control information for the individual components.

Pump

When the pump is operated, an internal pressure control valve limits the plant pressure to 5 bar.

<table>
<thead>
<tr>
<th>STOP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Do not change the default setting of the valve.</td>
</tr>
</tbody>
</table>

Oil-water cooling system

The gear unit is cooled by an oil-water cooling system.

- At $T > 40 \, ^\circ C \rightarrow$ COOLER ON

Temperature switch / TSK2

The plant's temperature is monitored via a temperature sensor [6] connected to a display and monitoring unit.

- At $T > 40 \, ^\circ C \rightarrow$ COOLER ON
- At $T > 90 \, ^\circ C \rightarrow$ GEAR UNIT STOP / WARNING

2.1.4 Interlocking specifications

Enabling the gear unit

The gear unit is enabled if the following condition is met:

- Oil temperature $T < 90 \, ^\circ C$

Gear unit stop / warning

Gear unit stop / warning if one of the following conditions is met:

- Oil temperature $T > 90 \, ^\circ C$
2.1.5 Sizes, cooling capacity and selection

The power data of the standardized cooling systems is summarized in the following table.

The cooling capacity values given in the table apply to a cooling water temperature of 30 °C, an oil temperature of 70 °C, equivalent volume flow of oil and cooling water, and 50 Hz line frequency.

<table>
<thead>
<tr>
<th>Size Cooling system</th>
<th>Cooling capacity</th>
<th>Flow volume</th>
<th>Connection power</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Cooling system</td>
<td>Flow volume</td>
<td>Pump motor</td>
</tr>
<tr>
<td></td>
<td>[kW]</td>
<td>[l/min]</td>
<td>[kW]</td>
</tr>
<tr>
<td>OWC 005⁵¹)</td>
<td>4</td>
<td>8</td>
<td>0.75</td>
</tr>
<tr>
<td>OWC 010</td>
<td>5</td>
<td>9.6</td>
<td>0.75</td>
</tr>
<tr>
<td>OWC 015⁵¹)</td>
<td>8</td>
<td>16</td>
<td>1.1</td>
</tr>
<tr>
<td>OWC 020</td>
<td>8.5</td>
<td>21</td>
<td>1.1</td>
</tr>
<tr>
<td>OWC 025⁵¹)</td>
<td>12</td>
<td>16</td>
<td>1.5</td>
</tr>
<tr>
<td>OWC 030</td>
<td>14</td>
<td>28.3</td>
<td>1.5</td>
</tr>
<tr>
<td>OWC 040</td>
<td>22</td>
<td>53</td>
<td>2.2</td>
</tr>
<tr>
<td>OWC 050</td>
<td>30</td>
<td>77</td>
<td>3.0</td>
</tr>
<tr>
<td>OWC 060</td>
<td>45</td>
<td>91</td>
<td>4.0</td>
</tr>
<tr>
<td>OWC 070</td>
<td>70</td>
<td>144</td>
<td>5.5</td>
</tr>
</tbody>
</table>

⁵¹) Cooling system with plate heat exchanger

INFORMATION

The values differ slightly for operation with a line frequency of 60 Hz. Please consult SEW-EURODRIVE.
2.2 **Wiring diagram (schematic illustration)**

- **Control circuit main motor**
 - L1
 - F1
 - S0
 - S1
 - K3

- **Control circuit temperature switch**
 - F2
 - S0
 - T1 closes at $\Delta_{oil} > 40^\circ C$
 - T2 opens at $\Delta_{oil} > 90^\circ C$

- **Main circuit main motor**
 - L1
 - L2
 - L3
 - F3
 - K3
 - M

- **Main circuit pump motor**
 - F4
 - K1
 - M

Main motor control
- Signal from contactor K2 via temperature sensor TSK-2-63/4 (NC)
- warning: switch off

Emergency off
- S0

Main motor
- M1

Pump motor
- M2

Temp. signal to Main motor control/ warning: switch off
- K2
2.3 **Installation/Assembly**

2.3.1 Mechanical connection

Connect the heat exchanger to the cooling circuit according to the identifying markings observing local regulations.

In this respect, observe the following:

- Do not reduce the indicated cable cross section.
- It is important that you choose the correct wall thickness and material when selecting pipes, hoses and screw fittings.

2.3.2 Electrical connection

Make the electrical connections for the motor and the temperature switch according to local regulations.

- Ensure that the pump rotates in the correct direction when making the connection.
- The temperature switch should be integrated into the circuit in such a manner that:
 - The motor pump of the oil-water cooler is switched on at the first switching point (at 40 °C oil temperature).
 - Either a warning signal is activated or the main drive is switched off at the second switching point (at 90 °C oil temperature).
2.3.3 Cooling media

INFORMATION

- Note that the service life, the efficiency, and the maintenance intervals of the heat exchanger depend to a great degree on the quality and contents of the cooling medium.
- Special procedures are required when sea water or brackish water is used. Consult SEW-EURODRIVE.

Permitted cooling media

- Water, water/glycol cooling liquids, HFC refrigerants
- Cooling water temperature and volume flow of oil and cooling water according to the order documents.

Dirt

The quantity of suspended solids (ball-shaped, particle size < 0.6 mm) should be less than 10 mg/l. Threadlike contaminants increase the risk of pressure loss.

Corrosion

Limit values: free chlorine < 0.5 ppm, chlorine ions < 200 ppm, sulfate < 100 ppm, ammonia < 10 ppm, free CO < 10 ppm, pH 7-10.

The following ions do not have a corrosive effect under normal conditions: phosphate, nitrate, nitrite, iron, manganese, sodium, potassium.

INFORMATION

Observe the additional manufacturer’s documentation.
2.3.4 Installation and connection information for separate installation

The cooling system is mounted directly on the gear unit as standard. Optionally, the cooling system can be delivered as a complete unit on a mounting frame but without electrical connections and piping. Provide for a low-vibration installation location max. 1 meter from the gear unit. Install the cooling system at the same level as the gear unit or lower. If this is not possible, contact SEW-EURODRIVE.

Adhere to the following basic conditions when connecting the cooling system:

- Do not reduce the indicated cable cross sections.
- It is important that you choose the correct wall thickness and material when selecting pipes, hoses and screw fittings. Preferably, use composite material seals.

SEW-EURODRIVE recommends the following cable cross sections for connecting the cooling system to the gear unit and the cooling circuit.

<table>
<thead>
<tr>
<th>Size of cooling system</th>
<th>Pump suction connection</th>
<th>Suction pipe</th>
<th>Cooler pressure connection</th>
<th>Pressure pipe</th>
<th>Cooling water connection of cooler</th>
<th>Inner Ø of the cooling water line</th>
</tr>
</thead>
<tbody>
<tr>
<td>OWC 005</td>
<td>GE22-LR 3/4”</td>
<td>DN20 / Ø22</td>
<td>GE18-LR 1/2”</td>
<td>DN16 / Ø18</td>
<td>G3/4”</td>
<td>Ø25</td>
</tr>
<tr>
<td>OWC 010</td>
<td>GE22-LR 1”</td>
<td>DN20 / Ø22</td>
<td>GE18-LR 1/2”</td>
<td>DN16 / Ø18</td>
<td>G1/2”</td>
<td>Ø13</td>
</tr>
<tr>
<td>OWC 015</td>
<td>GE28-LR 1”</td>
<td>DN25 / Ø28</td>
<td>GE22-LR 3/4”</td>
<td>DN20 / Ø22</td>
<td>G3/4”</td>
<td>Ø25</td>
</tr>
<tr>
<td>OWC 020</td>
<td>GE35-LR 1 1/4”</td>
<td>DN32 / Ø35</td>
<td>GE28-LR 1”</td>
<td>DN25 / Ø28</td>
<td>G1/2”</td>
<td>Ø19</td>
</tr>
<tr>
<td>OWC 025</td>
<td>GE35-LR 1 1/4”</td>
<td>DN32 / Ø35</td>
<td>GE28-LR 1 1/4”</td>
<td>DN25 / Ø28</td>
<td>G3/4”</td>
<td>Ø25</td>
</tr>
<tr>
<td>OWC 030</td>
<td>GE35-LR 1 1/4”</td>
<td>DN32 / Ø35</td>
<td>GE28-LR 1”</td>
<td>DN25 / Ø28</td>
<td>G1”</td>
<td>Ø25</td>
</tr>
<tr>
<td>OWC 040</td>
<td>GE42-LR 1 1/2”</td>
<td>DN40 / Ø42</td>
<td>GE35-LR 1 1/2”</td>
<td>DN32 / Ø35</td>
<td>G3/4”</td>
<td>Ø25</td>
</tr>
<tr>
<td>OWC 050</td>
<td>GE42-LR 1 1/2”</td>
<td>DN40 / Ø42</td>
<td>GE35-LR 1 1/2”</td>
<td>DN32 / Ø35</td>
<td>G1 1/4”</td>
<td>Ø32</td>
</tr>
<tr>
<td>OWC 060</td>
<td>SAE 2” SFL</td>
<td>DN50 / Ø2”</td>
<td>GE42-LR 1 1/2”</td>
<td>DN40 / Ø42</td>
<td>G1 1/2”</td>
<td>Ø38</td>
</tr>
<tr>
<td>OWC 070</td>
<td>SAE 2 1/2” SFL</td>
<td>DN50 / Ø2”</td>
<td>GE42-LR 1 1/2”</td>
<td>DN40 / Ø42</td>
<td>G1”</td>
<td>Ø38</td>
</tr>
</tbody>
</table>

1) max. length 1.5 m
2) max. length 2.5 m

INFORMATION

For dimensions of the oil-water cooler, refer to the catalog. More detailed technical data of the several cooling systems are available from SEW-EURODRIVE on request.

2.4 Startup

2.4.1 Venting

WARNING

Danger due to leaking and squirting gear unit oil.

Serious injury.

- You must wear safety goggles.
- Be very careful when you vent the pump.

If the pump does not start pumping oil immediately after activating the oil supply system, the pump must be filled with oil and oil supply system must be vented on the outlet side during the start-up.
2.5 **Inspection/Maintenance**

INFORMATION

Read the operating instructions of the respective cooling system manufacturer.

2.5.1 **Notes on checking the oil level**

The oil supply system might influence the oil level. The fill quantities specified on the nameplate are guide values. The proper oil level is indicated by the mark on the oil sight glass, oil level glass or the dipstick.

Observe the chapter "Checking the oil level" in the operating instructions for the X.. series industrial gear units.

2.6 **Malfunctions**

<table>
<thead>
<tr>
<th>Malfunction</th>
<th>Possible cause</th>
<th>Remedy</th>
</tr>
</thead>
<tbody>
<tr>
<td>No oil pump suction</td>
<td>• Air in the suction line of the oil pump</td>
<td>• Fill suction pipe and oil pump with oil</td>
</tr>
<tr>
<td>Pressure switch not switching</td>
<td>• Oil pump defective</td>
<td>• Vent the pump at the pressure side</td>
</tr>
<tr>
<td></td>
<td>• Pressure switch defective</td>
<td>• Replace pressure switch</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Contact customer service</td>
</tr>
<tr>
<td>Malfunction of the oil-air or oil-water cooling system</td>
<td>• Malfunction of the oil-water or oil-air cooling system</td>
<td>• Observe the separate operating instructions for the oil-water and oil-air cooling system.</td>
</tr>
</tbody>
</table>
Screw Pump
For industrial use

Design/Function
Three-spindle, self-acting screw pump with flange fitting and hardened and ground drive and running spindles.

Use
For use with lubricating fluids containing no abrasive components or those that chemically attack the pump materials. For example, in hydraulic systems of all types and for use with the following fluids:

- Mineral oils HLP and HLVP
- Ecological fluids HETG, HEPG and HEE
- Synthetic hydraulic fluids such as:
 - HFA Oil/water emulsion (oil minimum 5%)
 - HFB Water/oil emulsion 40%
 - HFC Water/glycol (water maximum 35-55%)
 - HFDR Phosphate ester
- High-viscosity lubricating oils
- Special synthetic fluids MIL-H and SKYDROL.

Further fluids on request.

Shaft seal
Maintenance-free radial shaft seal in various materials

Technical data

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Capacity</td>
<td>3,1 up to 443 ccm</td>
</tr>
<tr>
<td>Pump pressure</td>
<td>up to 40 bar</td>
</tr>
<tr>
<td>Supply pressure</td>
<td>-0,7 up to 3 bar</td>
</tr>
<tr>
<td>Fluid temperature</td>
<td>-20 up to 180 °C</td>
</tr>
<tr>
<td>Fluid viscosity</td>
<td>4 up to 2000 cSt</td>
</tr>
<tr>
<td>Noise level</td>
<td>52 up to 68 dbA*</td>
</tr>
<tr>
<td>Gaskets</td>
<td>NBR, VITON, FPM, EPDM</td>
</tr>
<tr>
<td>Required filter fineness</td>
<td>β 25 ≥ 75</td>
</tr>
</tbody>
</table>

*depending on viscosity and revolutions
Dimensions Pump for mounting on tanks SSP

Unit size/capacity*

SSP...1/	3,1 = 3,1 ccm
SSP...2/	9 = 9 ccm
SSP...3/	13 = 13 ccm
SSP...4/	36 = 36 ccm
SSP...5/	64 = 64 ccm
SSP...6/	91 = 91 ccm
SSP...7/	160 = 160 ccm
SSP...8/	222 = 222 ccm
SSP...9/	364 = 364 ccm

Unit dimensions

<table>
<thead>
<tr>
<th>Typ</th>
<th>B</th>
<th>E</th>
<th>F</th>
<th>d1</th>
<th>A</th>
<th>D</th>
<th>T</th>
<th>U</th>
<th>ØA</th>
<th>H1</th>
<th>ØM</th>
<th>H2</th>
<th>C</th>
<th>d2</th>
<th>L3</th>
<th>L1</th>
<th>G</th>
<th>Gewicht</th>
</tr>
</thead>
<tbody>
<tr>
<td>SSP...1*</td>
<td>80</td>
<td>11</td>
<td>103</td>
<td>125</td>
<td>31</td>
<td>14</td>
<td>16</td>
<td>5</td>
<td>1/2“</td>
<td>25</td>
<td>3/8“</td>
<td>25</td>
<td>37</td>
<td>59</td>
<td>187</td>
<td>65,5</td>
<td>76</td>
<td>1,5 kg</td>
</tr>
<tr>
<td>SSP...2**</td>
<td>70</td>
<td>6,5</td>
<td>85</td>
<td>105</td>
<td>-</td>
<td>14</td>
<td>16,2</td>
<td>5,2</td>
<td>3/4“</td>
<td>26,7</td>
<td>1/2“</td>
<td>27,3</td>
<td>-</td>
<td>65</td>
<td>174</td>
<td>70</td>
<td>86</td>
<td>2,7 kg</td>
</tr>
<tr>
<td>SSP...3*</td>
<td>100</td>
<td>11</td>
<td>125</td>
<td>150</td>
<td>36</td>
<td>19</td>
<td>21,5</td>
<td>6</td>
<td>11/4“</td>
<td>54,5</td>
<td>1”</td>
<td>41</td>
<td>41</td>
<td>95,5</td>
<td>259</td>
<td>62</td>
<td>122,5</td>
<td>4,4 kg</td>
</tr>
<tr>
<td>SSP...4*</td>
<td>125</td>
<td>14</td>
<td>160</td>
<td>188</td>
<td>36</td>
<td>19</td>
<td>21,5</td>
<td>6</td>
<td>11/2“</td>
<td>65</td>
<td>11/4“</td>
<td>46,5</td>
<td>46</td>
<td>112</td>
<td>304</td>
<td>69</td>
<td>150</td>
<td>7 kg</td>
</tr>
<tr>
<td>SSP...5*</td>
<td>125</td>
<td>14</td>
<td>160</td>
<td>188</td>
<td>55</td>
<td>32</td>
<td>35</td>
<td>10</td>
<td>2“</td>
<td>83,5</td>
<td>11/2“</td>
<td>51,5</td>
<td>64,5</td>
<td>126,5</td>
<td>375</td>
<td>75</td>
<td>190</td>
<td>11 kg</td>
</tr>
<tr>
<td>SSP...6*</td>
<td>160</td>
<td>18</td>
<td>200</td>
<td>235</td>
<td>55</td>
<td>32</td>
<td>35</td>
<td>10</td>
<td>21/2“</td>
<td>94</td>
<td>2“</td>
<td>54</td>
<td>64,5</td>
<td>148,5</td>
<td>398,5</td>
<td>83,5</td>
<td>202</td>
<td>15,5 kg</td>
</tr>
<tr>
<td>SSP...7</td>
<td>160</td>
<td>18</td>
<td>200</td>
<td>235</td>
<td>55</td>
<td>32</td>
<td>35</td>
<td>10</td>
<td>3“</td>
<td>105</td>
<td>21/2“</td>
<td>63,5</td>
<td>66</td>
<td>160</td>
<td>440</td>
<td>83,5</td>
<td>228</td>
<td>25 kg</td>
</tr>
<tr>
<td>SSP...8</td>
<td>200</td>
<td>22</td>
<td>250</td>
<td>300</td>
<td>55</td>
<td>32</td>
<td>35</td>
<td>10</td>
<td>31/2“</td>
<td>110</td>
<td>3“</td>
<td>83</td>
<td>67</td>
<td>181</td>
<td>506</td>
<td>93,5</td>
<td>277</td>
<td>30 kg</td>
</tr>
<tr>
<td>SSP...9</td>
<td>200</td>
<td>22</td>
<td>250</td>
<td>300</td>
<td>60</td>
<td>38</td>
<td>41</td>
<td>10</td>
<td>4“</td>
<td>125</td>
<td>3“</td>
<td>83</td>
<td>76</td>
<td>212</td>
<td>594,5</td>
<td>150</td>
<td>295</td>
<td>47,5 kg</td>
</tr>
</tbody>
</table>

* depending on pressure and viscosity
Dimensions pump for mounting in tanks SSP

Unit size/capacity*

<table>
<thead>
<tr>
<th>Type</th>
<th>B</th>
<th>E</th>
<th>F</th>
<th>d1</th>
<th>A</th>
<th>D</th>
<th>T</th>
<th>U</th>
<th>ØM</th>
<th>H2</th>
<th>C</th>
<th>G</th>
<th>d2</th>
<th>L1</th>
<th>L3</th>
<th>Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>SSP...1*</td>
<td>80</td>
<td>11</td>
<td>103</td>
<td>125</td>
<td>31</td>
<td>14</td>
<td>16</td>
<td>5</td>
<td>3/8"</td>
<td>25</td>
<td>37</td>
<td>40</td>
<td>60</td>
<td>55,5</td>
<td>197</td>
<td>1,3 kg</td>
</tr>
<tr>
<td>SSP...2**</td>
<td>70</td>
<td>6,5</td>
<td>85</td>
<td>105</td>
<td>-</td>
<td>14</td>
<td>16,2</td>
<td>5,2</td>
<td>1/2"</td>
<td>27,3</td>
<td>-</td>
<td>65</td>
<td>174</td>
<td>70</td>
<td>86</td>
<td>2,7 kg</td>
</tr>
<tr>
<td>SSP...3*</td>
<td>100</td>
<td>11</td>
<td>125</td>
<td>150</td>
<td>36</td>
<td>19</td>
<td>21,5</td>
<td>6</td>
<td>1"</td>
<td>41</td>
<td>41</td>
<td>70</td>
<td>96</td>
<td>62</td>
<td>265</td>
<td>4 kg</td>
</tr>
<tr>
<td>SSP...4*</td>
<td>125</td>
<td>14</td>
<td>160</td>
<td>188</td>
<td>36</td>
<td>19</td>
<td>21,5</td>
<td>6</td>
<td>11/4"</td>
<td>46,5</td>
<td>46</td>
<td>70</td>
<td>110</td>
<td>69</td>
<td>295</td>
<td>6,4 kg</td>
</tr>
<tr>
<td>SSP...5*</td>
<td>125</td>
<td>14</td>
<td>160</td>
<td>188</td>
<td>55</td>
<td>32</td>
<td>35</td>
<td>10</td>
<td>11/2"</td>
<td>51,5</td>
<td>64,5</td>
<td>70</td>
<td>124</td>
<td>75</td>
<td>355</td>
<td>10 kg</td>
</tr>
<tr>
<td>SSP...6*</td>
<td>160</td>
<td>18</td>
<td>200</td>
<td>235</td>
<td>55</td>
<td>32</td>
<td>35</td>
<td>10</td>
<td>2"</td>
<td>54</td>
<td>64,5</td>
<td>100</td>
<td>145</td>
<td>83,5</td>
<td>400</td>
<td>15 kg</td>
</tr>
<tr>
<td>SSP...7</td>
<td>160</td>
<td>18</td>
<td>200</td>
<td>235</td>
<td>55</td>
<td>32</td>
<td>35</td>
<td>10</td>
<td>21/2"</td>
<td>63,5</td>
<td>66</td>
<td>100</td>
<td>155</td>
<td>83,5</td>
<td>415</td>
<td>22 kg</td>
</tr>
<tr>
<td>SSP...8</td>
<td>200</td>
<td>22</td>
<td>250</td>
<td>300</td>
<td>55</td>
<td>32</td>
<td>35</td>
<td>10</td>
<td>3"</td>
<td>83</td>
<td>67</td>
<td>100</td>
<td>182</td>
<td>93,5</td>
<td>461</td>
<td>26 kg</td>
</tr>
<tr>
<td>SSP...9</td>
<td>220</td>
<td>22</td>
<td>250</td>
<td>300</td>
<td>60</td>
<td>38</td>
<td>41</td>
<td>10</td>
<td>3"</td>
<td>83</td>
<td>76</td>
<td>100</td>
<td>202</td>
<td>150</td>
<td>543</td>
<td>45 kg</td>
</tr>
</tbody>
</table>

* Hollow shaft type available
** only Hollow shaft

* depending on pressure and viscosity
Ordering code

SSPA - 2/11 - A - N - DB1 - R - V3 - AC24/B5 - S - 01

<table>
<thead>
<tr>
<th>Version</th>
<th>For mounting on tanks = A</th>
<th>On tanks/hollow shaft = H</th>
<th>For mounting in tanks = I</th>
</tr>
</thead>
<tbody>
<tr>
<td>Serie 01</td>
<td>Motor shaft/form (only for version H)</td>
<td>AC 9/</td>
<td>AC 14/</td>
</tr>
<tr>
<td>Unit size/performance</td>
<td>see pages 2 and 3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Material</td>
<td>Aluminium = A</td>
<td>Cast iron = GG</td>
<td>Steel = GS</td>
</tr>
<tr>
<td>Gaskets</td>
<td>Viton = V</td>
<td>EPDM = E</td>
<td>FPM = F</td>
</tr>
<tr>
<td>Security valve</td>
<td>5 bar security = DB 1</td>
<td>10 bar security = DB 2</td>
<td>15 bar security = DB 3</td>
</tr>
<tr>
<td></td>
<td>* Only for unit size 3, 4, 6</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Hollow shaft type

Motor type

<table>
<thead>
<tr>
<th>Motor-unit size</th>
<th>56</th>
<th>63</th>
<th>71</th>
<th>80</th>
<th>90</th>
<th>100</th>
<th>112</th>
<th>132</th>
<th>160</th>
</tr>
</thead>
<tbody>
<tr>
<td>SSP... 1</td>
<td>B14</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>B5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>B5 reduced</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SSP... 2</td>
<td>B14</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>B5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>B5 reduced</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SSP... 3</td>
<td>B14</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>B5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>B5 reduced</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SSP... 4</td>
<td>B14</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>B5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>B5 reduced</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SSP... 5</td>
<td>B14</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>B5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>B5 reduced</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SSP... 6</td>
<td>B14</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>B5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>B5 reduced</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SSP... 7</td>
<td>B14</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>B5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>B5 reduced</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SSP... 8</td>
<td>B14</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>B5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>B5 reduced</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SSP... 9</td>
<td>B14</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>B5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>B5 reduced</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Sales department

Universal Hydraulik GmbH
Siemensstr. 33 • D-61267 Neu-Anspach
Tel: 0 60 81/ 94 18 - 0 • Fax 0 60 81/ 96 02 20
eMail info@universalhydraulik.com
www.universalhydraulik.com

Vertretungen in Australien, USA, Hong Kong, Schweden, Finnland, Norwegen, Großbritannien, Niederlande, Frankreich, Spanien, Italien, Israel, Schweiz, Österreich.
ROTEX® is a torsionally flexible jaw coupling. It is able to compensate for shaft displacement caused by, as an example, inaccuracies in production, heat expansion, etc.

Table of Contents

1 Technical Data

2 Hints
 2.1 General Hints
 2.2 Safety and Advice Hints
 2.3 General Hints to Danger
 2.4 Proper Use

3 Storage

4 Assembly
 4.1 Components of the Couplings
 4.2 Hint regarding the finish bore
 4.3 Taper Lock Clamping Sleeve
 4.4 Assembly of the Hubs
 4.5 Displacements - Alignment of the Couplings

5 Enclosure A
 Hints and instructions regarding the use in hazardous areas
 5.1 Control intervals for couplings in hazardous areas
 5.2 Approximate values of wear
 5.3 Permissible coupling materials in the hazardous area
 5.4 Marking of coupling for the hazardous area
 5.5 Starting
 5.6 Breakdowns, causes and elimination
 5.7 Certificate of Conformity according to the EG Standards 94/9/EG dated 23 March 1994
1 Technical Data

Table 1: material Al-D

<table>
<thead>
<tr>
<th>ROTEX® size</th>
<th>component</th>
<th>spider (part 2) 1)</th>
<th>nominal torque [Nm]</th>
<th>dimension [mm]</th>
<th>general</th>
<th>set screws 2)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>L</td>
<td>l₁; l₂</td>
<td>E</td>
</tr>
<tr>
<td>14</td>
<td>1 a</td>
<td>7,5</td>
<td>12,5</td>
<td>6 - 16</td>
<td>35</td>
<td>11</td>
</tr>
<tr>
<td></td>
<td>1 a</td>
<td>10</td>
<td>17</td>
<td>6 - 19</td>
<td>66</td>
<td>25</td>
</tr>
<tr>
<td>24</td>
<td>1 a</td>
<td>35</td>
<td>60</td>
<td>9 - 24</td>
<td>78</td>
<td>30</td>
</tr>
<tr>
<td>28</td>
<td>1 a</td>
<td>95</td>
<td>160</td>
<td>10 - 28</td>
<td>90</td>
<td>35</td>
</tr>
</tbody>
</table>

1) Maximum torque of the coupling $T_{\text{Kmax}} = \text{nominal torque of the coupling } T_{\text{K Nenn.}} \times 2$.

2) Threads for set screws are opposite the keyway in case of material Al-D and on the keyway in case of material GG 25 / GGG 40.

3) From size 125 thread for set screws on request.

Table 2: material GG 25 / GGG 40

<table>
<thead>
<tr>
<th>ROTEX® size</th>
<th>component</th>
<th>spider (part 2) 1)</th>
<th>nominal torque [Nm]</th>
<th>dimension [mm]</th>
<th>general</th>
<th>set screws 2)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>L</td>
<td>l₁; l₂</td>
<td>E</td>
</tr>
<tr>
<td>38</td>
<td>1 a</td>
<td>190</td>
<td>325</td>
<td>12 - 38</td>
<td>114</td>
<td>45</td>
</tr>
<tr>
<td></td>
<td>1 a</td>
<td>38 - 45</td>
<td></td>
<td>164 70</td>
<td>126</td>
<td>50</td>
</tr>
<tr>
<td></td>
<td>1 b</td>
<td>265</td>
<td>450</td>
<td>14 - 42</td>
<td>176</td>
<td>75</td>
</tr>
<tr>
<td></td>
<td>1 a</td>
<td>14 - 55</td>
<td></td>
<td>188 80</td>
<td>140</td>
<td>56</td>
</tr>
<tr>
<td></td>
<td>1 b</td>
<td>48 - 60</td>
<td></td>
<td>188 80</td>
<td>140</td>
<td>56</td>
</tr>
<tr>
<td></td>
<td>55 a</td>
<td>190</td>
<td>325</td>
<td>20 - 55</td>
<td>160</td>
<td>65</td>
</tr>
<tr>
<td></td>
<td>55 b</td>
<td>55 - 70</td>
<td></td>
<td>160 65</td>
<td>185</td>
<td>75</td>
</tr>
<tr>
<td></td>
<td>55 a</td>
<td>625</td>
<td>940</td>
<td>22 - 65</td>
<td>185</td>
<td>75</td>
</tr>
<tr>
<td></td>
<td>55 b</td>
<td>625</td>
<td>940</td>
<td>22 - 65</td>
<td>185</td>
<td>75</td>
</tr>
<tr>
<td></td>
<td>65 a</td>
<td>1280</td>
<td>1920</td>
<td>2400</td>
<td>210</td>
<td>85</td>
</tr>
<tr>
<td></td>
<td>65 b</td>
<td>1280</td>
<td>1920</td>
<td>2400</td>
<td>210</td>
<td>85</td>
</tr>
<tr>
<td></td>
<td>75 a</td>
<td>2400</td>
<td>3600</td>
<td>4500</td>
<td>245</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>75 b</td>
<td>2400</td>
<td>3600</td>
<td>4500</td>
<td>245</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>90 a</td>
<td>4800</td>
<td>7200</td>
<td>9000</td>
<td>270</td>
<td>110</td>
</tr>
<tr>
<td></td>
<td>90 b</td>
<td>4800</td>
<td>7200</td>
<td>9000</td>
<td>270</td>
<td>110</td>
</tr>
<tr>
<td></td>
<td>100 a</td>
<td>6650</td>
<td>10000</td>
<td>12500</td>
<td>300</td>
<td>125</td>
</tr>
<tr>
<td></td>
<td>100 b</td>
<td>6650</td>
<td>10000</td>
<td>12500</td>
<td>300</td>
<td>125</td>
</tr>
<tr>
<td></td>
<td>110 a</td>
<td>8550</td>
<td>12800</td>
<td>16000</td>
<td>375</td>
<td>155</td>
</tr>
<tr>
<td></td>
<td>110 b</td>
<td>8550</td>
<td>12800</td>
<td>16000</td>
<td>375</td>
<td>155</td>
</tr>
<tr>
<td></td>
<td>125 a</td>
<td>12800</td>
<td>19200</td>
<td>24000</td>
<td>425</td>
<td>175</td>
</tr>
<tr>
<td></td>
<td>125 b</td>
<td>12800</td>
<td>19200</td>
<td>24000</td>
<td>425</td>
<td>175</td>
</tr>
<tr>
<td></td>
<td>160 a</td>
<td>16850</td>
<td>28000</td>
<td>35000</td>
<td>475</td>
<td>185</td>
</tr>
<tr>
<td></td>
<td>160 b</td>
<td>16850</td>
<td>28000</td>
<td>35000</td>
<td>475</td>
<td>185</td>
</tr>
</tbody>
</table>

1) Maximum torque of the coupling $T_{\text{Kmax}} = \text{nominal torque of the coupling } T_{\text{K Nenn.}} \times 2$.

2) Threads for set screws are opposite the keyway in case of material Al-D and on the keyway in case of material GG 25 / GGG 40.

3) From size 125 thread for set screws on request.
1 Technical Data

Table 3: material steel

<table>
<thead>
<tr>
<th>ROTEX® size</th>
<th>component</th>
<th>nominal torque [Nm]</th>
<th>spider (part 2) 1)</th>
<th>general</th>
<th>set screws 2)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>92 Sh A 98 Sh A 64 Sh D</td>
<td>finish bore d (min-max)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>1a</td>
<td>10 17 21</td>
<td>0 - 25</td>
<td>66 25</td>
<td>M5 10</td>
</tr>
<tr>
<td></td>
<td>1b</td>
<td></td>
<td></td>
<td>90 37</td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>1a</td>
<td>35 60 75</td>
<td>0 - 35</td>
<td>78 30</td>
<td>M5 10</td>
</tr>
<tr>
<td></td>
<td>1b</td>
<td></td>
<td></td>
<td>118 50</td>
<td></td>
</tr>
<tr>
<td>28</td>
<td>1a</td>
<td>95 160 200</td>
<td>0 - 40</td>
<td>90 35</td>
<td>M8 15</td>
</tr>
<tr>
<td></td>
<td>1b</td>
<td></td>
<td></td>
<td>140 60</td>
<td></td>
</tr>
<tr>
<td>38</td>
<td>1</td>
<td>190 325 405</td>
<td>0 - 48</td>
<td>114 45</td>
<td>M8 15</td>
</tr>
<tr>
<td></td>
<td>1b</td>
<td></td>
<td></td>
<td>164 70</td>
<td></td>
</tr>
<tr>
<td>42</td>
<td>1</td>
<td>265 450 560</td>
<td>0 - 55</td>
<td>126 50</td>
<td>M8 20</td>
</tr>
<tr>
<td></td>
<td>1b</td>
<td></td>
<td></td>
<td>176 75</td>
<td></td>
</tr>
<tr>
<td>48</td>
<td>1</td>
<td>310 525 655</td>
<td>0 - 62</td>
<td>140 56</td>
<td>M8 20</td>
</tr>
<tr>
<td></td>
<td>1b</td>
<td></td>
<td></td>
<td>188 80</td>
<td></td>
</tr>
<tr>
<td>55</td>
<td>1</td>
<td>410 685 825</td>
<td>0 - 74</td>
<td>160 65</td>
<td>M10 20</td>
</tr>
<tr>
<td></td>
<td>1b</td>
<td></td>
<td></td>
<td>210 90</td>
<td></td>
</tr>
<tr>
<td>65</td>
<td>1</td>
<td>625 940 1175</td>
<td>0 - 80</td>
<td>185 75</td>
<td>M10 20</td>
</tr>
<tr>
<td></td>
<td>1b</td>
<td></td>
<td></td>
<td>235 100</td>
<td></td>
</tr>
<tr>
<td>75</td>
<td>1</td>
<td>1280 1920 2400</td>
<td>0 - 95</td>
<td>210 85</td>
<td>M10 25</td>
</tr>
<tr>
<td></td>
<td>1b</td>
<td></td>
<td></td>
<td>250 110</td>
<td></td>
</tr>
<tr>
<td>90</td>
<td>1</td>
<td>2400 3600 4500</td>
<td>0 - 110</td>
<td>245 100</td>
<td>M12 30</td>
</tr>
<tr>
<td></td>
<td>1b</td>
<td></td>
<td></td>
<td>295 125</td>
<td></td>
</tr>
</tbody>
</table>

1) Maximum torque of the coupling $T_{K_{\text{max}}}$ = nominal torque of the coupling $T_{K_{\text{Nenn}}}$ $\times 2$

Table 4: design DKM

<table>
<thead>
<tr>
<th>ROTEX® size</th>
<th>nominal torque [Nm]</th>
<th>general</th>
<th>set screws 2)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>measure d, D, D<sub>2</sub></td>
<td>L<sub>DKM</sub></td>
<td>D<sub>1</sub> D<sub>2</sub> D N G t</td>
</tr>
<tr>
<td>19</td>
<td>10 17 -</td>
<td>92 25 16 12 2 40 18 10 42</td>
<td>M5 10</td>
</tr>
<tr>
<td>24</td>
<td>35 60 -</td>
<td>112 30 18 14 2 55 27 16 52</td>
<td>M5 10</td>
</tr>
<tr>
<td>28</td>
<td>95 160 -</td>
<td>128 35 20 15 2,5 65 30 18 58</td>
<td>M8 15</td>
</tr>
<tr>
<td>38</td>
<td>190 325 -</td>
<td>158 45 24 18 3 80 38 20 68</td>
<td>M8 15</td>
</tr>
<tr>
<td>42</td>
<td>265 450 -</td>
<td>174 50 26 20 3 95 46 22 74</td>
<td>M8 20</td>
</tr>
<tr>
<td>48</td>
<td>310 525 -</td>
<td>192 56 28 21 3,5 105 51 24 80</td>
<td>M8 20</td>
</tr>
<tr>
<td>55</td>
<td>410 685 -</td>
<td>218 65 30 22 4 120 60 28 88</td>
<td>M10 20</td>
</tr>
<tr>
<td>65</td>
<td>625 940 -</td>
<td>252 75 35 26 4,5 135 68 32 102</td>
<td>M10 25</td>
</tr>
<tr>
<td>75</td>
<td>1280 1920 -</td>
<td>286 85 40 30 5 160 80 36 116</td>
<td>M10 25</td>
</tr>
<tr>
<td>90</td>
<td>2400 3600 -</td>
<td>330 100 45 34 5,5 200 100 40 130</td>
<td>M12 30</td>
</tr>
</tbody>
</table>

1) Maximum torque of the coupling $T_{K_{\text{max}}}$ = nominal torque of the coupling $T_{K_{\text{Nenn}}}$ $\times 2$
1 Technical Data

Table 5: design Taper-Lock

<table>
<thead>
<tr>
<th>ROTEX® size</th>
<th>component</th>
<th>spider (part 2)</th>
<th>nominal torque [Nm]</th>
<th>finish bore d (min-max)</th>
<th>general</th>
<th>Taper-Lock-sleeve</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>92 Sh A 98 Sh A 64 Sh D</td>
<td>L e b s D_a D_l N</td>
<td></td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>1a</td>
<td>35 60 -</td>
<td>10 - 22 64 23 18 14</td>
<td>2 55 27 - - 1008</td>
<td></td>
<td></td>
</tr>
<tr>
<td>28</td>
<td>1a</td>
<td>95 160 -</td>
<td>10 - 25 96 23 20 15</td>
<td>2,5 85 30 - - 1108</td>
<td></td>
<td></td>
</tr>
<tr>
<td>38</td>
<td>1a</td>
<td>190 325 -</td>
<td>10 - 25 70 23 24 18</td>
<td>3 80 38 78 15 1108</td>
<td></td>
<td></td>
</tr>
<tr>
<td>42</td>
<td>1a</td>
<td>265 450 -</td>
<td>14 - 40 78 26 26 20</td>
<td>3 95 48 94 16 1610</td>
<td></td>
<td></td>
</tr>
<tr>
<td>48</td>
<td>1a</td>
<td>310 525 -</td>
<td>14 - 40 106 39 28 21</td>
<td>3,5 105 51 104 28 1615</td>
<td></td>
<td></td>
</tr>
<tr>
<td>55</td>
<td>1a</td>
<td>410 685 -</td>
<td>14 - 50 96 33 30 22 4</td>
<td>120 60 118 20 2012</td>
<td></td>
<td></td>
</tr>
<tr>
<td>65</td>
<td>1</td>
<td>625 940 -</td>
<td>14 - 50 101 33 35 26 4,5</td>
<td>135 68 115 5 2012</td>
<td></td>
<td></td>
</tr>
<tr>
<td>75</td>
<td>1</td>
<td>1280 1920 -</td>
<td>16 - 60 130 52 40 30 5</td>
<td>160 80 158 36 2517</td>
<td></td>
<td></td>
</tr>
<tr>
<td>90</td>
<td>1</td>
<td>2400 3600 -</td>
<td>25 - 75 149 52 45 34 5,5</td>
<td>200 100 160 14 3020</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1) Maximum torque of the coupling \(T_{\text{max}} \) = nominal torque of the coupling \(T_{\text{K Nenn}} \) \times 2

⚠️ CAUTION !

For a continuous and troublefree operation of the coupling it must be designed according to the selection instructions (according to DIN 740 part 2) for the particular application (see ROTEX® catalogue).

If the operating conditions (performance, speed, changes at engine and machine) change, the coupling selection must be checked again.

2 Hints

2.1 General Hints

Please read through these mounting instructions carefully before you set the coupling into operation. Please pay special attention to the safety instructions!

The ROTEX® coupling is approved for the use in hazardous areas.

When using the coupling in hazardous areas please observe the special hints and instructions regarding safety in enclosure A.

The mounting instructions are part of your product. Please keep them carefully and close to the coupling.

The copyright for these mounting instructions remains with KTR Kupplungstechnik GmbH.
2 Hints

2.2 Safety and Advice Hints

STOP DANGER ! Danger of injury to persons.

 CAUTION ! Damages on the machine possible.

 ATTENTION ! Pointing to important items.

 PRECAUTION ! Hints concerning explosion protection.

2.3 General Hints of Danger

STOP DANGER !

With assembly, operation and maintenance of the coupling it has to be made sure that the entire drive train is protected against unintentional engagement. You can be seriously hurt by rotating parts. Please make absolutely sure to read through and observe the following safety instructions.

- All operations on and with the coupling have to be performed taking into account "safety first".
- Please make sure to disengage the power pack before you perform your work.
- Protect the power pack against unintentional engagement, e.g. by providing hints at the place of engagement or removing the fuse for current supply.
- Do not touch the operation area of the coupling as long as it is in operation.
- Please protect the coupling against unintentional touch. Please provide for the necessary protection devices and caps.

2.4 Proper Use

You may only assemble, operate and maintain the coupling if you

- carefully read through the mounting instructions and understood them
- had technical training
- are authorized to do so by your company

The coupling may only be used in accordance with the technical data (see table 1 to 5 in chapter 1). Unauthorized modifications on the coupling design are not admissible. We do not take any warranty for resulting damages. To further develop the product we reserve the right for technical modifications. The ROTEX® described in here corresponds to the technical status at the time of printing of these mounting instructions.
3 Storage

The coupling hubs are supplied in preserved condition and can be stored at a dry and roofed place for 6 - 9 months. The features of the coupling spiders (elastomers) remain unchanged for up to 5 years in case of favourable stock conditions.

CAUTION!
The storage rooms may not include any ozone-generating devices, like e.g. fluorescent light sources, mercury-vapour lamps or electrical high-voltage appliances. Humid storage rooms are not suitable. Please make sure that there is no condensation. The best relative air humidity is under 65%.

4 Assembly

Basically the coupling is supplied in individual parts. Before assembly the coupling has to be controlled for completeness.

4.1 Components of the Couplings

Components of ROTEX®, shaft coupling design No. 001

<table>
<thead>
<tr>
<th>Component</th>
<th>Quantity</th>
<th>Designation</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>hub</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>spider</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>setscrew</td>
</tr>
</tbody>
</table>

Components of ROTEX®, DKM design No. 018

<table>
<thead>
<tr>
<th>Component</th>
<th>Quantity</th>
<th>Designation</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>hub</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>spider</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>DKM - spacer</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>setscrew</td>
</tr>
</tbody>
</table>
4 Assembly

4.1 Components of the Couplings

Components of ROTEX®, Taper Lock Clamping Sleeve

<table>
<thead>
<tr>
<th>Component</th>
<th>Quantity</th>
<th>Designation</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>hub for taper clamping sleeve</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>taper lock clamping sleeve</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>spider</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>setscrew</td>
</tr>
</tbody>
</table>

Features of the standard spiders

<table>
<thead>
<tr>
<th>Spider hardness (Shore)</th>
<th>Marking (colour)</th>
</tr>
</thead>
<tbody>
<tr>
<td>92 Sh A</td>
<td>yellow</td>
</tr>
<tr>
<td>95/98 Sh A</td>
<td>red</td>
</tr>
<tr>
<td>64 Sh D-F</td>
<td>natural white with green marking of teeth</td>
</tr>
</tbody>
</table>

4.2 Hint regarding the finish bore

STOP

DANGER !

Valid for all materials!

The maximum permissible bore diameters \(d \) (see table 1 to 5 in chapter 1 - Technical Data) must not be exceeded. If these figures are disregarded, the coupling may tear. Rotating particles may cause serious danger.

- Hub bores machined by the customer have to observe concentric running or axial running, respectively (see picture 9).
- Please make absolutely sure to observe the figures for \(d_{\text{max}} \).
- Carefully align the hubs when the finish bores are brought in.
- Please provide for a setscrew or an end plate for the axial fastening of the hubs.

<table>
<thead>
<tr>
<th>Table 6: Setscrews</th>
</tr>
</thead>
<tbody>
<tr>
<td>ROTEX® size</td>
</tr>
<tr>
<td>dimension G</td>
</tr>
<tr>
<td>tightening torque (T_A) [Nm]</td>
</tr>
<tr>
<td>-------------------</td>
</tr>
<tr>
<td>14</td>
</tr>
<tr>
<td>19</td>
</tr>
<tr>
<td>24</td>
</tr>
<tr>
<td>28</td>
</tr>
<tr>
<td>38</td>
</tr>
<tr>
<td>42</td>
</tr>
<tr>
<td>48</td>
</tr>
<tr>
<td>55</td>
</tr>
<tr>
<td>65</td>
</tr>
<tr>
<td>-------------------</td>
</tr>
<tr>
<td>ROTEX® size</td>
</tr>
<tr>
<td>dimension G</td>
</tr>
<tr>
<td>tightening torque (T_A) [Nm]</td>
</tr>
<tr>
<td>-------------------</td>
</tr>
<tr>
<td>75</td>
</tr>
<tr>
<td>90</td>
</tr>
<tr>
<td>100</td>
</tr>
<tr>
<td>110</td>
</tr>
<tr>
<td>125</td>
</tr>
<tr>
<td>140</td>
</tr>
<tr>
<td>160</td>
</tr>
<tr>
<td>180</td>
</tr>
</tbody>
</table>
4 Assembly

4.3 Taper Lock Clamping Sleeve

Assembly of the taper lock-clamping sleeve:
The taper lock clamping sleeve has cylindrical and even pocket holes parallel to the axis. Only half to these
holes are in the material of the sleeve. The other half located at the hub has convolutions.
Push the coupling hub and the taper lock clamping sleeve into each other, make holes onto the cover and
tighten the grub screws slightly.

Disassembly of the taper lock clamping sleeve:
By removing the grub screws you can detach the taper lock clamping sleeve. Afterwards, one of the grub screws
is screwed into the thread of the sleeve as forcing screw and tightened.
The detached coupling hub can be manually taken off the shaft with the taper lock clamping sleeve.

Table 7:

<table>
<thead>
<tr>
<th>taper lock clamping sleeve</th>
<th>screw dimension</th>
<th>quantity</th>
<th>spanner</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>G [inch]</td>
<td>L [inch]</td>
<td>SW [mm]</td>
</tr>
<tr>
<td>1008</td>
<td>1/4</td>
<td>1/2</td>
<td>3</td>
</tr>
<tr>
<td>1108</td>
<td>1/4</td>
<td>1/2</td>
<td>3</td>
</tr>
<tr>
<td>1610</td>
<td>3/8</td>
<td>5/8</td>
<td>5</td>
</tr>
<tr>
<td>1615</td>
<td>3/8</td>
<td>5/8</td>
<td>5</td>
</tr>
<tr>
<td>2012</td>
<td>7/16</td>
<td>7/8</td>
<td>6</td>
</tr>
<tr>
<td>2517</td>
<td>1/2</td>
<td>7/8</td>
<td>6</td>
</tr>
<tr>
<td>3020</td>
<td>5/8</td>
<td>1 1/4</td>
<td>8</td>
</tr>
</tbody>
</table>

4.4 Assembly of the Hubs

ATTENTION!
We recommend to check bores, shaft, keyway and feather key for dimensional accuracy
before assembly.

Heating the hubs slightly (approx. 80 °C) allows for an easier installation onto the shaft.

PRECAUTION!
Please pay attention to the danger of ignition in hazardous areas.

DANGER!
Touching the heated hubs causes burns.
We would recommend to wear safety gloves.

CAUTION!
For the assembly please make sure that the distance dimension E (see table 1 to 5) is kept
to ensure that the spider can be moved axially.
Disregarding this hint may cause damage on the coupling.

- Assemble the hubs onto the shaft of driving and driven side.
- Move the power packs in axial direction until the dimension E is achieved.
- If the power packs are already firmly assembled, axial movement of the hubs on the shafts allows for
 adjusting the dimension E.
- Fasten the hubs by tightening the setscrews DIN 916 with cup point.
4 Assembly

4.4 Assembly of the Hubs

ATTENTION!
If the shaft diameters with inserted feather key are smaller than the dimension \(d_h \) (see table 1 to 5) of the spider, one or two shaft ends may protrude into the spider.

4.5 Displacements - Alignment of the Couplings

The displacement figures shown in tables 8 and 9 offer sufficient safety to compensate for environmental influences like, for example, heat expansion or lowering of foundation.

CAUTION!
In order to ensure a long lifetime of the coupling and to avoid dangers regarding the use in hazardous areas, the shaft ends must be accurately aligned.
Please absolutely observe the displacement figures indicated (see tables 8 and 9). If the figures are exceeded, the coupling is damaged.
In case of a use in hazardous areas for the explosion group IIC (marking II 2G c IIC T4), only the half displacement figures (see tables 8 and 9) are permissible.

Please note:
- The displacement figures mentioned in tables 8 and 9 are maximum figures which must not arise in parallel. If radial and angular displacement arises at the same time, the permissible displacement values may only be used in part (see picture 12).
- Please check with a dial gauge, ruler or feeler whether the permissible displacement figures of tables 8 and 9 can be observed.

\[
\begin{align*}
K_W &= L_{1\text{max}} - L_{1\text{min}} \quad \text{[mm]} \\
L_{\text{max}} &= L + K_A \quad \text{[mm]}
\end{align*}
\]

picture 11: displacements
4.5 Displacements - Alignment of the Couplings

Example for the misalignment combinations given in picture 12:

Example 1:
\[K_R = 30\% \]
\[K_W = 70\% \]

Example 2:
\[K_R = 60\% \]
\[K_W = 40\% \]

\[K_{total} = K_R + K_W \leq 100\% \]

Table 8: Displacement figures for type 001 (standard coupling)

<table>
<thead>
<tr>
<th>ROTEX® size</th>
<th>14</th>
<th>19</th>
<th>24</th>
<th>28</th>
<th>38</th>
<th>42</th>
<th>48</th>
<th>55</th>
<th>65</th>
<th>75</th>
<th>90</th>
<th>100</th>
<th>110</th>
<th>125</th>
<th>140</th>
<th>160</th>
<th>180</th>
</tr>
</thead>
<tbody>
<tr>
<td>max. axial displacement (\Delta K_a) [mm]</td>
<td>1.0</td>
<td>1.2</td>
<td>1.4</td>
<td>1.5</td>
<td>1.8</td>
<td>2.0</td>
<td>2.1</td>
<td>2.2</td>
<td>2.6</td>
<td>3.0</td>
<td>3.4</td>
<td>3.8</td>
<td>4.2</td>
<td>4.6</td>
<td>5.0</td>
<td>5.7</td>
<td>6.4</td>
</tr>
<tr>
<td>max. radial displacement with (n=1500) 1/min (\Delta K_r) [mm]</td>
<td>0.17</td>
<td>0.20</td>
<td>0.22</td>
<td>0.25</td>
<td>0.28</td>
<td>0.32</td>
<td>0.36</td>
<td>0.42</td>
<td>0.48</td>
<td>0.50</td>
<td>0.52</td>
<td>0.55</td>
<td>0.60</td>
<td>0.62</td>
<td>0.64</td>
<td>0.68</td>
<td></td>
</tr>
<tr>
<td>max. radial displacement with (n=3000) 1/min (\Delta K_r) [mm]</td>
<td>0.11</td>
<td>0.13</td>
<td>0.15</td>
<td>0.17</td>
<td>0.19</td>
<td>0.21</td>
<td>0.25</td>
<td>0.26</td>
<td>0.28</td>
<td>0.32</td>
<td>0.34</td>
<td>0.36</td>
<td>0.38</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>(K_w) [degree]</td>
<td>1.2</td>
<td>1.2</td>
<td>0.9</td>
<td>0.9</td>
<td>1.0</td>
<td>1.0</td>
<td>1.1</td>
<td>1.2</td>
<td>1.2</td>
<td>1.2</td>
<td>1.3</td>
<td>1.3</td>
<td>1.2</td>
<td>1.2</td>
<td>1.2</td>
<td>1.2</td>
<td></td>
</tr>
<tr>
<td>max. angular displacement with (n=1500) 1/min (\Delta K_w) [mm]</td>
<td>0.67</td>
<td>0.82</td>
<td>0.85</td>
<td>1.05</td>
<td>1.35</td>
<td>1.70</td>
<td>2.00</td>
<td>2.30</td>
<td>2.70</td>
<td>3.30</td>
<td>4.30</td>
<td>4.80</td>
<td>5.60</td>
<td>6.50</td>
<td>6.60</td>
<td>7.60</td>
<td>9.00</td>
</tr>
<tr>
<td>(K_w) [degree]</td>
<td>1.1</td>
<td>1.1</td>
<td>0.8</td>
<td>0.8</td>
<td>0.8</td>
<td>0.8</td>
<td>0.9</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
<td>1.1</td>
<td>1.1</td>
<td>1.1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>max. angular displacement with (n=3000) 1/min (\Delta K_w) [mm]</td>
<td>0.62</td>
<td>0.70</td>
<td>0.75</td>
<td>0.84</td>
<td>1.10</td>
<td>1.40</td>
<td>1.60</td>
<td>2.00</td>
<td>2.30</td>
<td>2.90</td>
<td>3.80</td>
<td>4.20</td>
<td>5.00</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
</tbody>
</table>

Table 9: Displacement figures for type 018

<table>
<thead>
<tr>
<th>ROTEX® size</th>
<th>14</th>
<th>19</th>
<th>24</th>
<th>28</th>
<th>38</th>
<th>42</th>
<th>48</th>
<th>55</th>
<th>65</th>
<th>75</th>
<th>90</th>
<th>100</th>
<th>110</th>
<th>125</th>
<th>140</th>
<th>160</th>
<th>180</th>
</tr>
</thead>
<tbody>
<tr>
<td>max. axial displacement (\Delta K_a) [mm]</td>
<td>-</td>
<td>1.2</td>
<td>1.4</td>
<td>1.5</td>
<td>1.8</td>
<td>2.0</td>
<td>2.1</td>
<td>2.2</td>
<td>2.6</td>
<td>3.0</td>
<td>3.4</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>max. radial displacement with (n=1500) 1/min (\Delta K_r) [mm]</td>
<td>-</td>
<td>0.54</td>
<td>0.53</td>
<td>0.60</td>
<td>0.77</td>
<td>0.84</td>
<td>1.00</td>
<td>1.11</td>
<td>1.40</td>
<td>1.59</td>
<td>1.78</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>max. radial displacement with (n=3000) 1/min (\Delta K_r) [mm]</td>
<td>-</td>
<td>0.50</td>
<td>0.47</td>
<td>0.53</td>
<td>0.61</td>
<td>0.67</td>
<td>0.82</td>
<td>1.01</td>
<td>1.17</td>
<td>1.33</td>
<td>1.63</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>(K_w) [degree]</td>
<td>-</td>
<td>1.20</td>
<td>0.90</td>
<td>0.90</td>
<td>1.00</td>
<td>1.00</td>
<td>1.10</td>
<td>1.10</td>
<td>1.20</td>
<td>1.20</td>
<td>1.20</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>max. angular displacement with (n=1500) 1/min (\Delta K_w) [mm]</td>
<td>-</td>
<td>1.10</td>
<td>0.80</td>
<td>0.80</td>
<td>0.80</td>
<td>0.80</td>
<td>0.90</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.10</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>
5 Enclosure A

Hints and instructions regarding the use in hazardous areas

design 001: hub / spider / hub
design 018: hub / spider / DKM spacer / spider / hub

ROTEX® DKM and ROTEX® ZS-DKM only with spacer made from steel.

5.1 Control intervals for couplings in hazardous areas

<table>
<thead>
<tr>
<th>explosion group</th>
<th>control intervals</th>
</tr>
</thead>
<tbody>
<tr>
<td>II 2G c IIB T4</td>
<td>A checking of the circumferential backlash and a visual check of the flexible spider must be effected after 3,000 operating hours for the first time, after 6 months at the latest. If you note an unconsiderable or no wear at the spider after this first inspection, the further inspections can be effected, in case of the same operating parameters, respectively after 6,000 operating hours or after 18 months at the latest. If you note a considerable wear during the first inspection, so that a change of the spider would be recommended, please find out the cause according to the table „Breakdowns“, as far as possible. The maintenance intervals must be adjusted according to the changed operating parameters.</td>
</tr>
<tr>
<td>II 2G c IIC T4</td>
<td>A checking of the circumferential backlash and a visual check of the flexible spider must be effected after 2,000 operating hours for the first time, after 3 months at the latest. If you note an unconsiderable or no wear at the spider after this first inspection, the further inspections can be effected, in case of the same operating parameters, respectively after 4,000 operating hours or after 12 months at the latest. If you note a considerable wear during the first inspection, so that a change of the spider would be recommended, please find out the cause according to the table „Breakdowns“, as far as possible. The maintenance intervals must be adjusted according to the changed operating parameters.</td>
</tr>
</tbody>
</table>

Here the backlash between coupling cams and the flexible spider must be checked by a feeler gauge. When reaching the limit of wear of max. friction, the spider must be exchanged immediately, independent of the inspection intervals.
5 Enclosure A

Hints and instructions regarding the use in hazardous areas

5.2 Approximate values of wear

In case of a backlash of more than x mm, the flexible spider must be exchanged.

The reaching of the exchange values depends on the operating conditions and the existing operating parameters.

CAUTION!

In order to ensure a long lifetime of the coupling and to avoid dangers regarding the use in hazardous areas, the shaft ends must be accurately aligned.

Please absolutely observe the displacement figures indicated (see tables 8 and 9). If the figures are exceeded, the coupling is damaged.

![Picture 15: checking of the limit of wear](image1)

![Picture 16: wear of spider](image2)

Table 10:

<table>
<thead>
<tr>
<th>ROTEX® size</th>
<th>limits of wear (friction)</th>
<th>ROTEX® size</th>
<th>limits of wear (friction)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>X_{max} [mm]</td>
<td></td>
<td>X_{max} [mm]</td>
</tr>
<tr>
<td>9</td>
<td>2</td>
<td>65</td>
<td>5</td>
</tr>
<tr>
<td>14</td>
<td>2</td>
<td>75</td>
<td>6</td>
</tr>
<tr>
<td>19</td>
<td>3</td>
<td>90</td>
<td>8</td>
</tr>
<tr>
<td>24</td>
<td>3</td>
<td>100</td>
<td>9</td>
</tr>
<tr>
<td>28</td>
<td>3</td>
<td>110</td>
<td>9</td>
</tr>
<tr>
<td>38</td>
<td>3</td>
<td>125</td>
<td>10</td>
</tr>
<tr>
<td>42</td>
<td>4</td>
<td>140</td>
<td>12</td>
</tr>
<tr>
<td>48</td>
<td>4</td>
<td>160</td>
<td>14</td>
</tr>
<tr>
<td>55</td>
<td>5</td>
<td>180</td>
<td>14</td>
</tr>
</tbody>
</table>

5.3 Permissible coupling materials in the hazardous area

In the explosion groups IIB and IIC only the following material combinations may be used:

- GG 25 - GG 25
- GGG 40 - GGG 40
- steel - steel
- stainless steel - stainless steel

Aluminium as coupling material is generally excluded for the explosion area.
5.4 **Marking of coupling for the hazardous area**

Couplings for the use in hazardous areas are marked for the respectively permissible conditions of use.

Explosion group IIC:
* e. g. II 2G c IIC T4

In the marking II 2G c IIC T4 the explosion group IIB is included.

5.5 **Starting**

Before putting the coupling into operation, check the tightness of the setscrews in the hubs, the alignment and the distance dimension E and correct, if necessary, and also check all screw connections regarding the stipulated tightening torques dependent on the type of coupling.

If used in hazardous areas, the setscrews must be additionally secured against self-loosening to fix the hub, e. g. with Loctite (medium strength).

Last but not least, the coupling protection against unintended contact must be fixed.

Coupling protection in the hazardous area.

Covering of the coupling

The couplings must be provided with firm coverings *(if possible, made from stainless steel)* protecting the couplings against falling objects. There can be regular openings in the coverings which may not exceed the following dimensions:

<table>
<thead>
<tr>
<th></th>
<th>circular openings</th>
<th>rectangular openings</th>
</tr>
</thead>
<tbody>
<tr>
<td>top surface</td>
<td>diameter in mm</td>
<td>side length in mm</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>side parts</td>
<td>8</td>
<td>8</td>
</tr>
</tbody>
</table>

The distance between the cover and the rotating parts must be at least 5 mm.

The cover must be electrically conductive and be included in the equipotential bonding. Bellhousings made from aluminium and damping rings (NBR) can be used as connecting element between pump and electro motor if the magnesium part is below 7,5 %. The cover may only be taken off after having stopped the unit.

During operation, please pay attention to

- strange running noises
- occurring vibrations.

CAUTION !

If you note any irregularities at the coupling during operation, the drive unit must be turned off immediately. The cause of the breakdown must be found out with the table „Breakdowns“ and, if possible, be eliminated according to the proposals. The possible breakdowns mentioned can be hints only. To find out the cause all operating factors and machine components must be considered.
5.6 Breakdowns, Causes and Elimination

<table>
<thead>
<tr>
<th>Breakdowns</th>
<th>Causes</th>
<th>Danger Hints for Hazardous Areas</th>
<th>Elimination</th>
</tr>
</thead>
<tbody>
<tr>
<td>Misalignment</td>
<td>Increased temperature the the spider surface; danger of ignition by hot surfaces</td>
<td>1) put the unit out of operation 2) eliminate the reason for the misalignment (e.g. loose foundation bolts, break of the engine fixing, heat expansion of unit components, change of the assembly dimension E of the coupling) 3) checking of wear see under point Control</td>
<td></td>
</tr>
<tr>
<td>Change of the running noises and / or occurring vibrations</td>
<td>wear of spider, short-term torque transmission due to metal contact</td>
<td>Danger of ignition due to sparking</td>
<td>1) put the unit out of operation 2) disassemble the coupling and remove rests of the spider 3) check coupling parts and exchange damaged coupling parts 4) insert spider, assemble coupling parts 5) check alignment, correct if necessary</td>
</tr>
<tr>
<td></td>
<td>loose screws for axial securement of hubs</td>
<td>Danger of ignition due to hot surfaces and sparking</td>
<td>1) put the unit out of operation 2) check alignment of coupling 3) tighten the screws to secure the hubs and secure against self-loosening 4) checking of wear see under point Control</td>
</tr>
<tr>
<td>Break of cam</td>
<td>wear of spider, torque transmission due to metal contact</td>
<td>Danger of ignition due to sparking</td>
<td>1) put the unit out of operation 2) change complete coupling 3) check alignment</td>
</tr>
<tr>
<td></td>
<td>Break of the cams due to high shock energy / overload</td>
<td>Danger of ignition due to sparking</td>
<td>1) put the unit out of operation 2) change complete coupling 3) check alignment 4) find out the reason of overload</td>
</tr>
<tr>
<td></td>
<td>Operating parameters do not correspond to the performance of the coupling</td>
<td>Danger of ignition due to sparking</td>
<td>1) put the unit out of operation 2) check the operating parameters and select a larger coupling (consider installation space) 3) assemble new coupling size 4) check alignment</td>
</tr>
<tr>
<td></td>
<td>Mistake in service of the unit</td>
<td>Danger of ignition due to sparking</td>
<td>1) put the unit out of operation 2) change complete coupling 3) check alignment 4) instruct and train the service staff</td>
</tr>
<tr>
<td>Premature wear of spider</td>
<td>Misalignment</td>
<td>Increased temperature the the spider surface; danger of ignition by hot surfaces</td>
<td>1) put the unit out of operation 2) eliminate the reason for the misalignment (e.g. loose foundation bolts, break of the engine fixing, heat expansion of unit components, change of the assembly dimension E of the coupling) 3) checking of wear see under point Control</td>
</tr>
</tbody>
</table>
5.6 Breakdowns, Causes and Elimination

<table>
<thead>
<tr>
<th>Breakdowns</th>
<th>Causes</th>
<th>Danger Hints for Hazardous Areas</th>
<th>Elimination</th>
</tr>
</thead>
<tbody>
<tr>
<td>Premature wear of spider</td>
<td>E.g. contact with aggressive liquids / oils, ozone-influence, too high ambient temperatures etc., effecting a physical change of the spider</td>
<td>Danger of ignition due to sparking in case of metallic contact of the cams</td>
<td>1) Put the unit out of operation</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2) Disassemble the coupling and remove rests of the spider</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>3) Check coupling parts and exchange damaged coupling parts</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>4) Insert spider, assemble coupling parts</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>5) Check alignment, correct if necessary</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>6) Make sure that further physical changes of the spider are excluded</td>
</tr>
<tr>
<td>Premature wear of spider (liquefaction of material inside the spider cam)</td>
<td>Ambient / contact temperatures which are too high for the spider, max. permissible -20 °C / +80 °C</td>
<td>Danger of ignition due to sparking in case of metallic contact of the cams</td>
<td>1) Put the unit out of operation</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2) Disassemble the coupling and remove rests of the spider</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>3) Check coupling parts and exchange damaged coupling parts</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>4) Insert spider, assemble coupling parts</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>5) Check alignment, correct if necessary</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>6) Check and regulate ambient / contact temperature (eventually even elimination by using other spider materials)</td>
</tr>
</tbody>
</table>

Attention!

KTR does not assume any liabilities or guarantees regarding the use of spare parts and accessories which are not provided by KTR and for the damages resulting herefrom.
5 Enclosure A
Hints and instructions regarding the use in hazardous areas

5.7 Certificate of Conformity

Certificate of Conformity

corresponding to EG Standard 94/9/EG dated 23 March 1994
and to the legal regulations.

The manufacturer - KTR Kupplungstechnik GmbH, D-48432 Rheine - states that the flexible ROTEX® couplings described in these mounting instructions and explosion-proof designed correspond to Article 1 (3) b) of Standard 94/9/EG and comply with the general Safety and Health Requirements according to enclosure II of Standard 94/9/EG.

The couplings are certified according to Type Examination Certificate IBExU02ATEXB001 X.

According to article 8 (1) of Standard 94/9/EG the technical documentation is deposited with the:

IBExU
Institut für Sicherheitstechnik GmbH
Fuchsmühlenweg 7
09599 Freiberg

Rheine, 06.06.02
Date
Dr. Norbert Partmann
Engineering Manager

Bernd Tenfelde
Product Manager
Öl/Wasser-Wärmetauscher
Oil/water heat exchangers
Echangeur thermique huile/eau

Serie
UKM

Für den industriellen Einsatz
For industriel use
A usage industriel

Anwendungen:
vorwiegend hydraulische Anwendungen.
Mobil / Getriebe / Kompressor
Applications:
mainly hydraulic applications.
Mobile / gears / compressor
Usage:
surtout l´usage hydraulique.
Mobile / transmission / compresseur

- Kompakte Bauweise
- Compact design
- Construction compacte

- Äußerst Leistungsfähig
- High performance
- Extrêmement performant

- Geringe Kosten
- Low costs
- Coûts réduits
Produktbeschreibung

Produktmerkmale

- Aluminiumrippen und Kupfer- oder Kupfernickelrohre sorgen für maximalen Wärmeaustausch
- Große Ölanschlüsse für minimale Strömungswiderstand
- Öl-Durchflussmengen bis zu 650 l/min
- Abnehmbare Endkappe
- Flansche ermöglichen Drehung des Wärmetauschers um 90°
- Option: mit internem Umgehungsüberschlagventil (patentiert)
- Hochwertige Materialien
- Max. Druck: Öl 35 bar / Wasser 16 bar
- Vollständiges Zubehörprogramm lieferbar
- Lieferung ab Lager
- **Option**: Seewasseraufnahme

Materialien / Materials / Matériaux

<table>
<thead>
<tr>
<th>Mantel / Shell / Manteau, Befestigungswickel / Mounting bracket / Coude de fixation, Umlenkssegmente / Baffels / Chicanes:</th>
<th>Standard / Stahl / Steel / Acier</th>
<th>Seewasser / Sea water / eau de mer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Endplatten / End plates / Plaques finales:</td>
<td>Messing / Brass / Laiton</td>
<td>Sondermessing / Special brass / Laiton spéciale</td>
</tr>
<tr>
<td>Kühlrippen / Cooling fins / Nervures de refroidissement, Typenschild / Type designation plate / Plaque signalétique:</td>
<td>Aluminium</td>
<td></td>
</tr>
<tr>
<td>Rohre / Tubes / Tuyaux:</td>
<td>Kupfer / Copper / Cuivre</td>
<td>Kupfer/Nickel / Copper/Nickel / Cuivre/Nickel</td>
</tr>
<tr>
<td>Endkappen / End caps / Caches:</td>
<td>Grauguß / Cast iron / Fonte grise</td>
<td>*Grauguß / *Cast iron / *Fonte grise</td>
</tr>
<tr>
<td>Dichtungen / Gaskets / Garnitures d’étanchéité:</td>
<td>Nitrilkautschuk, Zellulosefasern / Nitril rubber, cellulose fibre / Caoutchouc nitré, fibres de cellulosé</td>
<td>Zink-Anode / zinc anode / Anode de zink</td>
</tr>
</tbody>
</table>

Mit einem speziellen chem. Nickel-Beschichtungsverfahren / Nickel coating treatment / Traité avec un procédure de nickel
Bei abweichenden Ölaustrittstemperaturen und Viskositäten, ist nach den folgenden Berechnungsbeispielen zu verfahren:

Berechnungsbeispiel / Example calculation / Example de calcul

For different oil outlet temperatures, water inlet temperatures and viscosities, the following calculation must be made:

Gegeben:
- Abzuführende Wärme (AW) = 17kW
- Ölstrom (V) = 80 l/min
- Ölaustrittstemper. (t Öl aus) = 45°C
- Wassereintrittstemper. (t Wasser ein) = 25°C
- Öl sorte = ISO 68
- Abzuführende Wärme eff. = kW eff.

Berechnung:
1. Der Viskositätskorrekturfaktor errechnet sich wie folgt:

 \[
 \text{Temperature difference } \Delta T \, (^\circ C) = \frac{\text{AW} \, (kW) \times 34,1}{Q \, (l/min)} = 7,2 \]

2. Aus Öl-Herstellerdiagramm ISO 68:
 - Viskosität bei 49°C = 38 cSt

3. Aus Viskositätskorrekturtabelle „A“:
 - 38 cSt = 1,11

\[
\text{AW eff} = \frac{17 \times 25 \times 1,11}{20} = 23,6 \, kW
\]

Aus Leistungsdiagramm Öl/Wasser 2:1 bei einem Ölstrom von 80 l/min und 23,6 kW ergibt sich:
- Kühler Nr. 31 = UKM-718-T

Berechnungsbeispiel / Example calculation / Example de calcul

En cas de divergence au niveau de la température de sortie de l’huile ou de la température d’entrée de l’eau et de divergence au niveau de la viscosité, procéder comme le montrent les exemples de calcul suivants:

Gegeben:
- Chaleur à dissiper (AW) = 17kW
- Débit d’huile (V) = 80 l/min.
- Temp. de sortie de l’huile (t huile sor.) = 45°C
- Temp. d’entrée de l’eau (t eau ent.) = 25°C
- Type d’huile = ISO 68
- Chaleur à dissiper eff. = kW eff.

Berechnung:
1. Le facteur de viscosité est calculé comme suit:

 \[
 \text{Différence de température } \Delta T \, (^\circ C) = \frac{\text{AW} \, (kW) \times 34,1}{Q \, (l/min)} = 7,2 \]

2. D’après le diagramme du fabricant de l’huile ISO 68: Viscosité à 49°C = 38 cSt

3. D’après le tableau de correction de la viscosité „A“: 38 cSt = 1,11

\[
\text{AW eff} = \frac{17 \times 25 \times 1,11}{20} = 23,6 \, kW
\]

Il résulte du diagramme de performance huile/eau 2:1, à un débit d’huile de 80 l/min et 23,6 kW:
- Refroidisseur n° 31 = UKM-718-T

Kühlerauswahl / Choice of cooler / Choix du refroidisseur

Die dargestellten Leistungskurven basieren auf einer Wassereintrittstemperatur von 25°C und einer Ölaustrittstemperatur von 50°C, sowie einer Ölviskosität von 20,6 cSt.

Für abweichende Viskositäten kann aus nebeneinanderstehende Kurve der Korrekturfaktor „A“ abgelesen werden.

The performance data shown is based on a water inlet temperature of 25°C and an oil outlet temperature of 50°C, together with an oil viscosity of 20.6 cSt.

For different viscosities, the correction factor „A“ can be read off from the performance curve beside.

Les courbes de performance représentées sont basées sur une température d’entrée de l’eau de 25°C et sur une température de sortie de l’huile de 50°C, ainsi que sur une viscosité de l’huile de 20,6 cSt.

En cas de viscosité divergente, le facteur de correction „A“ peut être déterminé à l’aide de la courbe ci-dessous.
Kennlinien / Performance Data / Courbes caractéristiques

2 Weg / 2 passes / 2 voies

Die Kennlinien in diesem Diagramm sind vom Durchfluß begrenzt und können in Abstimmung mit dem Hersteller überschritten werden.

The performance Data shown in the diagram are limited by the flow rate, and may be exceeded after consultation with the manufacturer.

Les courbes caractéristiques de ce diagramme sont limitées par le débit et peuvent être dépassées après accord avec le fabricant.

Modell / model / modèle

1 UKM-508-T 10 UKM-718-T 19 UKM-1018-T
2 UKM-512-T 11 UKM-724-T 18 UKM-1024-T
3 UKM-514-T 12 UKM-736-T 17 UKM-1036-T
4 UKM-518-T 13 UKM-1012-T 16 UKM-1048-T
5 UKM-524-T 14 UKM-1014-T 15 UKM-1024-T
6 UKM-536-T 15 UKM-1018-T 14 UKM-1036-T
7 UKM-708-T 16 UKM-1024-T 13 UKM-1048-T
8 UKM-712-T 17 UKM-1036-T 12 UKM-1048-T
9 UKM-714-T 18 UKM-1048-T 11 UKM-1036-T

Durchfluß l/min / Flow rate l/min / Débit l/min
Kühlleistung kW / Cooling performance kW / Puissance de refroidissement en kW
Die Kennlinien in diesem Diagramm sind vom Durchfluß begrenzt und können in Abstimmung mit dem Hersteller überschritten werden.

The performance Data shown in the diagram are limited by the flow rate, and may be exceeded after consultation with the manufacturer.

Les courbes caractéristiques de ce diagramme sont limitées par le débit et peuvent être dépassées après accord avec le fabricant.
Abmessungen UKM / Dimensions UKM / Dimensions UKM

Abmessungen Flansch / Dimensions flange / Dimensions bride

<table>
<thead>
<tr>
<th>U</th>
<th>V</th>
<th>W</th>
<th>X</th>
<th>Z</th>
</tr>
</thead>
<tbody>
<tr>
<td>SAE 1"</td>
<td>70</td>
<td>52,4</td>
<td>55</td>
<td>26,2</td>
</tr>
<tr>
<td>SAE 1 1/4"</td>
<td>79</td>
<td>58,7</td>
<td>68</td>
<td>30,2</td>
</tr>
<tr>
<td>SAE 1 1/2"</td>
<td>93</td>
<td>69,9</td>
<td>78</td>
<td>35,7</td>
</tr>
<tr>
<td>SAE 2"</td>
<td>102</td>
<td>77,8</td>
<td>90</td>
<td>42,9</td>
</tr>
<tr>
<td>SAE 2 1/2"</td>
<td>114</td>
<td>88,9</td>
<td>105</td>
<td>50,8</td>
</tr>
<tr>
<td>UKM-508</td>
<td>309</td>
<td>177,5</td>
<td>66</td>
<td>75</td>
</tr>
<tr>
<td>----------</td>
<td>-----</td>
<td>-------</td>
<td>----</td>
<td>----</td>
</tr>
<tr>
<td>UKM-512</td>
<td>410</td>
<td>278,5</td>
<td>66</td>
<td>75</td>
</tr>
<tr>
<td>UKM-514</td>
<td>461</td>
<td>329,5</td>
<td>66</td>
<td>75</td>
</tr>
<tr>
<td>UKM-518</td>
<td>563</td>
<td>431,5</td>
<td>66</td>
<td>75</td>
</tr>
<tr>
<td>UKM-524</td>
<td>715</td>
<td>583,5</td>
<td>66</td>
<td>75</td>
</tr>
<tr>
<td>UKM-536</td>
<td>1020</td>
<td>888,5</td>
<td>66</td>
<td>75</td>
</tr>
<tr>
<td>UKM-708</td>
<td>324</td>
<td>155</td>
<td>85</td>
<td>90</td>
</tr>
<tr>
<td>UKM-712</td>
<td>425</td>
<td>256</td>
<td>85</td>
<td>90</td>
</tr>
<tr>
<td>UKM-714</td>
<td>476</td>
<td>307</td>
<td>85</td>
<td>90</td>
</tr>
<tr>
<td>UKM-718</td>
<td>578</td>
<td>409</td>
<td>85</td>
<td>90</td>
</tr>
<tr>
<td>UKM-724</td>
<td>730</td>
<td>561</td>
<td>85</td>
<td>90</td>
</tr>
<tr>
<td>UKM-736</td>
<td>1035</td>
<td>866</td>
<td>85</td>
<td>90</td>
</tr>
<tr>
<td>UKM-1012</td>
<td>464</td>
<td>261</td>
<td>105</td>
<td>140</td>
</tr>
<tr>
<td>UKM-1014</td>
<td>515</td>
<td>312</td>
<td>105</td>
<td>140</td>
</tr>
<tr>
<td>UKM-1018</td>
<td>617</td>
<td>414</td>
<td>105</td>
<td>140</td>
</tr>
<tr>
<td>UKM-1024</td>
<td>769</td>
<td>566</td>
<td>105</td>
<td>140</td>
</tr>
<tr>
<td>UKM-1036</td>
<td>1074</td>
<td>871</td>
<td>105</td>
<td>140</td>
</tr>
<tr>
<td>UKM-1048</td>
<td>1379</td>
<td>1176</td>
<td>105</td>
<td>140</td>
</tr>
<tr>
<td>UKM-1060</td>
<td>1684</td>
<td>1481</td>
<td>105</td>
<td>140</td>
</tr>
<tr>
<td>UKM-1218</td>
<td>618</td>
<td>390</td>
<td>131</td>
<td>145</td>
</tr>
<tr>
<td>UKM-1224</td>
<td>770</td>
<td>542</td>
<td>131</td>
<td>145</td>
</tr>
<tr>
<td>UKM-1230</td>
<td>923</td>
<td>695</td>
<td>131</td>
<td>145</td>
</tr>
<tr>
<td>UKM-1236</td>
<td>1075</td>
<td>847</td>
<td>131</td>
<td>145</td>
</tr>
<tr>
<td>UKM-1242</td>
<td>1228</td>
<td>1000</td>
<td>131</td>
<td>145</td>
</tr>
<tr>
<td>UKM-1248</td>
<td>1380</td>
<td>1152</td>
<td>131</td>
<td>145</td>
</tr>
<tr>
<td>UKM-1254</td>
<td>1532</td>
<td>1304</td>
<td>131</td>
<td>145</td>
</tr>
<tr>
<td>UKM-1260</td>
<td>1685</td>
<td>1457</td>
<td>131</td>
<td>145</td>
</tr>
<tr>
<td>UKM-1266</td>
<td>1837</td>
<td>1609</td>
<td>131</td>
<td>145</td>
</tr>
<tr>
<td>UKM-1272</td>
<td>1990</td>
<td>1762</td>
<td>131</td>
<td>145</td>
</tr>
<tr>
<td>UKM-1278</td>
<td>2143</td>
<td>1915</td>
<td>131</td>
<td>145</td>
</tr>
<tr>
<td>UKM-1284</td>
<td>2295</td>
<td>2067</td>
<td>131</td>
<td>145</td>
</tr>
</tbody>
</table>
Bestellschlüssel / Ordering code / Code de commande

<table>
<thead>
<tr>
<th>UKM - 1014 - 2 - T - R - CN - W - SW - 01 - GL - S</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anschlußtyp / Connection type:</td>
</tr>
<tr>
<td>Type de raccordement:</td>
</tr>
<tr>
<td>NPT = -</td>
</tr>
<tr>
<td>SAE = S</td>
</tr>
<tr>
<td>BSPF = M</td>
</tr>
<tr>
<td>SAE Flansch / SAE flange =</td>
</tr>
<tr>
<td>Mantel / Shell / Manteau =</td>
</tr>
<tr>
<td>Rohre / Tubes / Tuyeaux =</td>
</tr>
<tr>
<td>W = Öl / Oil / huile</td>
</tr>
<tr>
<td>S = Sonderausführung / Special version</td>
</tr>
<tr>
<td>GL = German Lloyd</td>
</tr>
<tr>
<td>SW = Seewasser / Sea water / Eau de mer</td>
</tr>
<tr>
<td>CU = Rohre Kupfer / Tubes Copper / Tuyeaux Cuivre</td>
</tr>
<tr>
<td>CN = Rohre Kupfer/Nickel / Tubes Copper/Nickel</td>
</tr>
<tr>
<td>Serie 01</td>
</tr>
<tr>
<td>Bypass-Ventil / Bypass valve / Soupape by-pass =</td>
</tr>
<tr>
<td>R</td>
</tr>
</tbody>
</table>

Technische Daten / Technical data / Données techniques

Maximaler Betriebsdruck / Maximum operating Pressure / Pression maximale de service:
- Mantel / Shell / Manteau = 35 bar
- Rohre / Tubes / Tuyeaux = 16 bar

Maximale Betriebstemperatur / Maximum operating temperature / Température maximale de service:
- = 95 °C

Maximaler Durchfluß / Maximum flow rate / Débit maximal:

<table>
<thead>
<tr>
<th>Typ / Version / Version</th>
<th>l/min</th>
<th>öl / huile</th>
<th>Wasser / Water / eau</th>
<th>Wasser / Water / eau</th>
<th>Seewasser / Sea water / Eau de mer</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Mantel / Shell / Manteau</td>
<td>Rohre CU / Tubes CU / Tuyeaux CU</td>
<td>Rohre CN / Tubes CN / Tuyeaux CN</td>
<td>Rohre CN / Tubes CN / Tuyeaux CN</td>
</tr>
<tr>
<td>UKM - 500</td>
<td>75</td>
<td>17</td>
<td>26</td>
<td>22</td>
<td></td>
</tr>
<tr>
<td>UKM - 700</td>
<td>225</td>
<td>34</td>
<td>16</td>
<td>43</td>
<td>43</td>
</tr>
<tr>
<td>UKM - 1000</td>
<td>400</td>
<td>82</td>
<td>40</td>
<td>58</td>
<td>102</td>
</tr>
<tr>
<td>UKM - 1200</td>
<td>650</td>
<td>182</td>
<td>91</td>
<td>136</td>
<td>227</td>
</tr>
</tbody>
</table>

Umlenksegmentabstand / Guide segment setting / Ecart des segmentsdéflecteurs

Kühlwasserführung / Cooling water connection system / Raccordement eau de refroidissement
- 2-Weg / 2-pass / 2-voies = T
- 4-Weg, ohne Serie 500 / 4-voies, sans série 500 = F

Die technischen Angaben in diesem Datenblatt beziehen sich auf die beschriebenen Betriebsbedingungen und Einsatzfälle. Bei abweichenden Betriebsbedingungen und Einsatzfällen wenden Sie sich bitte an Universal Hydraulik.

Vertrieb / Sales department / Distribution

Universal Hydraulik GmbH
Siemensstr. 33 - D-61267 Neu-Anspach
Tel: 0 60 81/94 18 - 0 - Fax 0 60 81/96 02 20
eMail info@universalhydraulik.com
www.universalhydraulik.com
Operating Instructions

Shell-and-Tube Heat Exchanger

Series UKM, UKTM
Table of contents

1 Introduction .. 3
1.1 About these operating instructions .. 3
1.2 Notes on use ... 3
1.3 Intended use ... 4
1.4 Warranty and liability .. 5

2 Notes on safety ... 7
2.1 Standards and regulations .. 7
2.2 General safety measures ... 7
2.3 Technical condition .. 8
2.4 Safety requirements concerning assembly and installation 8
2.5 Notes on safety for operation ... 9
2.6 Requirements concerning personnel ... 9
2.7 Handling ancillary materials and service fluids 10
2.8 Warning decals and type plate .. 11

3 Technical data ... 13
3.1 Oil/water heat exchangers series UKM and UKTM 13
3.2 Requirements concerning the water quality 13
3.2.1 Water hardness .. 13
3.2.2 pH-value ... 14
3.2.3 Assessment of cooling water based on constituents 14
3.2.4 Types of cooling waters/peculiarities ... 16
 Industrial water ... 16
 Fresh water ... 16
 Sea water .. 16
 Brackish water .. 16

4 Technical description .. 17
4.1 Design ... 17
4.1.1 UKM .. 17
4.1.2 UKTM .. 18
4.2 Description of function .. 19
4.3 Connections .. 20
4.3.1 UKM .. 20
4.3.2 UKTM .. 21
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>Transport and storage</td>
<td>23</td>
</tr>
<tr>
<td>6</td>
<td>Assembly/disassembly</td>
<td>25</td>
</tr>
<tr>
<td>6.1</td>
<td>Assembly conditions</td>
<td>25</td>
</tr>
<tr>
<td>6.2</td>
<td>Installing and connecting the heat exchanger</td>
<td>26</td>
</tr>
<tr>
<td>6.3</td>
<td>Disassembling the heat exchanger</td>
<td>28</td>
</tr>
<tr>
<td>7</td>
<td>Operation</td>
<td>29</td>
</tr>
<tr>
<td>8</td>
<td>Maintenance, repair and cleaning</td>
<td>31</td>
</tr>
<tr>
<td>8.1</td>
<td>Maintenance</td>
<td>31</td>
</tr>
<tr>
<td>8.1.1</td>
<td>Maintenance intervals</td>
<td>31</td>
</tr>
<tr>
<td>8.1.2</td>
<td>Replacing tube bundles</td>
<td>32</td>
</tr>
<tr>
<td>8.1.3</td>
<td>Replacing the zinc anode</td>
<td>32</td>
</tr>
<tr>
<td>8.2</td>
<td>Cleaning</td>
<td>33</td>
</tr>
<tr>
<td>8.2.1</td>
<td>Notes on safety for cleaning</td>
<td>33</td>
</tr>
<tr>
<td>8.2.2</td>
<td>Cleaning tube bundles</td>
<td>34</td>
</tr>
<tr>
<td>8.2.3</td>
<td>Cleaning the shell compartment</td>
<td>35</td>
</tr>
<tr>
<td>8.2.4</td>
<td>Reinstallation after cleaning</td>
<td>36</td>
</tr>
<tr>
<td>9</td>
<td>Waste disposal</td>
<td>37</td>
</tr>
</tbody>
</table>
1 Introduction

1.1 About these operating instructions

These operating instructions will help you to become familiar with the use of shell-and-tube heat exchangers of series UKM and UKTM from Universal Hydraulik GmbH. These instructions enable a quick lead-in and contain all information required for safe and professional use of the heat exchangers.

This manual describes the functionality and handling or heat exchangers of series UKM and UKTM. Further information can be found in the associated data sheets. Information on other models is available on request from Universal Hydraulik GmbH or under www.universalhydraulik.com.

Knowing these instructions is mandatory for using shell-and-tube heat exchangers of series UKM and UKTM from Universal Hydraulik GmbH. You should therefore make yourself familiar with the contents and follow the notes on safety for handling heat exchangers in particular. You will thereby ensure full utilization of the product’s capacity. The right for product modifications within the scope of further technical development remains reserved.

1.2 Notes on use

These operating instructions are divided into 9 chapters. The chapter title appears on each page at the right or left in the header. The footer contains information about the status of the operating instructions in form of a release date and the page number. For easier navigation these operating instructions contain cross-references, which help you to find your way through the document.

If you work with the electronic document a click with the left mouse button will bring you directly to the referenced point in the document. In the same way you can jump to the desired point from the table of contents and from the list of illustrations.
These operating instructions use the following symbols for warnings and notes as well as signal words:

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Warning of possible dangers for health and life</td>
</tr>
<tr>
<td></td>
<td>Warning of possible dangers for health and life caused by poison</td>
</tr>
<tr>
<td></td>
<td>Warning of possible damage to property and equipment</td>
</tr>
<tr>
<td></td>
<td>Hints for use and useful information</td>
</tr>
<tr>
<td></td>
<td>Note on environmental protection</td>
</tr>
</tbody>
</table>

1.3 Intended use

Shell-and-tube heat exchangers from Universal Hydraulik GmbH have been designed for use with certain fluids, pressures, temperatures, operating characteristics, etc. The exact specification must be determined on basis of the prevailing operational requirements and conditions at the operating company before putting the heat exchanger into use. The technical conditions for use of each heat exchanger can be taken from the type plate.

The shell-and-tube heat exchanger must only be operated by instructed expert personnel in compliance with the notes on safety specified in these operating instructions. Safe and trouble free operation is only assured if the unit is used for the purpose it is intended for and in accordance with these instructions.

Any use beyond these limits is considered unintended. The manufacturer will not assume liability for any damage to persons or property resulting from unintended use, as this is the sole responsibility of the operating company.
1.4 Warranty and liability

The general terms of sales and delivery which were handed over to the user of the shell-and-tube heat exchanger by Universal Hydraulik GmbH are generally valid. If these are not available, they must be requested from the manufacturer.

Warranty and liability claims for damage to persons and property are excluded, if they result from one or several of the following causes:

- Unintended use of the heat exchanger
- Inappropriate commissioning, installation, operation and maintenance or repair of the heat exchanger
- Structural changes to the heat exchanger
- Operation of the heat exchanger with incorrectly installed connections to the plant systems and defective or incorrectly assembled safety features
- Negligence of the safety regulations and notes in these operating instructions
- Use of spare parts and wear items as well as operating materials and cleansing agents other than those recommended by the manufacturer

Universal Hydraulik GmbH solely assumes warranty and liability for material and manufacturing faults.
2 Notes on safety

2.1 Standards and regulations

The shell-and-tube heat exchanger has been built in accordance with the currently valid technical rules and regulations and is safe to operate. The design of the heat exchanger is based on the general health and safety requirements of the applicable laws, standards and directives. The safety of the heat exchanger will be confirmed by the CE-sign and the declaration of conformity, if this should be necessary.

All notes on safety in these operating instructions refer to the currently valid national laws and the directives of the European Union. In other countries the applicable laws and country specific regulations must be adhered to.

Beside the safety regulations in these operating instructions you must also observe and follow the generally valid regulations for prevention of accidents and protection of the environment. All information in these operating instructions must be fully complied with at all times. Apart from this you must also follow the notes on safety in the "data sheet for warnings and notes on safety for hydraulic systems".

2.2 General safety measures

The following general safety measures must be adhered to at all times:

- The shell-and-tube heat exchanger must only be used for the purpose it is intended for.
- The heat exchanger must only be installed, operated and serviced by trained and specially instructed skilled personnel. These persons must have read and understood the operating instructions. This includes specific knowledge of how to avoid risks of injury for the operator and third parties.
- All safety regulations in these operating instructions and in the applicable documents must be observed and complied with.
- Unauthorized persons should not be able to access the heat exchanger.
- Loss of use and environmental impacts caused by incorrect handling must be ruled out.
- Transport, assembly and disassembly, operation as well as care and maintenance must be performed in strict compliance with the applicable regulations concerning industrial safety and protection of the environment.
- All work on the heat exchanger must be carried out with care and under due consideration of the "Safety" aspect.
Notes on safety

- When installing the heat exchanger into a system, the manufacturer of this system is obliged to include the regulations, notes and descriptions contained in this manual into the operating instructions issued by him.
- Spare parts must generally be purchased from Universal Hydraulik GmbH. Universal Hydraulik GmbH will not assume liability for damage resulting from the use of spare parts from other manufacturers.

2.3 Technical condition

The following must be observed:

- In order to rule out potential dangers and assure an optimal performance, no changes or modifications should be made to the heat exchanger.
- The operator is obliged to operate the heat exchanger only in proper and safe condition. The technical state must always comply with the legal requirements and regulations.
- Before every start-up of the system in which the heat exchanger is integrated, the heat exchanger must be inspected for damage and proper condition.
- Any changes to the heat exchanger, which may affect the safety, must be immediately reported to the user by the personnel.
- The heat exchanger must only be connected to supply lines provided and designed for this purpose.

2.4 Safety requirements concerning assembly and installation

The following safety requirements must be strictly fulfilled when assembling and installing the shell-and-tube heat exchanger:

- The heat exchanger must solely be assembled by trained and instructed personnel.
- Unauthorized assembly and installation work is not permitted.
- All heat exchanger components must be secured according to the instructions for the transport aid used during transportation.
- Only sufficiently dimensioned lifting gear and tackle may be used for transportation.
2.5 Notes on safety for operation

The following notes on safety must be followed in operation of the shell-and-tube heat exchanger:

- Depending on the application related requirements the user must provide safety facilities like safety valves, heat insulation covers, temperature sensors, etc. The heat exchanger must only be operated if all safety features are in place and functional. The proper state of the safety features must be checked regularly, possibly occurring faults must be rectified immediately.
- The heat exchanger must be provided with a mechanical protection against unauthorized access and contact.
- The heat exchanger must not be exposed to excessive temperature and overpressure.
- Safe operation of the heat exchanger must be assured at all times.
- Throughout the entire operation the prevailing conditions must suit the operation of the heat exchanger.
- The system must be immediately shut down if changes on the heat exchanger, such as e.g. an increased operating temperature, are detected during operation.
- Work on the heat exchanger must only be carried out with the system shut down.
- A label stating that work on the heat exchanger is in progress should be attached near the on/off switch of the system.
- Welding work on the heat exchanger is not allowed.

2.6 Requirements concerning personnel

All personnel must be made familiar with dangers that may arise when handling shell-and-tube heat exchangers before starting any work. Dangers of injury may arise from the heat exchanger if it is used by untrained personnel.

Any person entrusted with starting, operating or servicing the heat exchanger must have read and understood the complete operating instructions. This is also valid if the corresponding personnel has already worked with the heat exchanger or has been trained accordingly.

The operating instructions must always be within the reach of the personnel. It is recommended to obtain a written confirmation from the personnel for receiving the instructions and understanding their contents. Knowing the contents of the operating instructions is a major prerequisite for protecting people against dangers, avoiding mistakes and the safe and trouble free operation of the heat exchanger.
In the end the responsibility for accident-free operation lies with the operator or the authorized persons who have to deal with heat exchangers as part of their duties.

In order to ensure safe handling of the shell-and-tube heat exchanger the personnel is obliged to the following:

- Smoking, eating and drinking is not permitted in the vicinity of the heat exchanger.
- Work on the heat exchanger is not permitted if you are overtired, under the influence of alcohol and/or medication.
- The personnel must not be physically handicapped to such an extent that the attentiveness and the judgement is temporarily or permanently restricted.
- The personnel must wear protective clothing, gloves and, if necessary, goggles and breather mask, according to the occurring work.
- All notes on safety in these operating instructions and in the accompanying documents must be taken notice of and adhered to.
- When noticing dangers that could cause personal injuries the system with integrated heat exchanger must be shut down immediately.
- The personnel must have profound knowledge of the following operation sequences, instructions, modes of conduct and components:
 - Operation sequences in the interplay between heat exchanger and system
 - Safety features of the heat exchanger and their correct function
 - Borders, safety devices and identification of the danger zone around the heat exchanger
 - Behaviour and action in case of danger
- Maintenance and repair work on the heat exchanger must only be carried out by trained skilled personnel.

2.7 Handling ancillary materials and service fluids

For all lubricants and service fluids as well as cleansing agents used in connection with operation and maintenance of the heat exchanger the regulations and EC safety data sheets concerning storage, handling, use and waste disposal, issued by the corresponding manufacturer, must be observed.

The following must be observed when handling ancillary materials and service fluids:

- Do not use substances with unknown properties. If necessary, consult the manufacturer.
- Fuels and lubricants, cleansing agents and the respective containers must not be disposed of together with normal domestic refuse or seep into the sewer or the ground. For waste disposal you should strictly follow the corresponding regulations.
Please observe the instructions on the safety data sheets for handling the permitted cleansing agents. The following measures must be applied, among others:

- After contact with the skin clean off with water and soap
- After eye contact rinse the eyes for at least 10 minutes under flowing water, if necessary consult a medical specialist
- After inhaling ensure an adequate supply of fresh air or oxygen, if necessary consult a medical specialist

2.8 Warning decals and type plate

The following decals can be found on the shell-and-tube heat exchanger (see Fig. 1):

- Type plate
- Warning decal "Warning: hot surface"

![Type plate and warning decal](image)

Fig. 1: Decals on heat exchanger
3 Technical data

3.1 Oil/water heat exchangers series UKM and UKTM

<table>
<thead>
<tr>
<th>Designation</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operating pressure shell max</td>
<td>35 bar</td>
</tr>
<tr>
<td>Operating pressure tubes max</td>
<td>10 bar</td>
</tr>
<tr>
<td>Operating temperature min/max</td>
<td>5 °C/95 °C</td>
</tr>
</tbody>
</table>

Tab. 1: Technical data series UKM, UKTM

NOTE
Specifications on technical data, such as e.g. dimensions, performance data and calculation examples for all heat exchangers of series UKM and UKTM can be found in the associated data sheets.

3.2 Requirements concerning the water quality

NOTE
Any specifications concerning the water quality are recommendations. In exceptional cases unexpected reactions may occur due to certain concentrations of constituents.

For the assessment of the available cooling water for use in shell-and-tube heat exchangers both the water quality and the constituents are of significance.

The water quality is determined by:

- Water hardness
- ph-value of the water

3.2.1 Water hardness

The water hardness specifies the content of hardness constituents (carbonates and bicarbonates).

Especially with higher temperatures these hardness constituents deposit on the tube surfaces and cause a reduction of heat exchanger performance. The critical temperature is 63 °C. With extremely hard water these deposits must be taken into consideration when designing the heat exchanger.
Technical data

Degree of hardness

<table>
<thead>
<tr>
<th>Degree of hardness</th>
<th>Water quality</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 – 5 °dH</td>
<td>very soft water</td>
</tr>
<tr>
<td>5 – 10 °dH</td>
<td>soft water</td>
</tr>
<tr>
<td>10 – 20 °dH</td>
<td>medium hard water</td>
</tr>
<tr>
<td>20 – 30 °dH</td>
<td>hard water</td>
</tr>
<tr>
<td>> 30 °dH</td>
<td>very hard water</td>
</tr>
</tbody>
</table>

Tab. 2: Classification of the water quality acc. to German hardness °dH

The following applies as a rule of thumb for converting to German hardness:

- 10 mg/l hardness constituent correspond with 1 °dH

3.2.2 pH-value

The following applies for shell-and-tube heat exchangers with copper and copper-nickel tubes:

- pH-value not < 6. Lower values may cause corrosion problems.

The following applies with alkaline water:

- Water hardness not < 6°dH. With lower values corrosion caused by free carbonic acid may occur.

<table>
<thead>
<tr>
<th>pH-value</th>
<th>Water quality</th>
</tr>
</thead>
<tbody>
<tr>
<td>4,5</td>
<td>highly acidic</td>
</tr>
<tr>
<td>4,5 – 6,0</td>
<td>acidic</td>
</tr>
<tr>
<td>6,0 – 6,8</td>
<td>weak acidic</td>
</tr>
<tr>
<td>7,0</td>
<td>neutral</td>
</tr>
<tr>
<td>7,2 – 7,7</td>
<td>weak alkaline</td>
</tr>
<tr>
<td>7,7 – 8,2</td>
<td>alkaline</td>
</tr>
<tr>
<td>8,2</td>
<td>highly alkaline</td>
</tr>
</tbody>
</table>

Tab. 3: Classification of water quality acc. to pH-value

3.2.3 Assessment of cooling water based on constituents

The following table gives an overview over the compatibility of copper tubes against water constituents in non-drinking waters.
<table>
<thead>
<tr>
<th>Assessment criterion</th>
<th>Approx. concentration range in mg/l</th>
<th>Assessment</th>
</tr>
</thead>
<tbody>
<tr>
<td>pH-value</td>
<td>< 6</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>6 to 9</td>
<td>+</td>
</tr>
<tr>
<td></td>
<td>> 9</td>
<td>0</td>
</tr>
<tr>
<td>Chloride</td>
<td>to 1000</td>
<td>+</td>
</tr>
<tr>
<td></td>
<td>> 1000</td>
<td>0</td>
</tr>
<tr>
<td>Sulphate</td>
<td>to 70</td>
<td>+</td>
</tr>
<tr>
<td></td>
<td>70 to 300</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>> 300</td>
<td>–</td>
</tr>
<tr>
<td>Nitrate</td>
<td>to 100</td>
<td>+</td>
</tr>
<tr>
<td></td>
<td>> 100</td>
<td>0</td>
</tr>
<tr>
<td>free (aggressive) carbonic acid</td>
<td>to 20</td>
<td>+</td>
</tr>
<tr>
<td></td>
<td>20 to 50</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>> 50</td>
<td>–</td>
</tr>
<tr>
<td>Oxygen</td>
<td>to 2*)</td>
<td>+</td>
</tr>
<tr>
<td></td>
<td>> 2</td>
<td>0</td>
</tr>
<tr>
<td>Ammonium</td>
<td>to 2</td>
<td>+</td>
</tr>
<tr>
<td></td>
<td>2 to 20</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>> 20</td>
<td>–</td>
</tr>
<tr>
<td>Iron (dissolved)</td>
<td>to 10</td>
<td>+</td>
</tr>
<tr>
<td></td>
<td>> 10</td>
<td>0</td>
</tr>
<tr>
<td>Manganese (dissolved)</td>
<td>to 1</td>
<td>+</td>
</tr>
<tr>
<td></td>
<td>> 1</td>
<td>0</td>
</tr>
<tr>
<td>free chlorine</td>
<td>to 5</td>
<td>+</td>
</tr>
<tr>
<td></td>
<td>> 5</td>
<td>0</td>
</tr>
<tr>
<td>Sulphide</td>
<td>–</td>
<td></td>
</tr>
<tr>
<td>Ammonia</td>
<td>–</td>
<td></td>
</tr>
</tbody>
</table>

Tab. 4: Assessment of cooling water quality by constituents

Explanation on table column "Assessment":

+: normally good compatibility
0: Corrosion problems can arise, especially if several factors are evaluated 0
–: use is not recommended
*): SF-copper has proven best in total absence of oxygen and sulphides dissolved in the water
NOTE
For copper-nickel tubes normally higher values apply than those specified in Tab. 4.

3.2.4 Types of cooling waters/peculiarities

Industrial water
The following peculiarities must be taken into account:
- Normally untreated water (no drinking water)
- Very often extremely contaminated
- For the assessment a water analysis is required
- Copper, brass and steel show good resistance against industrial water

Fresh water
- It is recommended to use copper-nickel tubes
- Cast iron parts must be protected against corrosion by a suitable coating
- Normally untreated water (no drinking water)
- Very often extremely contaminated
- For the assessment a water analysis is required

Sea water
- Higher NaCl-content, therefore good electrolyte
- Pairing different materials causes the risk of electrolytic corrosion
- Materials required, which are not too far apart in the electrochemical series, or use a zinc anode
- Brass and copper-nickel alloys show good resistance against seawater

Brackish water
- Mixture of sea and fresh water
- Mostly high content of ammonia and chloride, therefore do not use brass
- Higher NaCl-content, therefore good electrolyte
- Pairing different materials causes the risk of electrolytic corrosion
- Materials required, which are not too far apart in the electrochemical series, or use a zinc anode
4 Technical description

The shell-and-tube heat exchangers mainly consist of the following components:

- Housing with inlet and outlet socket (see chapter 4.3)
- Exchangeable tube bundle with aluminium fins
- Removable lids with inlet and outlet socket (see chapter 4.3)
- Angle bracket for installation (UKM)
- Mounting flange for tank installation (UKTM)

NOTE
Specifications on technical data, such as e.g. dimensions, performance data and calculation examples for all heat exchangers of series UKM and UKTM can be found in the associated data sheets.

4.1 Design

4.1.1 UKM

Fig. 2: Components of shell-and-tube heat exchangers (series UKM)

1. Lid with inlet and outlet socket
2. Angle bracket for installation
3. Tube bundle with aluminium fins
4. Shell with inlet and outlet socket
On heat exchangers of series UKM the tube bundle inside the shell can be replaced. Sealing between shell and tube bundle is achieved by a loop ring. The two lids on inlet and outlet side are tightly bolted to the shell with their flanges. Sealing is achieved via gaskets between shell and lids. The aluminium fins provide additional cooling area. These are pushed over the tube bundles and metallically connected with the copper or copper-nickel tubes. Through one drain port each the fluids can be drained from the pressure relieved heat exchanger (e.g. for the purpose of maintenance or disassembly).

4.1.2 UKTM

Heat exchangers of series UKTM are specially designed for installation in tanks. The shell is equipped with a tank mounting flange to suit this purpose. The tube bundle can be exchanged. Sealing between shell and tube bundle is achieved by a loop ring. The two lids on inlet and outlet side are tightly bolted to the shell with their flanges. Sealing between shell and lid is achieved by a gasket. The shell is open on the tank side.
Aluminium fins provide an additional heat exchange area. These are pushed over the tube bundles and metallically connected with the copper or copper-nickel tubes. Through one drain port each the fluids can be drained from the pressure relieved heat exchanger (e.g. for the purpose of maintenance or disassembly).

NOTE

Heat exchangers of series UKTM 500 are not equipped with a drain port. For correct draining or medium, e.g. in case of a repair, a drain plug must be installed into the outlet pipe.

NOTE

Depending on the design of the heat exchanger the inlet and outlet ports are either provided with female threads or with flanges.

4.2 Description of function

Due to the different material combinations shell-and-tube heat exchangers of series UKM and UKTM enable the exchange of heat between vast varieties of media.

On heat exchangers of series UKM medium 2 (e.g. hydraulic oil) is fed in through an inlet port on the shell, guided through reversing segments and discharged through an outlet port.

On heat exchangers of series UKTM medium 2 is fed in through an inlet port on the shell and directly discharged through reversing segments into the tank.

Medium 1 (e.g. water) flows through the inlet and outlet ports in the lids and circulates twice or several times through the tube bundle. The heat from medium 2 is thereby transferred to medium 1 via the surfaces the aluminium fins and the tube bundle, and dissipated to the outside with the fluid flow of medium 1.
4.3 Connections

4.3.1 UKM

Fig. 4: Connections on heat exchanger 2-way type "T"

1. Inlet medium 1
2. Outlet medium 1
3. Inlet/outlet medium 2
4. Inlet/outlet medium 2

Fig. 5: Connections on heat exchanger 4-way type "F"

1. Inlet medium 1
2. Outlet medium 1
3. Inlet/outlet medium 2
4. Inlet/outlet medium 2
4.3.2 UKTM

![Diagram of heat exchanger UKTM 2-way type "T" and 4-way type "F".]

Fig. 6: Ports on heat exchanger UKTM 2-way type "T" and 4-way type "F"

1. Inlet/outlet medium 1
2. Inlet/outlet medium 1
3. Inlet medium 2
4. Outlet medium 2
5 Transport and storage

DANGER
Danger of injury by improper transport.
The total mass of heat exchangers of series UKM and UKTM can be up to 150 kg. For this reason only sufficiently dimensioned lifting gear and lifting tackle acc. to DIN 15003 "Lifting gear; load suspension devices, loads, forces, terminology" and BGV D8 must be used for transport purposes.

ATTENTION
Warning of possible damage to sealing surfaces.
During transportation take care not to scratch the sealing surfaces on the connecting flanges.

ATTENTION
Warning of possible damage to the tube bundles.
Take care not to damage or bend fins or tubes when transporting or storing tube bundles.

NOTE
Danger of contamination caused by conserving agents.
When using conserving agents make sure that these do not seep into the ground or the sewer system. These must be disposed of in compliance with the applicable regulations for protection of the environment. This applies also for de-conservation.

Depending on their weight, heat exchangers are either transported in cardboard boxes or on wooden pallets. All openings on the heat exchanger are closed with plugs.

Before storage of the heat exchanger you must make sure that all fluid ports are closed with plugs. The heat exchanger must be treated with a conserving agent (e.g. anti-corrosion oil) as protection against corrosion. The storage period for the heat exchanger must not exceed 2 years. All conserving agents must be completely removed before reinstallation.

In order to avoid frost damages under temperatures below zero, all medium must be drained off the heat exchanger, if water has been used as cooling medium. Most of the standard models are provided with drainage ports to serve this purpose. For models without drainage port such a port must be installed in the outlet pipe for medium 1.
6 Assembly/disassembly

DANGER
Danger of injury.
Before assembling or disassembling the heat exchanger the system must be shut down and secured against switching back on.

DANGER
Danger of escaping fluids with the risk of contamination.
If the heat exchanger is installed in a system with tank, you should check whether the tank filling level is above the installation position before assembling or disassembling the heat exchanger. In this case the tank must be emptied beforehand.

DANGER
Danger of injury by improper transport.
The total mass of heat exchangers of series UKM and UKTM can be up to 150 kg. For assembly and disassembly work be sure to use sufficiently dimensioned lifting gear and lifting tackle acc. to DIN 15003 "Lifting gear; load suspension devices, loads, forces, terminology" and BGV D8.

6.1 Assembly conditions

The full utilization of the heat exchanger performance depends on certain measures, which must be observed during assembly and installation.

- Use only pipes and fittings of identical or matching material (type specification) when connecting the heat exchanger.
- Check the heat exchanger for contamination and foreign bodies in the connecting ports, to ensure free flow of the fluids.
- Connect the heat exchanger so that the fluid drain ports are on the underside of the heat exchanger.
- Keep the connecting ports free of strain when connecting the pipeline system. If necessary support the pipelines properly.
- When using an automatic throttle valve it should be installed at the inlet of the heat exchanger.
- Route the outlet pipe for medium 1 in a way that the heat exchanger remains continuously filled with medium 1.
When installing heat exchangers of series UKTM make sure that the mating flange on the tank fits exactly and has a level surface. The tank mounting flange must be tightly connected with the tank.

When installing heat exchangers of series UKTM care must also be taken that the heat exchanger is not subjected to excessive forces and vibrations. Vibrations can be dampened by installing an appropriate suspension for the heat exchanger.

6.2 Installing and connecting the heat exchanger

The heat exchanger must be tightly installed in its intended place and all pipe connections are to be correctly assembled.

ATTENTION

Danger of damage to the system.
Do not mix up inlet and outlet pipes by mistake. Follow the piping diagrams.

ATTENTION

Danger of cracking.
Using sealing tape on the pipe threads increases the resistance between the connecting components and thus the risk of cracks appearing in the castings of the heat exchanger. The threads should not be overtightened.

ATTENTION

Danger of damage to heat exchanger components.
Heat exchangers with sea and brackish water coolant circuit (medium 1) must be fitted with a zinc anode in order to prevent electrolytic corrosion.

ATTENTION

Warning of performance reduction.
Heat exchangers of series UKM should preferably be mounted horizontally and with the drain port pointing downwards. With an upright or slanted installation position a drop in performance can be expected. In this position the drain port must in any case be arranged at the bottom, as otherwise the heat exchanger cannot be drained.

When mounting heat exchangers of series UKTM in a horizontal position the heat exchanger must be turned so that the drain port points downwards.
Assembly/disassembly

Proceed as follows to assemble the heat exchanger:

ATTENTION
Danger of cracking caused by inappropriate tightening of the fastening screws on the connecting flanges. The screws must be evenly tightened crosswise.

NOTE
Heat exchangers of series UKTM 500 are not equipped with a drain port for medium 1. For correct draining, e.g. in case of a repair, a drain plug must be installed into the outlet pipe for medium 1.

- Empty the tank if necessary
- Fasten the heat exchanger:
 - If necessary, fasten the heat exchanger of series UKM on a solid foundation or another fixed base, using the angle brackets provided for this purpose.
 - Fasten heat exchangers of series UKTM with the tank connection flange and the corresponding seal to the tank
- Connect the inlet and outlet pipes for medium 1 to the corresponding connecting ports on the lid (see chapter 4.3)
- Connect inlet and outlet pipes for medium 2 with the corresponding seals to the connecting ports on the shell side (see Fig. 4.3), tighten the fastening screws on lids and flanges of the supply pipes evenly crosswise.

The following measures can be applied to ensure correct functioning of the heat exchanger in different systems:

- Install the safety valve into the inlet pipe for medium 1 or 2 as a measure to protect against extreme flow or pressure fluctuations
- Install a filter into the inlet pipe for medium 1 or 2, in order to protect the heat exchanger against contamination and soiling, e.g. if the cooling water is not taken from the municipal water supply.
- When using sea or brackish water as medium 1 (coolant) install a zinc anode into the lid or the inlet pipe (see chapter 8.1.3), to prevent electrolytic corrosion on heat exchanger components
- Install the automatic throttle valve into the corresponding inlet pipe, in order to compensate overpressure

NOTE
For information on the selection and installation of safety and throttle valves as well as filters, please contact Universal Hydraulik GmbH.
6.3 Disassembling the heat exchanger

DANGER
Danger of injury caused by fluids under pressure.
Always relieve all systems from pressure and secure the systems according to the valid accident prevention instructions before starting disassembly work on the heat exchanger.

DANGER
Danger of burning on hot parts.
Touching heated up components (e.g. supply pipes) on the heat exchanger can cause burns. Allow all components to cool down before disassembling heat exchanger and supply pipes.

DANGER
Risk of contamination caused by drained off fluids.
When draining off fluids do not let these seep into the ground or the sewer system. Such fluids must be collected in safe containers and disposed of in compliance with the valid regulations for the protection of the environment.

ATTENTION
Danger of injury by the heat exchanger dropping down.
Use sufficiently dimensioned lifting gear and lifting tackle to secure the heat exchanger against falling down, before starting to disassemble.

Proceed as follows to disassemble the heat exchanger:

1. Shut down the system and secure it reliably against being switched on again
2. Relieve the heat exchanger and the connected system pipes from pressure and shut these off by the corresponding valves
3. Drain off all fluids through the drain plugs or drain ports provided for this purpose, if necessary empty the tank
4. Disconnect the inlet and outlet pipes for medium 2 from the connections on the shell side
5. Disconnect the inlet and outlet pipes for medium 1 from the connections on the lids
6. Disassembling the heat exchanger:
 - On series UKM unscrew the fastening screws from the angle bracket, lift off the heat exchanger with sufficiently dimensioned lifting gear and place it safely to the side.
 - On series UKTM unscrew the fastening screws from the tank mounting flange, lift off the heat exchanger with sufficiently dimensioned lifting gear and place it safely to the side.
7 Operation

After installation in the system the heat exchanger can be started up and operated without any further preparations. After start-up you should check the correct function of the heat exchanger.

The following inspections are required:

- Check connections for leaks
- If necessary, check valves, fittings and filters for unrestricted flow and proper function
- Check the correct function of the heat exchanger

ATTENTION
Danger of system damage caused by drops in performance.
Drops in performance can be caused by deposits of oil slurry on the shell side or by lime deposits on the tube side.
In this context read chapter 8.2.

NOTE
For a better determination of service intervals for newly installed heat exchangers it is recommended to record all parameters which permit conclusions on the performance of the heat exchanger.

NOTE
If faults occur during operation of the heat exchanger which cannot be rectified immediately, you should contact Universal Hydraulik GmbH.

Peculiarities of heat exchangers with sea or brackish water cooling circuit:

ATTENTION
Danger of material damage to components caused by aggressive cooling fluids, like sea or brackish water.
Sea or brackish water and other caustic fluids must not be used in the standard models. The use of these aggressive cooling fluids requires special materials.

When using heat exchangers to cool the medium 2 with sea or brackish water, special materials are required. Applications of this nature should strictly be discussed with Universal Hydraulik GmbH.

Heat exchangers with sea or brackish water cooling must be equipped with a zinc anode at the inlet side.
8 Maintenance, repair and cleaning

DANGER
Danger of escaping fluids with the risk of contamination.
If the heat exchanger is installed in a system with tank, you should check whether the tank filling level is above the installation position before starting repair or cleaning work on the heat exchanger. In this case the tank must be emptied beforehand.

NOTE
Repairs on the tube bundles of the heat exchanger are only permitted in emergency situations. In this case Universal Hydraulik GmbH must generally be contacted. Disturbed functions must be analyzed and reported to the manufacturer.

NOTE
Contact the manufacturer to order spare parts and wear items.
Universal Hydraulik GmbH
Siemensstr. 33
D-61267 Neu-Anspach

8.1 Maintenance
8.1.1 Maintenance intervals

DANGER
Danger of drop in performance.
The maintenance intervals for the heat exchanger must be determined in such a way, that operation of the heat exchanger is not endangered by a drop in performance.

The service life of a heat exchanger depends to a high degree on the quality of the water and its constituents. The operator is solely responsible for the determination of maintenance intervals. The performance parameters and performance specifications detected during operation must be used for this purpose.

The following information must be observed:

- When using a zinc anode this should be checked for wear two weeks after initial start-up
- With the visual inspection of the anode determine the inspection intervals, the corrosion thickness detected on the zinc metal can be used as basis for this determination
- Replace the zinc anode after 70 % of the zinc quantity have been lost
8.1.2 Replacing tube bundles

ATTENTION
Danger of damaging the tube bundle.
Do not skew the tube bundle during disassembly or assembly since this would damage the tube bundle or the fins.

NOTE
For disassembly the tube bundle is provided with 2 tapped bores for forcing screws.

1. Shut down the system and secure it against being switched on again
2. Shut off all fluids pipes and relieve the pressure from the heat exchanger
3. Drain off all fluids, if necessary empty the tank
4. Disconnect all pipes from the lid
5. Unscrew the fastening screws from the lid and pull the tube bundle out of the shell
6. Clean the shell compartment of the heat exchanger (see chapter 8.2.3)
7. Fit the tube bundle with a new loop ring and slide it carefully into the shell
8. Assemble the lid with a new gasket (changing seals see chapter 8.2.4), tighten the fastening screws evenly crosswise
9. Reassemble and bleed all fluid pipes

8.1.3 Replacing the zinc anode

The zinc anode is replaced as follows:

1. Shut down the system and secure it against being switched on again
2. Shut off the inlet and outlet pipes for medium 1
3. Relief the pressure from the heat exchanger and drain off medium 1
4. Un screw the zinc anode, estimate the wear and replace it if necessary
5. Vent the pipes before switching the system back on
8.2 Cleaning

The tube bundle of the heat exchanger can be cleaned from inside and outside. The performance parameters and performance specifications detected during operation must be used to establish the cleaning intervals. The intervals must be determined in such a way, that operation of the system is not endangered by a drop in heat exchanger performance.

8.2.1 Notes on safety for cleaning

DANGER

Danger of injury by caustic burns or poisoning.

When cleaning the tube bundle (e.g. with hydrochloric acid) and the shell compartment (e.g. with trichloroethylene) caustic burns to parts of the body and damage to eyes may occur if the applicable industrial safety regulations are not strictly adhered to.

You should therefore always strictly comply with the applicable industrial safety regulations when handling the above mentioned or other cleansing agents.

Always wear protective clothing, gloves and, if necessary, goggles and a breather mask when working with aggressive cleansing agents.

ATTENTION

Danger of contaminating the medium.

By experience, the cleansing agent cannot be completely removed. For this reason it is important to make sure that the cleansing agent is compatible with the medium.

ATTENTION

Danger of damage to heat exchanger components.

Before using other comparable aggressive cleansing agents you should generally contact Universal Hydraulik GmbH, in order to prevent important components from being damages by incorrect treatment.

ATTENTION

Danger of damage to heat exchanger components.

Properly vent the heat exchanger and the connected system before taking it back into service.
8.2.2 Cleaning tube bundles

DANGER
Danger of injury.
For cleaning the tube bundles you must strictly comply with the notes on safety listed in chapter 8.2.1.

ATTENTION
Danger of corrosion.
The aluminium fins of the tube bundle must not come into contact with hydrochloric acid when cleaning.

ATTENTION
Danger of corrosion caused by scratches.
Scratches on the inside surfaces of the tube bundles can lead to severe corrosion. For this reason use a brush with soft bristles for internal cleaning.

NOTE
For the use of cleansing agents you should contact Universal Hydraulik GmbH.

The tube bundle must be removed from the heat exchanger before it can be cleaned. For this purpose please proceed as described in chapter 8.1.2.

The following cleaning measures are recommended:

- Inside the tube you may use a mixture of 50 % hydrochloric acid with inhibitors and 50 % water to remove lime deposits.
- Tube bundles with a tube-Ø of <5 mm can be cleaned with hydrochloric acid or by submerging in a ultrasonic bath.
- Contamination caused by other fluids can be removed by using a corresponding cleansing agent (contact Universal Hydraulik GmbH for advice).
- With tube Ø >5 mm the tube bundle can be internally cleaned with a brush. Make sure that a brush with soft bristles is used, to avoid scratching of the tube walls.
The tube bundle can be externally cleaned by submerging the tube bundle in a ultrasonic bath or by rinsing with trichloroethylene. After completion of cleaning work and before taking the heat exchanger back into service make sure that all cleansing agent residues are removed from the tubes, as far as this is possible.

The following steps are required for cleaning:
1. Shut down the system and secure it against being switched on again
2. Shut off the inlet and outlet pipes for medium 1
3. Relief the pressure from the heat exchanger and drain off medium 1
4. Remove the tube bundle (see chapter 8.1.2)
5. Clean the tube bundle
6. Reassemble the tube bundle (see chapter 8.1.2)
7. Vent the pipes before switching the system back on

8.2.3 Cleaning the shell compartment

DANGER
Danger of injury.
For cleaning the shell compartment you must strictly comply with the notes on safety listed in chapter 8.2.1.

Slurries may deposit in the shell compartment of the heat exchanger, so that cleaning is required. This requires disassembly of the heat exchanger (see chapter 6.3) and removal of the tube bundle (see chapter 8.1.2).

The following cleaning measures are recommended:
1. Depending on the extent of soiling clean the shell compartment once or several times with a commercially available solvent, e.g. trichloroethylene.
2. After completion of cleaning work and before taking the heat exchanger back into service make sure that all cleansing agent residues are removed from the tubes, as far as this is possible.
8.2.4 Reinstallation after cleaning

DANGER
Danger of fluids escaping under pressure.
Before fitting new seals the sealing surfaces must be thoroughly cleaned of any sealing residuals. Dirty sealing surfaces can lead to injury, e.g. to the eyes, if fluids escape under pressure upon restarting.

ATTENTION
Danger of damage to sealing surfaces.
Do not clean sealing surfaces with sharp objects. Scores in sealing surfaces may cause leaks.

Before reassembly after cleaning work the following activities are necessary:

- Remove old gaskets
- Clean the sealing surfaces from gasket residuals, take care not to damage the sealing surfaces.
- Install new gaskets, ensure correct fit
- O-rings must be generally replaced
9 Waste disposal

NOTE
Fuels and lubricants, cleansing agents and the respective containers must not be disposed of together with normal domestic refuse or seep into the sewer or the ground. Dispose of these materials and the heat exchanger in strict compliance with the applicable national regulations for the protection of the environment.

The heat exchanger must be disposed of as special refuse.
General operating instructions for hydraulic units, cooling filter aggregates and hydraulic module assemblies
Table of contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Table of contents</td>
<td>3</td>
</tr>
<tr>
<td>1 Basic data</td>
<td>4</td>
</tr>
<tr>
<td>1.1 Type designation plate</td>
<td>4</td>
</tr>
<tr>
<td>2 Basic information</td>
<td>5</td>
</tr>
<tr>
<td>2.1 Notes on the operating instructions</td>
<td>5</td>
</tr>
<tr>
<td>2.2 Utilization according to specification</td>
<td>5</td>
</tr>
<tr>
<td>2.3 Guarantee and liability</td>
<td>6</td>
</tr>
<tr>
<td>3 Notes on safety</td>
<td>7</td>
</tr>
<tr>
<td>3.1 Standards and directives</td>
<td>7</td>
</tr>
<tr>
<td>3.2 Employed symbols and signal words</td>
<td>8</td>
</tr>
<tr>
<td>3.3 Basic safety measures</td>
<td>9</td>
</tr>
<tr>
<td>3.4 Technical status</td>
<td>9</td>
</tr>
<tr>
<td>3.5 Transport safety instructions</td>
<td>10</td>
</tr>
<tr>
<td>3.6 Safety requirements on the installation</td>
<td>10</td>
</tr>
<tr>
<td>3.7 Notes on safety for operation</td>
<td>10</td>
</tr>
<tr>
<td>3.8 Notes on safety of maintenance and repair</td>
<td>11</td>
</tr>
<tr>
<td>3.9 Requirements on the personnel</td>
<td>11</td>
</tr>
<tr>
<td>3.10 Handling of resources and operating materials</td>
<td>13</td>
</tr>
<tr>
<td>3.11 Waste disposal</td>
<td>14</td>
</tr>
<tr>
<td>4 Storage and transport</td>
<td>15</td>
</tr>
<tr>
<td>4.1 Incoming goods control</td>
<td>16</td>
</tr>
<tr>
<td>4.2 Selection and preparation of the installation location</td>
<td>17</td>
</tr>
<tr>
<td>5 Operational startup</td>
<td>18</td>
</tr>
<tr>
<td>5.1 General</td>
<td>18</td>
</tr>
<tr>
<td>5.2 Installation of the system</td>
<td>19</td>
</tr>
<tr>
<td>5.3 Operational startup</td>
<td>21</td>
</tr>
<tr>
<td>5.4 Dismantling of the system</td>
<td>23</td>
</tr>
<tr>
<td>6 Operation</td>
<td>26</td>
</tr>
<tr>
<td>7 Maintenance, cleaning and repair maintenance</td>
<td>27</td>
</tr>
<tr>
<td>7.1 General notes</td>
<td>27</td>
</tr>
<tr>
<td>7.2 Inspection and maintenance</td>
<td>28</td>
</tr>
<tr>
<td>7.3 Maintenance plan</td>
<td>31</td>
</tr>
<tr>
<td>7.4 Reason for malfunction</td>
<td>32</td>
</tr>
<tr>
<td>7.5 Repair</td>
<td>34</td>
</tr>
<tr>
<td>7.6 Hydraulic fluids</td>
<td>34</td>
</tr>
<tr>
<td>7.7 Viscosity characteristics</td>
<td>37</td>
</tr>
<tr>
<td>7.8 Pump viscosity ranges</td>
<td>38</td>
</tr>
<tr>
<td>7.9 Filter</td>
<td>39</td>
</tr>
</tbody>
</table>
1 Basic data

Manufacturer: Universal Hydraulik GmbH
Siemensstr. 33
D-61267 Neu-Anspach
Telephone: 0 6081/ 9418-0
Fax: 0 60 81/ 9418-60

NOTE
Further information on technical parameters are included in the respective data sheets and operating instructions of the supplier module assemblies. They are a component part of the overall documentation.

1.1 Type designation plate

In case of the system, the rating plate is attached to the hydraulic oil container near the revision flap. The most important data relating to the system are entered on the rating plate.

![Rating Plate Image]
2 Basic information

2.1 Notes on the operating instructions

These operating instructions inform about the employment of the system. The system was developed and built by the company Universal Hydraulik GmbH, New-Anspach. Before the actual use of the system, the operating instructions are to be read through carefully. This document must always be available near the system. The directions enable rapid understanding of the technical details and include all necessary information on safe and professional operation of the system. Dimensional and weight specifications are those values valid on the day of printing of these operating instructions. They can deviate in detail from the respective design implementation of the system, without basically changing the objective information and losing validity. Deviations from textual and display statements are dependent on equipment, accessories and area of application of the system, so that possible claims cannot be validated on this basis. The system is determined only for the operational purposes as listed in the operating instructions. The manufacturer cannot recognize any claims which arise due to inappropriate operation and inadequate maintenance.

2.2 Utilization according to specification

The operational safety of the system is guaranteed only in case of appropriate utilization, which is in accordance with the specifications in the operating instructions.

Every utilization exceeding that is considered as operation not in accordance with the specifications! Included in appropriate utilization in accordance with the specifications is compliance with the assembly, operational startup, operation and maintenance specifications prescribed by the company Universal Hydraulik GmbH and the manufacturers of the component parts or module assemblies.

Hydraulics units, cooling filter systems and motor pump units are incomplete machines, as specified by the Machinery Directive 2006/42/EG, and are therefore determined for installation in other machines or in other incomplete machines or equipment only, or to be combined with these, in order to form a machine as specified by the directive.

Hydraulic module assemblies are not incomplete machines, and are therefore determined for installation in other machines or in other incomplete machines or equipment only, or to be combined with these in order to form a machine as specified by the directive.

The incomplete machine may be put into operation only when it has been determined that the machine, in which the incomplete machine should be installed, corresponds to the determinations of the Machinery Directive 2006/42/EG.
Additional, necessary information is to be obtained from the company Universal Hydraulik GmbH. Only the operator is liable for any resulting damages in case of non-observance of these specifications and information.

2.3 Guarantee and liability

Basically the "General sales and supply conditions" of the manufacturer apply. Guarantee and liability claims in case of personal injury and material damage are excluded if they can be attributed to one or more of the following causes.

- Inappropriate operational startup, operation and maintenance of the system
- Changes to the system without prior discussion with the manufacturer
- Operation of the system with defective safety systems, and/or with security and protection equipment not attached properly
- Non-observance of the references in these operating instructions with regard to installation, operational startup, operation and maintenance
- Deficient monitoring of the system parts which are subject to wear
- Inappropriate repairs
3 Notes on safety

3.1 Standards and directives

The system is built according to the currently valid regulations of the technology and the recognized safety-technical requirements. The following European directives and standards were considered during the development, construction and production of the system by the company Universal Hydraulik and the supplier:

- Machinery Directive 2006/42/EG
- Directive 2006/95/EG (low-voltage guideline)
- DIN EN 982 - Safety of Machines - technical safety requirements on fluid-technical systems and their hydraulic component parts

All specifications regarding safety refer to the currently valid ordinances of the European Union. In other countries, the valid laws and state ordinances must be adhered to. As well as the notes on safety in these operating instructions, the generally-applicable specifications regarding accident prevention and environmental protection must be considered and adhered to. All specifications of the operating instructions are to be followed without restriction.
3.2 Employed symbols and signal words

DANGER
Type and source of the danger
Dangers which lead to severe physical injuries or to death.
Measures for the prevention of the danger.

CAUTION
Type and source of the danger
Dangers which lead to physical injuries or to property damage.
Measures for the prevention of the danger.

CAUTION
Warning of electric current
Dangers which lead to severe physical injuries or to property damage.
Measures for the prevention of the danger.

NOTE
User tips and useful information

NOTE
Environmental pollution

DANGER
Type and source of the danger
Results of the danger for the environment.
Measures for the prevention of the danger.
3.3 Basic safety measures

The following basic safety measures are to be adhered to:

- The system may be employed only as specified.
- The system may be assembled, operated and maintained only by trained and instructed specialist personnel.
- The personnel must have read and understood the operating instructions.
- All notes on safety in these operating instructions, and in all further documents in the overall documentation, are to be considered and adhered to.
- Unauthorized persons must not have any access to the system.
- Loss of use and environmental infringements through incorrect handling are to be excluded.
- In case of the transport, installation and dismantling, including operation as well as care and maintenance, the specifications regarding industrial safety and environmental protection are to be considered.
- With the integration of the system into another system, the manufacturer is obliged to include the specifications contained in these operating instructions, references and descriptions, into his own operating instructions.
- Spare parts from the company Universal Hydraulik GmbH are basically referred to. The company Universal Hydraulik GmbH does not assume any liability for damages which result from the utilization of spare parts from other manufacturers.

3.4 Technical status

The following are to be considered:

- To avoid dangers and to assure optimal performance, no changes and/or conversions may be carried out on the system.
- The user is obliged to operate the system in a trouble-free, operationally-safe status. The technical status must correspond to the legal requirements and specifications.
- The system is to be checked for damage and proper condition before every operational startup.
- Changes occurring in the system which influence safety must be reported by the personnel immediately to the operator.
- The system may be connected only to the supply lines planned and designed for this.
3.5 Transport safety instructions

The following are to be considered:

- During transport, the system is to be secured according to the specifications of the transport aid resource employed. The system may be transported only at the anchor points provided for this.

- Arbitrary transport works are not permissible. Considerable dangers and material damages can arise from this.

- Basically, transport works may be implemented only by personnel who are trained and instructed.

3.6 Safety requirements on the installation

- Basically, the system may be installed only by specialist personnel who are trained and instructed.

- Arbitrary assembly or installation work is not permissible.

3.7 Notes on safety for operation

The following notes on safety are to be considered in operation:

- The system is to be provided with mechanical protection against unauthorized access and against physical contact.

- Oil tanks, pipes, component parts flowed-through with oil, and in particular electromagnets, can heat up strongly during operation. In case of direct bodily contact the danger of burn injuries exists. Personnel have to be protected with corresponding protective clothing and heat-resistant gloves.

- The system may not be exposed to excess temperature and/or overpressure.

- During the entire operation, it is to be ensured that the operational factors correspond to the employment of the system.

- The system is to be checked regularly for contamination and dust precipitation. Existing contamination and dust precipitation are to be eliminated immediately.

- The system is to be taken out of operation immediately if changes in the system are determined during operation, such as for example increased operating temperature or operating pressure.

- Work on the system may be carried out only with standstill of the system. The system is to be switched de-energized and pressure-free.

- A warning sign is to be attached to the system when it is being worked on.

- Welding work must not be carried out on the system.
3.8 Notes on safety of maintenance and repair

Operational failures, which are caused by inadequate or inappropriate maintenance, can result in very high repair costs and long downtimes of the system.
The manufacturer does not assume any liability for damages which arise from inappropriate care and maintenance!
The maintenance intervals are to be taken from the general operational and preventive maintenance instructions of the company Universal Hydraulik GmbH, and from the maintenance directions of the module assembly suppliers.

The following are to be considered:

- The system may be maintained and repaired only by the service personnel of the manufacturer or specialist personnel trained and instructed especially for this.
- All maintenance and repair works on the system are basically to be carried out in the switched-off and pressure-free status only.
- An unintentional restart of the system is to be prevented (e.g. switch off main power switch, attach warning signs to the main power switch).
- In case of maintenance and repair work, safety devices are taken out of operation in part. These are to be properly reinstated immediately on completion of the maintenance and repair work, and checked for their functional capability.

3.9 Requirements on the personnel

- Prior to commencement of work on the system, the personnel are to be instructed about the dangers involved in the handling of the system.
- The system may be operated, maintained and repaired only by trained and instructed personnel.
- Every person who is instructed to set the system into operation, to maintain it or to repair it, must have read and understood the operating instructions in complete form. This also applies if the personnel concerned have previously worked with the system or have been trained in its use.
- The operating instructions must be accessible to the personnel at all times. It is recommended to determine the acknowledgment of the content of the operating instructions in writing.
- The operator, or those personnel authorized by the operator, are responsible for accident-free operation.
In order to guarantee safe handling of the system, the personnel are obliged to the following:

- Smoking, eating and drinking in the area of the system are not permitted.
- Working on the system is not allowed in case of persons who are over-fatigued, or who are under the influence of alcohol and/or medication.
- Personnel may not have any physical or mental handicaps which limit attention and discernment, either temporarily or in the long run.
- Personnel must wear work-safety clothing, protective gloves and, where appropriate, protective goggles and respiratory protection, according to the work to be carried out.
- All notes on safety in these operating instructions and in all other documents must be considered and complied with at all times, without any restrictions.
- In case of the identification of dangers which are capable of resulting in injuries to persons, the complete system must be switched off immediately.
- Personnel must have well-founded knowledge of the following operational sequences, specifications and codes of conduct:
 - Operational sequences of the system,
 - Fencing-off, protections and identification signs of the danger zone,
 - Conduct and actions to be taken in case of danger.
3.10 Handling of resources and operating materials

CAUTION

For all resources and operating materials, as well as cleaning agents employed, the specifications and EC Safety Data Sheets of the respective manufacturer concerning storage, handling, employment and waste disposal are to be considered.

The following are to be considered in the handling of resources and operating materials, as well as cleaning agents:

- No materials may be employed whose properties are unknown. Where appropriate, return discussions are to be held with the manufacturer of these materials.

- Resources and operating materials, including cleaning agents as well as their container, must not be disposed of as domestic waste or be allowed to reach the sewage system or the soil. For their waste disposal, the specifications valid in each case are to be considered exactly.

- The determinations in the safety data sheets regarding the handling of authorized cleaning agents are to be considered.

 The following measures are to be introduced in case of non-observance:

 - Clean with soap and water those parts of the body which have come in contact
 - Flush eyes under running water for at least 10 minutes, and consult a specialist where necessary.
 - After inhalation of vapors, fresh air or oxygen is to be breathed in, and a specialist is to be consulted where necessary.
3.11 Waste disposal

DANGER

The hydraulic oil is to be bled off over the oil drain-plug of the system into a suitable container. The system is to be placed on a secure support in this case. No hydraulic oil may reach the sewage system or the soil.

DANGER

For cleaning agents, the specifications and EC Safety Data Sheets of the respective manufacturer concerning storage, handling, employment and waste disposal are to be considered.

DANGER

Electrical scrap and electronic component assemblies are subject to special waste treatment, and may be disposed of by authorized specialist companies only.

The following are to be considered:

- Provided that no take-back or waste-disposal agreement has been reached, the itemized component parts are to be provided for recycling following proper dismantling.
 - Scrap metallic material residue
 - Provide plastic component parts for plastic recycling
 - Sort and dispose of component parts according to material constitution
- Lubrication and operating materials, including cleaning agents as well as their containers, must not be disposed of as domestic waste or be allowed to reach the sewage system and/or the soil. For waste disposal, the specifications valid in each case are to be considered exactly.
4 Storage and transport

For transport to the installation location, VDI 2700 - Procedural Instructions regarding Freight Protection in Road Traffic - is to be considered. The appropriation of a vehicle with a closed canvas cover is necessary. Furthermore, at least 4 tightening straps are to be provided. The loader, as well as the driver of the vehicle, are responsible for proper loading and secure transport of the machine on a vehicle. Further transport of the system is implemented with a forklift or a hoist truck.

DANGER

Danger of injury through inappropriate transport!
The transport must be carried out with sufficiently dimensioned lifting cranes and anchoring means, in accordance with DIN 15003 "Lifting crane, load-bearing equipment, loads, forces, terms" and BGV D8. The maximum load-bearing capacity of the lifting crane must not be exceeded.

DANGER

Danger or risk of injury exists from toppling over, falling down or uncontrolled movements of hydraulics units, cooling filter aggregates or other parts not secured properly.

CAUTION

Warning of possible damage to sealing surfaces!
During transport, it is to be ensured that the sealing surfaces of the connection flanges are not damaged.
4.1 **Incoming goods control**

The system is to be unpacked and checked directly after transport.

The following are to be checked:

- Any damages incurred during transit
- Proper scope of delivery
- Loose screwed connections
- Other defects

The preparation of a delivery protocol with signature of the transport resources manager is necessary. The manufacturer and/or supplier are to be informed of complaints immediately within 24 hours.

If the system is not assembled immediately after delivery to the customer, it must be stored at a protected location.

- Do not keep in the open air.
- Store in dry and dust-free conditions.
- Do not expose to aggressive media.
- Protect against solar radiation, storage temperature 15°C to 25°C, air relative humidity level max. 60%.
- Avoid mechanical vibrations.

In case of longer storage (>3 months), the general condition of the system and the packaging is to be checked regularly. On requirement, the system is to be professionally preserved.

DANGER

Contamination danger through preservatives. Preservatives must not reach the soil or the sewage system. They must be disposed of according to the applicable environmental protection regulations.
4.2 Selection and preparation of the installation location

The selection and preparation of the installation location is to be carried out according to the following criteria:

- The location of the system must be in a closed, draft-free room. The system may not be exposed to direct solar radiation or local thermal action (e.g. radiators or radiant heaters).

- The ambient temperature in the installation area of the system must be in the range +5°C to max. +40°C.

- The relative humidity at the installation locations must on average 40%, up to maximum 60%, with an ambient temperature of +20°C.

- The dust content of the air at the installation location should be less than 1 mg/m³.

- All necessary operating materials, such as lubricating oils, greases etc., must be available in sufficient quantity and quality before the installation and operational startup, according to the specifications included in the operating instructions.

- The main electrical connection for the system is to be prepared considering the references in the operating instructions. A constant power supply is to be ensured. The rating and fuse protection of the supply line is to be implemented according to the valid specifications, and may be carried out by trained specialist personnel only.
5 Operational startup

5.1 General

The trouble-free operation of every machine or system presupposes compliance with the operational and maintenance directions of the manufacturer. Hydraulic systems can be implemented in very different designs, and, as a component part of machines, can be subject to the most varied operating instructions.

A general operational and maintenance direction for hydraulic systems can provide valuable references for operational startup, however, it is to be extended by special instructions on an individual basis.

Notes for work on hydraulic systems

For reasons of safety, no line screwed connections, connections and devices may be loosened as long as the system is under pressure. Before this, loads are to be lowered, pumps switched off and pressure accumulators depressurized.

Do not work with oily hands.

With all work, the highest levels of cleanliness are to be ensured, because the enemy of hydraulics is dirt. Before the loosening of screwed connections, the external surroundings are to be cleaned. All openings are to be closed off with protective caps so that no dirt can penetrate into the system. During the cleaning of oil tanks, no cotton waste is to be employed as far as possible. Filling of the system with oil should be carried out only via filter.

In case of spraying and brushing on paint, in particular nitro-based, elastic seals and the bearings of moving parts are to be covered. Only lacquers and paints are to be employed which are suitable for the hydraulic fluids used.

Caution: Damaged pipes and hose lines are to be replaced immediately.

Line installation

With the selection of pipes, hoses and screwed connections / flanges, the correct operating pressure (wall-thickness) is to be ensured. Only seamless precision steel pipe is to be employed.

The pipes are to be cleaned of dirt, scale, sand, chip cuttings etc. before installation. In particular, welded pipes must be pickled or flushed. The pipes are to be laid free of stress. The pipe connections and the screw thread depths of the components and bridge plates are suitable for all traditional screwed connections. The housing recesses are designed so that screwed connections are capable of being be used with both sealing edge and soft sealing (not suitable for screwed connections with O-ring seal).
The screw thread may not rest on the base of the borehole. Sealing materials, such as hemp and cement, are not permissible because they can lead to contamination, and with that to functional disturbances.

Installation of devices

With the installation of devices, the correct installation location and compliance with the permissible ambient temperature and so forth are to be ensured. In order to avoid jamming of piston valves, the control and regulation elements are to be mounted free of stress. For this, the bearing surfaces must be perfectly plane. The fixing screws are to be tightened uniformly with the prescribed torque.

Pressure accumulator

Pressure accumulators are pressure vessels and are subject to the safety regulations valid at the installation locations.

Work on systems with storage vessels (repairs, connecting of pressure gauges and sim.) may be implemented only after bleeding of the liquid under pressure.

Neither welding nor soldering work, as well as no mechanical processing, may be carried out on the storage container. Inappropriate repairs can lead to serious accidents. Repairs on the hydraulic storage accumulator may therefore be implemented by specialist personnel only. It is absolutely necessary that the pressure accumulator operating instructions be read.

5.2 Installation of the system

DANGER

The installation, assembly and operational startup of the system may be carried out by trained specialist personnel only, who basically observe the safety regulations.

The full utilization of the performance capability of the system is dependent on certain measures, which are to be considered in case of the installation and assembly.

- Before beginning assembly work, sufficient space is to be created for freedom of assembly.
- Maintain order and cleanliness at the location. Remove any component parts and tools lying around.
- Implementation of a proper installation. Inappropriately secured component parts can fall down or topple over.
- The system is to be cleaned thoroughly. Individual system parts are possibly to be protected with corrosion protection agent, and must be cleaned with a solvent.
Only those connecting elements (screwed connections, hoses, pipes and valves) which are commercially available from manufacturers of repute, and which are suitable for the maximum admissible operating pressure and for the liquids, are to be employed for the connection of the system. The system is to be checked for contamination and foreign bodies in the connection nozzles. Free transition flow of the medium must be guaranteed.

In case of the connection to the pipe system, stresses at the connecting points are to be avoided.

An electrical connection with the stipulated interface conditions must be provided in proximity to the system.

In case of work on and with the system, the following work-safety clothing is to be worn:

- **Protection equipment**
 Close fitting working clothing (low level of tear resistance, no wide sleeves, no rings or other jewelry etc.)

- **Protective gloves** for protection against friction burns, grazing, pricking and deeper lesion injuries of the hands.

- **Protective goggles** for protection of the eyes against possible injury through sprayed lubricating oil.

Procedure during installation:

1. Place the system on a fixed, non-vibrating substrate and align horizontally.

2. Attach the system to the substrate with suitable fastening elements, to guarantee stability.

3. Connect hose lines and pipes for hydraulic fluid and refrigerant to the system as required.

CAUTION

With the connection of the lines, check that the connecting points are sealed.

4. Fill system with hydraulic fluid. Existing oil-drainage plugs or drain cocks must screwed in and be sealed and closed.

5. Connection of the electrical operating resources and monitoring devices, as well as the electric motors.

6. Switch on main power switch.

7. Switch on electric motor of the pumping set for a short time. Check correct rotation direction of the electric motor (red rotation direction arrow on the electrical motor). If the motor runs in the opposite direction, two phases must be interchanged on the motor connection.
5.3 Operational startup

Preassembled modules and aggregates are frequently supplied for stationary systems. An operational startup is implemented in part with the machine manufacturer, however, it is frequently only possible for the first time at the final location.

In detail, the following points are to be considered with an operational startup:

- Visual check for damages and contamination incurred during transit
- Installation and fixing of aggregates and module assemblies
- Connection of the hydraulic consumers in the machine. Flush out longer lines in case of pipe and hose installation.
- Electrics installation for drive and control, following prior check of the connected loads. Connect possible cooling water. Check the rotation direction of the pumps before switching on.
- Fill the oil tank with the prescribed or suitable hydraulic fluid; in particular its viscosity and purity are decisive factors for the trouble-free operation of the system.

A high level of cleanliness is to be ensured. Clean screwed fittings for filling and close-offs on transport and storage containers before opening. Check oil tanks for dirt accumulation and clean as necessary.
Check hydraulic fluids for any penetrated water.

Do not under any circumstances remove the filter screen from built-in filters at the filling nozzle or filter insert while filling. The dirt content of the filled hydraulic fluid must not exceed ISO 19/16. Experience has indicated that even new liquids are often above this value. In such cases, filling equipment with special filters is to be employed. Considering maximum liquid level.

- Opening of shut-off cocks or shut-off valves in suction lines

- Start drive motor slowly

Switch on electric motor for a short time in inching operation, and check rotation direction.

- Ventilation

Ventilation of the system, as far as possible at the highest point on the service pipes. Activate directional valves and drive consumers up and down repeatedly. Increase loading slowly. Increase setting values of pressure valves and pressure-control devices. The ventilation is complete when no oil foam occurs in the container, no abrupt movements of the consumers take place and no anomalous noises can be heard.

- Check liquid level

and top up as necessary after ventilation has been completed.

- Final valve setting-adjustment and run-in of the machine

according to specification of the manufacturer. A general statement concerning this is not possible. Adjustments are carried out on pressure valves, pressure-activated switches, flow-control valves, pump controls, response time adjustments.

- Valve setting-adjustments

Pressure valves, flow-control valves and pressure-control devices of variable displacement pumps, first of all at the lowest possible setting values. Directional-control valves in rest position.

- Accumulator

Fill to prescribed gas pre-stressing pressure.

- Variable displacement pumps

with pressure-control devices are mostly protected by an additional pressure-control valve. In case of setting-adjustment, it is to be ensured that the response pressure of the safety valve is considerably higher than that of the pressure control device (P1 = P2 + approx. 30 bar)
- Monitoring the final operating temperature
 when the machine has been fully in operation for several hours.

- Elimination of leakage
 mostly through simple retightening of screwed connections after a few operating hours.

- Clean filters and change filter elements.
 From experience, the greatest dirt deposition is to be expected in the first few operating hours.

5.4 Dismantling of the system

CAUTION
The hydraulic fluid contained in the system is to be pumped out into containers suitable for that (drums). The remaining quantity of hydraulic fluid can be bled off, as appropriate, through lifting the system with hoisting gear above the level of the oil-drainage plugs.

DANGER
Environmental damage!
While bleeding off the liquids, it is to be ensured that no oil or other endangering materials reach the soil or the sewage system. These must be absorbed and disposed of in secure containers, in accordance with the applicable environmental protection regulations.

CAUTION
Danger of injury through electric current!
Before disassembly work on the system, the electrical system is to be switched without energy, the voltage-free status verified and the switch secured against unintentional switching on again.
Attach warning signs.

DANGER
Danger of injury!
The oil circulation system is to be interrupted through closing the shut-off valves.
No further pressure may build up.

Procedure with the dismantling:
1. Depressurize the oil circulation system.
2. Bleed off hydraulic fluid over the oil drain-plugs.
3. Ensure the voltage-free status of the electrical system through:
 - Isolation switching
 - Securing against restart
 - Verifying freedom from voltage
 - Grounding and shorting
 - Isolating adjacent elements under voltage
4. Screw off hose lines from the flanged connections and close off openings.
5. Loosen ground fastening elements of the system.
6 Operation

CAUTION
Before operational startup, the following control-checks are to be carried out:
- The entire system must be free of foreign bodies
- Proper connection of all media
- Proper connection of the protective earth conductor
- All component parts must be functional

After the installation and implemented control-checks, the system can be taken into operation without any further preliminary measures.

CAUTION
If faults occur during operation which cannot be eliminated immediately, the company Universal Hydraulik GmbH is to be contacted.

NOTE
A system ready for operation is prerequisite for a proper operational sequence.
7 Maintenance, cleaning and repair maintenance

7.1 General notes

The durability of the system depends on the quality (e.g. degree of pollution of the medium and condition of the alloyed component parts). The operator is responsible for the stipulation of maintenance intervals. The function parameters determined in on-going operation are decisive factors for this.

CAUTION

The operator and owner are responsible for the maintenance and testing of the system function.

CAUTION

Maintenance and testing of the system function may be implemented only by qualified personnel. The personnel must have read the operating instructions.

CAUTION

Daily control-checks are to be carried out for leakage and sealing breaks. Note the development of any unusual noises in the system.

CAUTION

If irregularities occur in the system, it is to be taken out of operation immediately. The fault is to be corrected. If this is not possible, the manufacturer is to be informed.

CAUTION

The maintenance intervals must be stipulated so that a degradation of the system does not influence operation.

CAUTION

Damage to the electrical system!
The electrical system is to be protected against splashed water. Do not wash down electrical parts and electronic components with a high-pressure cleaner (steam jet)! During cleaning work, the electrical control panel is to be closed!

NOTE

Cleaning agents must not damage seals and component parts of the system. Do not employ any aggressive cleaning agents. Use lint-free cloths. Work only with dry, filtered compressed air to max. 2 bar. Carry out a visual check and functional test of the system after the cleaning work.
7.2 Inspection and maintenance

Hydraulics components have the constructive prerequisites for long and trouble-free operation. They require only a low level of maintenance outlay. However, this maintenance is indispensable for trouble-free operation, since experience has shown that up to 80% of occurring faults and damage can be attributed to dirt, lack of maintenance and incorrect selection of the hydraulic fluid.

The extent of the time intervals for inspections and maintenance is generally stipulated by machine manufacturers in a corresponding plan.

- **Level of the hydraulic fluids**

Continuous checking is required, since a drop of the liquid volume below the marked minimum level can result in a rise in the operating temperature, the accumulation of undissolved air and failure of pumps through cavitation.

- **Temperature of the hydraulic fluid**

The operating temperature depends on many factors, such as e.g. operating mode, machine cycle, switching circuit etc. In practice, average temperatures of 40° - 90° are usual.

A max. temperature of 60° for mineral oil is recommended, since an accelerated oil ageing occurs with advancing operating time and shortens the service life duration of seals and hoses.

The oil temperature in the container must be checked continuously. Gradual temperature gradients indicate possible contamination or jamming and/or metal or seal wear and should be reason for verification of all the component parts involved. Sudden and significant temperature increases are an alarm signal, and require an instant shutdown and checking of the system.

- **Condition of the hydraulic fluid**

The ageing of the hydraulic fluid depends on a diverse variety of operating conditions, such as e.g. temperature, ambient dirt, operating pressure, humidity etc.

The degree of ageing, and therefore the utilization capability, can mostly be assessed through a simple visual inspection.

- **Filter control-check / filter element change**

The filter elements are to be changed for the first time immediately after the first operational startup. Further filter element changes are to be carried out at intervals extending from every month to every six months, according to operating conditions.
- **Filters with dirt accumulation indication**

These are to be checked continuously. The control-check is implemented daily after the operating temperature has been reached. During hot running, an incorrect reading can perhaps be given, since the flow throughput resistance can be increased.

- **Ventilation filter**

This enables a filtered air compensation in the oil tank in case of fluctuating oil level. The functional capability is to be checked according to environmental pollution and, where appropriate, the ventilation filter or its element are to be exchanged.

- **Changing the hydraulic fluid**

A first oil change is implemented immediately after the operational startup. Further oil changes for oil fillings which are not monitored in the laboratory are necessary after approx. 1000 - 4000 operating hours, or at an interval of 6 to 24 months. However, this presupposes compliance with a max. operating temperature of 70°, as well as regular filter element changes. As a result of a corresponding oil maintenance and regular verification, the change intervals can be increased considerably.

- **Accumulator**

As well as the legally prescribed tests, the gas pre-stressing pressure is to be monitored. In particular in the run-in phase, a frequent measurement is recommended.

The measurement of the gas pre-stressing pressure is implemented with special checking and filling equipment.

A simple test is also possible with an oil pressure gauge.

Caution: Employ only nitrogen as gas.

- **Set-adjusted values**

Pressure valves, as well as flow-control valves and pump controls, however, also signal sections such as pressure-activated switch, limit switch, temperature controller etc., are set-adjusted during the first operational startup. These values are to be monitored on-going in the initial phase. Later control-checks are carried out in the medium term.

- **Oil/Air heat exchanger**

Oil/Air heat exchangers are to be cleaned regularly, according to ambient dirt occurrence.

- **Oil/Water heat exchanger**
The cleaning intervals are dependent on the water quality, the temperature and the water addition. Cleaning is with nylon brushes or chemically.

- **Other control-checks**

Particularly in the run-in phase, but also in long-term operation, faults can be identified in time by applying a certain level of attention. The following are to be considered in particular:

- External leakage
- Dirt accumulation
- Damage, in particular of hose and pipe lines
- Noises from pumps, motors, couplings and hanger suspensions
- Function of measuring devices

<table>
<thead>
<tr>
<th>Findings in the hydraulic fluid</th>
<th>Contamination</th>
<th>Possible cause</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dark coloring</td>
<td>Oxidation products</td>
<td>Overheating, neglected oil change (where appropriate, external oil entry)</td>
</tr>
<tr>
<td>Milky turbidity</td>
<td>Water or foam</td>
<td>Water ingress, air entry</td>
</tr>
<tr>
<td>Water deposition</td>
<td>Water</td>
<td>Water ingress e.g. refrigerant</td>
</tr>
<tr>
<td>Air bubbles</td>
<td>Air</td>
<td>Air entry e.g. due to lack of oil or leaky suction line</td>
</tr>
<tr>
<td>Suspended or deposited contamination</td>
<td>Solid foreign matter</td>
<td>Dirt, ageing process</td>
</tr>
<tr>
<td>Odor of burned oil</td>
<td>Ageing process</td>
<td>Overheating</td>
</tr>
</tbody>
</table>
7.3 Maintenance plan

The following module assemblies are to be correspondingly maintained and cleaned, according to the following maintenance plan:

<table>
<thead>
<tr>
<th>Module assembly</th>
<th>Measure</th>
<th>Maintenance interval</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hydraulics systems</td>
<td>Removal of Corrosive damages</td>
<td>Continuously</td>
</tr>
<tr>
<td></td>
<td>Verification of all module assemblies</td>
<td>Continuously</td>
</tr>
<tr>
<td></td>
<td>Removal of dirt and dust precipitation</td>
<td>Continuously</td>
</tr>
<tr>
<td></td>
<td>Continuously check for leakage</td>
<td>Continuously</td>
</tr>
<tr>
<td>Hydraulic fluids</td>
<td>Check according to table Page 29</td>
<td>1000 h or every 3 months</td>
</tr>
<tr>
<td>Electrical motor</td>
<td>Noise and visual check</td>
<td>Continuously</td>
</tr>
<tr>
<td></td>
<td>Dismantle motor, clean, change ball bearings, grease</td>
<td>Bearing replacement time according to stipulations in the manufacturer documentation</td>
</tr>
<tr>
<td></td>
<td>Remove dirt sucked in by the fan impeller</td>
<td>At adequate intervals</td>
</tr>
<tr>
<td></td>
<td>Control-check for secure seating of the electrical connections in the terminal box</td>
<td>2000 h or every 3 months</td>
</tr>
<tr>
<td></td>
<td>Check tension relief of the connection cable</td>
<td>Continuously</td>
</tr>
<tr>
<td>Nitrogen</td>
<td>Check nitrogen</td>
<td>Continuously</td>
</tr>
<tr>
<td>Accumulator</td>
<td>Verification of accumulator</td>
<td>According to legal specifications (500 operating hours)</td>
</tr>
<tr>
<td>Setting values of valves, pump controls etc.</td>
<td>Check</td>
<td>500 h</td>
</tr>
<tr>
<td>Ventilation filter</td>
<td>Exchange filter elements</td>
<td>At adequate intervals</td>
</tr>
<tr>
<td>Filter</td>
<td>Exchange filter elements</td>
<td>According to dirt accumulation indication, or at adequate intervals</td>
</tr>
</tbody>
</table>
Module assembly

<table>
<thead>
<tr>
<th>Module assembly</th>
<th>Measure</th>
<th>Maintenance interval</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ball valves</td>
<td>Check function</td>
<td>Continuously</td>
</tr>
<tr>
<td>Pipe connections and hose connections</td>
<td>Check flanged connections for leakage</td>
<td>At adequate intervals</td>
</tr>
<tr>
<td>Hose lines</td>
<td>Visual check for cracks in the outer layer and/or rust</td>
<td>Continuously</td>
</tr>
<tr>
<td>Hose lines</td>
<td>Check of the utilization duration including duration of storage, according to DIN 20066, the utilization duration should not exceed six years.</td>
<td>Annually</td>
</tr>
<tr>
<td>Electrical connection and protective ground terminal</td>
<td>Control-check for secure seating of the connections, check function</td>
<td>At adequate intervals</td>
</tr>
</tbody>
</table>

NOTE

Defective module assemblies or a complete defective system must not be disposed of as domestic waste. For the waste disposal, the national environmental protection regulations valid in each case are to be considered in exact form.

7.4 Reason for malfunction

- **Excessive noise in the system**

 Excessive noise in the new system can in most cases be attributed to foaming of the liquid. The causes for this are the following:

 - **The liquid level in the container is too low**

 - **Due to bad ventilation, air pockets can have formed**

 - **Leaky suction lines**

 This is especially critical if an intake filter is provided. First check the pipe screwed connections. For an initial test, ductile lubricating grease is brushed onto suspicious locations. This causes a temporary sealing.

 - During the start-up, the initially existing air inclusion leads to noise generation. After a short runtime, the air entrained in the oil reaches the container through the system, where it can separate out. A maximum long routing of the oil between return flow and suction line by means of smoothing baffles improves the air separation from the oil.
- Cavitation in the pump or failure of the feed can also cause noises. The most frequent reasons for this are:

1. The liquid has too high a level of viscosity. The reason for this can be either that a liquid has been selected with unsuitable viscosity, or that the liquid is too cold for the start-up.

2. In case of oil and water emulsions, the viscosity can be influenced disadvantageously if the quantity ratio between oil and water is unsuitable. Local constrictions in the suction line, e.g. partly shut valves, springs in the check valve which are too strong, damaged pipe or defective hose.

4. Also displaced or non-stress-free screwed connections can cause noises. Loose brackets sometimes generate a clattering noise, whose cause can be determined with difficulty only.

5. Incorrectly set-adjusted pressure-control valves are unnecessary sources of noise.

- Inadequate or too small pressure build-up

1. Check the rotation direction of the pumps

2. Check whether the correct procedure is used during the start-up of the pumps and that the value set-adjusted on the pressure-control valve is min. 10 bar higher than the pump pressure.

3. Pumps can generate pressure only when there is resistance to the flow. Many systems are equipped with valves with open center-setting, so that the liquid flows with very low pressure only, despite the value set-adjusted on the pressure-control valve and the pump pressure.

4. Make sure that you read off the pressure at the correct locations of the system.

- Too high liquid temperature

Caution! Danger of burn injuries.

1. If an oil/water heat exchanger is installed, the water flow-through is to be checked. The water drain-off pipe must feel hotter than the supply pipe. The oil drain-off pipe must be cooler than the oil supply flow pipe.

2. If the system is equipped with an oil-air heat exchanger, you must check whether the rotation direction of the fan is right, the air ducts are not blocked or whether the fan is soiled.
3. The oil pressure can be unnecessarily high. Check whether the setting-adjustments of all pressure valves correspond to the values specified in the hydraulics schematic.

4. Check whether possibly existing discharge circuits work trouble-free.

5. Check whether the viscosity of the oil corresponds to the specifications.

7.5 Repair

CAUTION

Repairs to the system may be carried out only following return discussion with the manufacturer. Only original parts may be employed.

7.6 Hydraulic fluids

- General

The pressure medium in an hydraulic system must have a whole series of properties in order to guarantee operational safety in the long term. It is recommended to make the selection in joint cooperation with well-known oil manufacturers.

The service life duration of the hydraulics system and the hydraulic fluid is basically determined from the following factors.

1. The pressure medium must be alloyed with additives, which provide for a high level of wear protection for all movable parts in the system.

2. The viscosity must be selected correctly, to guarantee adequate sealing and lubrication at the operating temperature which is reached.

3. The hydraulic fluids should contain additives to increase ageing resistance and for the prevention of corrosion.

- Viscosity

The viscosity is a significant characteristic parameter of the hydraulic fluids. Its selection depends on the requirements of the corresponding oil circulation system, and on the special demands which are made through the employment of critical devices. Therefore compliance with the maximum minimum operating values and the permissible operating range is urgently recommended. Too high a level of viscosity on start-up can lead to cavitation damage. Continuous operation with too high a level of viscosity can reduce the air release in the oil tank to such an extent that pump and valve damage cannot be avoided. Too low a level of viscosity results in unfavorable efficiency and decreased lubrication.
Furthermore, too high a level of viscosity can also lead to very unfavorable efficiency in case of low operating pressures. Therefore the viscosity is to be selected carefully for every system, such that the lowest temperature during the start, the normal operating temperature and also the high temperatures possibly occurring, are considered. An undershooting of the minimum viscosity should be avoided absolutely.

- **Temperature**

It is recommended to maintain an operating temperature of approx. 45 degrees (average temperature of the hydraulic fluid in the tank) and not to exceed a maximum temperature of 60° as far as possible, in order to achieve optimum maintenance intervals of the liquid. Where appropriate, the operating temperature is to be maintained at the required limits through the employment of heat exchangers.

- **Cleanliness / Filtering**

The greatest care must be taken that the entire system is freed of residual paint, metal cuttings, weld scale, sealing compound, cleaning cloth residue and so forth before the first operational startup, and is subsequently flushed through with finely filtered oil (min. 25 µm filter gauge). Non-observance of this important point can lead to extensive damage. In addition, it is urgently recommended to filter the hydraulic fluid during normal operation to max. 25 µm particle size. According to design implementation and environmental conditions, work must be carried out with intake filter, full-flow pressure filter, return-flow filter or even with a combination of these. Here the basic principle applies: The better the filtering, the higher the service life duration of the components in the system. The necessary filtering in operation in case of utilization of different hydraulic devices depends on the necessary oil purity of the most sensitive device in the oil circulation system. Specifications about the necessary purity are to be taken from the corresponding product information.

- **Type designations of hydraulic oils**

Corresponding to DIN 51524 and 51525 and CETOP Proposals, key identification letters are stipulated for hydraulic oils on mineral-oil base. However, a final designation on ISO level is not complete.

In detail, the following applies:

H = Ageing-resistant mineral oil without effective additives (low importance)
L = Active substance for the increase of the corrosion protection and/or ageing
P = Active substance for the reduction of wear and increase of the load-carrying capacity
V = Active substance according to I + P (according to CETOP)
M = Active substances M and high-polymer additives for the improvement of the viscosity-temperature characteristic, also expressed by the VI (= Viscosity Index) DIN 51564 (according to CETOP). D = Active substances with deuterizing and dispersing properties (cleaning and ageing, as well as foreign materials, held in suspense)

The most frequent combinations are:

HL = For simple requirements with operating pressures >200 bar

HLP = For systems with reciprocating pumps with operating pressures > 200 bar
7.7 Viscosity characteristics

Note: The individual rating figures given in the equipment catalog are binding.
7.8 Pump viscosity ranges

<table>
<thead>
<tr>
<th>Type of device</th>
<th>Viscosity range</th>
<th>Type of the hydraulic fluid</th>
</tr>
</thead>
<tbody>
<tr>
<td>Axial piston pumps</td>
<td>Nominal value:</td>
<td>Alloyed mineral oil which corresponds to the HLP Group, in accordance with DIN 51525 and in accordance with DIN 51524 Part 2 E, or API classification SC, SD, SE. The significant feature is an adequate content of wear-decreasing additives</td>
</tr>
<tr>
<td></td>
<td>32 - 68 mm²/s at 40°C</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Minimum operating value:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>max. permissible 220 mm²/s</td>
<td></td>
</tr>
<tr>
<td></td>
<td>max. permissible operating range: 13 - 54 mm²/s</td>
<td></td>
</tr>
<tr>
<td>Adjustable vane and gear units</td>
<td>Nominal value:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>32 - 68 mm²/s at 40°C</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Startup value:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>max. permissible 860 mm²/s</td>
<td></td>
</tr>
<tr>
<td></td>
<td>max. permissible operating range: 13 - 54 mm²/s</td>
<td></td>
</tr>
<tr>
<td>Adjustable vane pumps</td>
<td>Nominal value:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>32 - 68 mm²/s at 40°C</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Startup value:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>In case of full capacity:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>800 mm²/s</td>
<td></td>
</tr>
<tr>
<td></td>
<td>With zero shift:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>200 mm²/s</td>
<td></td>
</tr>
<tr>
<td></td>
<td>max. permissible operating range: 16 - 160 mm²/s</td>
<td></td>
</tr>
<tr>
<td>Slowly-speed radial piston pumps</td>
<td>Nominal value:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>32-68 mm²/s at 40°C</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Startup value:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>max. permissible operating range: 25 - 54 mm²/s</td>
<td></td>
</tr>
</tbody>
</table>
7.9 Filter

- Task

The majority of premature failures occurring in oil hydraulic systems can be attributed to dirty hydraulic fluids. The task of the hydraulic filter is to reduce this dirt content to a permissible level concerning size and concentration of the dirt particles, in order to protect against excessive wear.

- Filter gauge

Previous definitions of filter pore widths, such as e.g. absolute, nominal or medium pore width, have been proved in practice to be inadequate. Scarcely any filtering material can guarantee a retention rate of 100% completely, with reference to the particle size. This fact is considered with the S-value.

- The S-value

This value is based on the Multi Pass Test, according to ISO 4572. Here, the retention rate is determined for a filter which is flowed through with oil with a defined level of dirt.

Explanation of the specification:

S-10 (level of the dirt accumulation) = 75 (retention rate 75:1)

The retention rate of 75:1 is employed with most definitions, however, other values are also conceivable. The percentage retention rate is calculated according to the formula:

\[\% = 100 - \frac{100}{S} \]

\[\text{e.g. } 100 - \frac{100}{75} = 98.66\% \]

Such a retention rate corresponds completely to the expression used to date "Filter gauge absolute".

CAUTION

The filter gauge of the elements may not be changed by the customer (without return discussion with the supplier).

Every filter has been designed system-specific for the hydraulics system.
2 Safety

These operating instructions contain basic safety instructions for installation, operation and maintenance. It is therefore essential that they are read by fitters and all specialist staff and customer personnel prior to installation and start-up. They must always be kept at hand at the place of installation.

The special safety instructions contained in the other chapters must be observed in addition to the general safety instructions in this chapter.

2.1 Marking of instructions in the operating instructions
The safety instructions contained in these operating instructions which represent a danger to personnel if not complied with are specially marked by the general danger symbol:

![Warning symbol as per DIN 4844–W9]

Warning of danger from electric voltage is given as follows:

![Warning symbol as per DIN 4844–W8.]

Instructions which are essential to avoid endangering the machine and its functioning are marked by the word ATTENTION

Instructions affixed directly to the machine such as

- Directional markers
- Signs for fluid connections

must always be observed and maintained in fully legible condition at all times.

2.2 Personnel qualification and training
The operating, maintenance, inspection and mounting personnel must be appropriately qualified for the duties assigned to them. The scope of their responsibilities, competency and supervisory duties must be closely controlled by the customer. If the personnel do not have the required knowledge, they must be trained and instructed. If required, this may be provided by the manufacturer/supplier on behalf of the customer. The customer must additionally ensure that personnel fully understand the content of the operating instructions.

2.3 Dangers in the event of non-compliance with safety instructions
Failure to comply with the safety instructions may result in danger to persons, and place the environment and the machine at risk. Non–compliance with the safety instructions may lead to the loss of any claims for damages.

Non–compliance may relate to the following dangers:

- Failure of important functions of the plant
- Failure of specified methods for maintenance and servicing
- Danger to persons resulting from electrical, mechanical and chemical effects
- Danger to the environment resulting from leakage of hazardous substances

2.4 Responsible working practices
The safety instructions contained in these operating instructions, current national accident prevention regulations, as well as internal working, operating and safety rules of the customer, must be observed.

2.5 Safety instructions for the user/operator

- Hot or cold parts representing a danger must be protected against accidental contact on site.
- Protection against accidental contact for moving parts (such as the coupling) must not be removed while the machine is in operation.
- When operating pump aggregates in a dust–laden environment (e.g. milling, chipboard manufacture, bakeries), the surfaces of the pumps and motors must be cleaned at regular intervals, depending on local conditions, in order to maintain the cooling effect and eliminate the possibility of spontaneous combustion. Refer also to explosion protection regulations (ZV 1/10).
- Leakage (e.g. from the shaft seal) of hazardous substances being handled, such as explosive, toxic or hot materials, must be discharged such that no danger to persons or the environment is created. Legal regulations must be observed.
- Dangers from electrical energy must be eliminated. For details in this regard, refer to VDE and local power company regulations.
2.6 Safety instructions for maintenance, inspection and mounting work

The operator company shall ensure that all maintenance, inspection and mounting work is performed by authorized and qualified specialist personnel who have thoroughly studied the operating instructions.

Work on the machine is only to be carried out when the machine is at a standstill. The means of shutdown of the machine described in the operating instructions must always be followed.

Pumps or aggregates handling fluids which are detrimental to health must be decontaminated. All safety and protective devices must immediately be refitted and made operational on completion of the work.

The instructions under Section 6.1, "Preparation for start-up", must be observed before restarting.

2.7 Unauthorized conversion and production of replacement parts

Conversion or modification of the machines is only permissible after consultation with the manufacturer. Original replacement parts and accessories approved by the manufacturer serve safety purposes. If other parts are used the manufacturer cannot be held liable for the consequences.
5 Installation/Mounting

5.1 Installation
The pumps can be horizontally or vertically mounted.

⚠️ For safety reasons the "downward-facing motor" arrangement is not permitted.

5.2 Mode of fastening
The mode of fastening is dependent on the design type and size of the pump and the coupled motor, as well as local installation conditions.

Horizontal foot pumps are normally mounted with the drive motor on a common base plate.
Flange pumps can be fastened by means of a wall/foot lantern, either horizontally or vertically, at the place of installation.
Vertical plinth pumps have a small installation area due to their design, and can also be fastened on a concrete foundation or foundation frame.
In the case of flange and insertion pumps which are installed in immersion bodies, tanks, cylinder housings etc., the fixing flange of the pump, together with the flange contact surface, provides a fastening option in the various executions.

Precise details on form and dimensions are given in the installation drawing.

5.3 Foundation

5.3.1 General
The foundation may be a floor/concrete base or a load-bearing steel foundation frame.
Note: The foundation must be designed so it can take the weight of the pump aggregate across its entire area.

5.3.2 Caractéristiques de un a foundation frame
A steel foundation frame must be designed so that the base plate makes contact across its entire area, and can be bolted or welded down.

ATTENTION If the base plate is only supported at four points the pump aggregate will hang down in the middle. This will affect the alignment of the coupling and may also lead to severe noise being generated.

5.3.3 Caractéristiques de un floor/concrete foundation
The foundation must be horizontal, flat and clean, and be capable of bearing the full load upon it.
Note: Concrete foundations must be executed with standard concrete of strength class B 25 as a minimum.

5.3.4 Alignment of the pump aggregate
The pump aggregate must be aligned to its pre-set height and system dimensions. This is done using suitable steel shims, arranged directly adjacent to each fixing bolt.
The total height of the steel shims is determined by the pre-set system dimensions of the plant. The steel shims and the base plate must sit flush.

If the fixing holes are more than 750 mm apart, we recommend fitting additional steel shims in the middle of the base plate.

![Fig. 2: Alignment with steel shims](image)
Horizontal alignment of the aggregate is produced by way of flat-machined surfaces on the pump using a machine spirit level. Measurements are taken in longitudinal and transverse directions of the pump aggregate.

Permissible deviation: max. 1 mm per 1 m length.

5.3.5 Fixing the pump aggregate
When the aggregate has been aligned on the foundation the fixing bolts should be tightened evenly, alternating side to side.

Recommendation: As far as possible, the base plate should be cast-on over its entire length with a non-shrinking mortar casting compound.
Note: When casting-on and packing with the mortar casting compound, it must be ensured that the base plate makes contact with the foundation over its entire area, and that there are no cavities.

5.4 Checking the coupling alignment

5.4.1 Checking the coupling alignment in case of horizontal setup on base plate (if used)
A complete delivered pump aggregate has been carefully assembled at the factory. After proper installation, and prior to start-up of the pump aggregate, the alignment of the coupling must be checked.
The check can be made with a straight-edge and a feeler gauge, or with other suitable equipment (such as a laser alignment device).
The measurements are taken in two planes, each offset by 90°, on the circumference of the coupling.

If a height, lateral or angle offset is detected between the two coupling halves, the drive motor should be realigned such that the coupling halves are flush with each other (level out with flat packing shims as necessary).
The gap between the two coupling halves must be the same all round the circumference of the coupling. The specified gap is shown in the installation diagram.
The spacing between the straight-edge laid over both coupling halves and the respective shaft must be the same all round the circumference.
5.4.3 Coupling alignment of special designed couplings (if used)
Refer to the operating instructions of the coupling manufacturer.

5.5 Assembly of pump and motor
If the aggregate is only assembled at the place of use, the coupling is assembled as follows:

1. Coat the pump and motor shaft ends with a fine film of molybdenum disulfide (e.g., Molykote) and insert keys.

2. Push on the coupling halves on the pump and motor side with the aid of a pusher device until the shaft end is flush to the coupling hub.
 If no puller is available, heating the coupling halves to approx. 100°C (without rubber buffer) facilitates pushing.
 ATTENTION Impacts to the components of the pump or motor must be avoided.

3. Tighten the grub screw on both coupling hubs.

4. When assembling the pump and motor, make sure the specified gap between the coupling halves is maintained (see our installation drawings).

5. In the case of horizontally mounted pump aggregates fixed on a base plate or directly on the foundation, the coupling must be aligned as described in Section 5.4.
 In the case of pump aggregates with flanged motor, the coupling does not need to be re-aligned.

6. Mount the contact protection.
 According to accident prevention regulations, the pump must only be operated with a protection against accidental contact.

5.6 Space required for maintenance and repair
ATTENTION The pump must be accessible from all sides in order to be able to carry out necessary visual inspections.
 Adequate space must be provided for maintenance and repair work. It must also be ensured that all pipelines can be attached and removed without hindrance.

5.7 Laying the pipelines

5.7.1 Nominal widths
If possible, the nominal widths of the suction and pressure pipelines should be rated so that the rate of flow does not exceed a maximum of 1 m/s in the suction pipeline and 3 m/s in the pressure pipeline. If possible, suction pipelines laid "uphill" are to be avoided.

5.7.2 Change of cross-sections and directions
Sudden changes of cross-sections and directions, as well as hairpin bends, are to be avoided.
5.7.3 Supports and flange connections
The pipelines must be connected to the pump, stress-free. They must be supported close to the pump and must allow easy screwing–on to avoid twisting. When the connections are loosened the pipeline must neither be slanted nor springing, nor must it be under pressure.
Any thermal stresses occurring on the pipelines must be kept away from the pump by suitable means, e.g. installing compensators.

5.7.4 Cleaning pipelines prior to attachment
Prior to assembly, all pipeline parts and valves must be thoroughly cleaned; especially in the case of welded pipelines, burrs and welding beads must be removed. Flange gaskets must not protrude inwards. Blanking flanges, plugs, protective film and/or protective paint on flanges and seals must be removed completely.
Water residues, still in the pipeline network from pressing–out or stepping for example, must be removed.
Delivery of water destroys the pump. The pump relies on the fluid being conveyed for its lubrication.

5.7.4.1 Inlet/suction conditions (NPSH)
To ensure fault–free continuous operation, the inlet and suction conditions of the plant must be appropriately adjusted to the pump demand (NPSHreq.)
The service condition is fulfilled when the plant NPSH value (NPSHavail.) is above the pump NPSH (NPSHreq.). The NPSHreq. is given in the characteristic sheets of the respective pumps
ATTENTION When pumping air–laden or volatile liquids, particular attention must be paid to the NPSH requirements of the plant.

5.7.5 Stop valves
Stop valves are to be installed in the suction and pressure pipelines close to the pump.

5.7.6 Pressure–relief valve
See Section 4.1 ...

5.7.7 Check valve
It is recommended to install a check valve between the pressure connection of the pump and the stop valve in order to prevent the pump from running dry when it is at a standstill and the pressure stop valve is open.

5.7.8 Vent valve
A vent valve must be provided at the highest point in the pressure pipeline.

5.7.9 Filtering
To protect the pump against coarse dirt contamination, we recommend as a matter of principle installing a filter in the suction pipeline, mesh width 0.6 mm.
Note: The service life of the pump is decisively influenced by the degree of dirt contamination of the fluid being conveyed, that is, by the number, size and hardness of the abrasive components.

5.7.10 Auxiliary pipelines (if present)
All auxiliary pipelines must be connected in accordance with the installation drawing, stress–free and sealed.

5.8 Safety and control devices
5.8.1 Manometers
Suitable pressure gauges are to be installed in the inlet and pressure pipelines, and in the pressurized auxiliary pipelines.

5.8.2 Safety device in the pressure pipeline
ATTENTION For pumps delivered without a pressure–relief valve, an overload protection must be provided in the control, or a pressure–relief valve (return valve) in the pressure pipeline (see separate Operating Instructions).

5.9 Electrical connections
The power supply cables of the coupled drive motor must be connected by a trained electrician, according to the motor manufacturer’s circuit diagram. The applicable VDE regulations and local power company rules must be observed.
Danger from electrical energy must be eliminated.
6 Start-up/Shutdown

6.1 Preparation for start-up

6.1.1 Filling the pump with fluid

ATTENTION Prior to initial operation, the screw pump must be filled with fluid and bled. This at the same time provides the spindles with the sealing required for suction. The pump must not run dry.

ATTENTION Before filling, the operator must ensure careful and thorough rinsing of the pump if the fluid to be conveyed is not chemically compatible with the test medium (see performance test report). The fluid is filled through a bore hole in the pump casing or via the pressure pipeline. The pump must be filled with fluid until the fluid emerges free from air. In the case of immersion pump aggregates the filling level must ensure adequate covering of the inlet rim before and during operation.

During bleeding of the pump and the plant, hazardous or environmentally harmful fluid and gas emerging must be safely collected and discharged.

6.1.2 Control of drive motor direction of rotation

The direction of rotation of the motor must match the direction of rotation arrow on the pump. The motor can be briefly switched on with the suction and pressure valves open to check the direction of rotation. If the direction of rotation is wrong there is no pump suction. This damages the pump. The direction of rotation of the three–phase motor can be reversed by swapping any two phases.

ATTENTION If the direction of rotation is to be checked before the pump is filled with fluid, the drive motor must be disconnected from the pump. The pump must not run dry.

6.1.3 Switching on any auxiliary devices

Before switching on the pump, any additional devices (e.g. heating, cooling, quench system, pressure relief system) must be set in operation and must have reached the necessary flow/temperature and pressure values.

Note: Ensure that flow/temperature and pressure values are in accordance with the order data sheet or manufacturer’s operating instructions!

6.2 Start-up

6.2.1 Starting

1. Prior to starting, the stop valves in the suction and pressure pipelines must be completely opened.

2. Where the pump is fitted with a pressure–relief valve, it is set on our test panel to respond 10% above the operating pressure. The opening pressure can be altered within narrow limits by means of an adjusting screw. The installation of a pressure–relief valve is always required when an impermissible pressure rise is possible, due to a stop device or throttle point in the pressure pipeline for example. If the pressure–relief valve has a hand–wheel regulation, the pump can be started at zero pressure. For this, the pressure–relief valve must be completely opened using the hand–wheel. The starting torque of the motor is thereby reduced.

ATTENTION When starting and stopping the pump under pressure, make sure that the speed– and viscosity–dependent pressure load is not exceeded.

If this is not ensured, the pump must be started and stopped at zero pressure. This also applies to pumps with speed–controlled drive motors.

3. During starting, a vent valve installed on the outlet side of the plant must be opened until the air has escaped from the suction side of the pump. As soon as fluid emerges the vent valve can be closed. The pump is self–priming and is automatically vented without counter–pressure.

4. The fluid level in the tank must be checked. It must be ensured that, when the plant is running, the fluid level in the tank does not fall below the minimum limit. Top up fluid as necessary.

6.2.2 Drive

Switch on the motor.

Pay attention to product–specific characteristics. Refer to the operating instructions of the drive motor manufacturer.

6.2.3 Checking the delivery values

When the motor has reached its operating speed, the inlet pressure and outlet pressure of the pump must be checked using manometers.

For pumps fitted with a hand–regulated pressure–relief valve, the hand–wheel must be closed slowly beforehand, until the pump outlet pressure is reached. The motor must not be overloaded. The current consumption can be checked with an ammeter. In this connection, the temperature and viscosity of the fluid must also be checked. The readings must be checked against the layout or acceptance test report.

ATTENTION If there should be an inadmissible increase in pressure, mounted pressure–relief valves may shift the media from the discharge to the intake side (recirculation). Recirculation leads to heating up of the medium. An inadmissible pressure and temperature increase can be indicated by a pressure gauge and a thermometer. Determine the cause immediately and eliminate it in order to avoid damage to the pump as the result of excessive heating up and the related drop in viscosity.
6.3 Shutdown

6.3.1 Stopping and interrupting operation

1. Switch off the motor. Make sure the pump runs down smoothly and evenly.

2. If a check valve is installed in the pressure pipeline, the stop valve can remain open. If no check valve is fitted, the stop valve must be closed.

3. Stop any additional devices that are present (e.g. heating, cooling, quench system, etc.).

6.3.2 Measures in case of prolonged interruption

If a prolonged interruption is intended, the pump must be drained thoroughly via the connections on the pump casing. We recommend removing cartridge–unit pumps and immersion pumps from the tank or the plant.

Safe draining and environmentally compatible disposal of the fluid must be ensured.
7 Maintenance/Repair

7.1 Maintenance

- The instructions in Section 2, Safety, must be observed in maintenance and repair work.
- Regular monitoring and maintenance of the pump and drive motor increases their service life.

The following instructions are generally applicable.

7.1.1 General monitoring

1. The pump must not run dry.
2. The drive motor must not be overloaded.
3. The suction and pressure pipelines must be checked for leaks. Air must be prevented from entering the delivery system.
4. Built-in stuffing boxes must drip slightly in operation. Mechanical seals must have no inadmissible leakage.
5. Pressure and temperature monitors must be observed.
6. Any additional devices on the pump/shaft seal must be operated and monitored in accordance with regulations.

7.1.2 Maintenance of components

7.1.2.1 Bearing
The bearing of the driving spindle is maintenance-free. The groove ball bearing is designed for a service life of approx. 24,000 hours under normal operating conditions. The actual service life may be reduced due to intermittent operation, high temperature, low viscosity, poorly lubricating fluids and the like. We therefore recommend checking the running noises and temperature in the bearing area at regular intervals. If scraping or rattling noises are heard compared to the normal humming, or if excessive temperature rises are detected, this indicates impending bearing damage, and the ball bearing should be replaced as soon as possible.

7.1.2.2 Shaft seal
The shaft is either sealed by the stuffing box, shaft seal rings or mechanical seal.

- Stuffing box (Design U2)
 Increased leakages, if any, at the stuffing box during the first operating hours normally disappear automatically during the running-in time. If necessary, slightly tighten hexagon nuts (39) at the gland (9).

See to it that the stuffing box must be slightly dripping. Thus, the frictional heat generated at the sealing surface is dissipated. If leakage losses increase excessively and if even repeated slight tightening of the hexagon nuts (39) does not result in any leakage reduction, the packing rings have lost their elasticity of shape and must be replaced.

- Shaft seal rings (Design U3 and U4)
 Two or three shaft seal rings may be installed. The shaft seal rings must be checked for a potential leakage. Leaky shaft seal rings must be replaced.
 Note: If new shaft seal rings are installed, the sealing lips must be coated with rolling bearing grease and the space between the shaft seal rings filled with rolling bearing grease.

- Mechanical seal (Design U...)
 An uncooled, maintenance-free mechanical seal will be installed which, in its mode of operation, corresponds to the requested operating conditions. Minimal dripping of non-volatile media resulting from the functioning of the components is to be expected. In the event of heavy leakage due to wear, the mechanical seal should be replaced.

 ATTENTION Since the mechanical seal must not be allowed to run dry, the pump must only be started up when charged and bled.

7.1.2.3 Pressure-relief valve
Pressure-relief valves must be checked from time to time, in particular after prolonged downtimes, for passage and functioning. Leaking pressure-relief valves may cause damage to the pump. Damaged parts should be replaced or repaired as necessary.

 Note: Operating instructions for pressure-relief valves should be ordered separately.

7.1.2.4 Coupling
The alignment of the coupling and the condition of the flexible elements in the coupling should be checked after initial start-up and at regular intervals.

 Note: Worn flexible elements must be replaced.

7.1.2.5 Drive
Refer to the operating instructions of the motor manufacturer.
7.2 Repair (Dismounting and Mounting Instructions)

General
Trained Service fitters are available on request to carry out mounting and repair work. Where repairs are carried out by the operator’s own personnel or by specialist fitters, it must be ensured that the pump is fully drained and cleaned. This particularly applies to pumps which are sent for repair to our factory or one of our service workshops. We must refuse acceptance of repair work on pumps filled with fluid, for the protection of our staff and for environmental reasons. Otherwise we must invoice the customer/operator for the costs of environmentally compatible disposal. Where repairs are to be carried out on pumps which have been operated with hazardous substances ① and/or environmentally harmful media, the customer/operator must inform its own personnel on site, or our personnel where repairs are returned to our factory or a service workshop, without being specifically requested to do so. In such cases a verification of delivery material, for example in the form of a DIN safety data sheet, must be submitted to us together with the request for a Service fitter.

① Hazardous substances are:
- Toxic substances
- Health-endangering substances
- Corrosive substances
- Irritants
- Explosive substances
- Fire-inducing substances
- Highly flammable, easily flammable and normally flammable substances
- Carcinogenic substances
- Substances impairing fertility
- Genetically distorting substances
- Substances in other ways hazardous to humans

For all work on site, the operator’s own personnel and/or our fitters must be advised of the possible dangers involved in the repair work.

The most important dismounting and mounting operations are described in these instructions. The mounting steps described in the individual sections must be consistently observed.

7.2.1 Dismounting the screw pump
Before dismounting, the following work must be carried out:

- The power supply cable must be disconnected from the motor by an authorized electrician. Electrical danger must be eliminated! The motor must be secured against being switched on.

- Close all stop devices in the inlet and delivery pipeline, and in the auxiliary pipelines.

- Drain the fluid in flowable condition from the pump. Note: Use a collecting tank.

- Hazardous substances and/or environmentally harmful media must be drained off and collected such that no danger to life and limb is created. Environmentally compatible disposal must be ensured.

- The pump and any auxiliary systems must be depressurized and drained.

- Allow the pump and motor to cool to ambient temperature.

- Remove the manometer cables, manometers and retaining brackets.

- Remove the contact protection.

- Remove the motor from the base plate or pump bracket where appropriate. Note: Use suitable lifting gear.

- Remove immersion pump aggregates from the tank.

- Remove supply/suction and pressure pipelines as appropriate.

- Dismount auxiliary pipelines, if any.

- Loosen the fastening and remove the pump from the base plate or pump bracket. Note: Use suitable lifting gear.
Water quality and material contents

1.1 Water quality

In the evaluation of the suitability of the existing water for the employment in heat exchangers, the water quality and the material contents are important.

The water quality is determined by the water hardness and the pH-value of the water. The water hardness indicates the content of the so-called hardness formers. Carbonates and bicarbonates are meant by this. The hardness formers are precipitated out with higher temperatures and form a covering layer, which leads to a decrease of the cooling capacity of the heat exchanger. A critical temperature of 63°C applies in this case. This covering layer must be considered in case of very hard water in the design of heat exchangers.

Table 1: Sub-division according to German hardness values

<table>
<thead>
<tr>
<th>Degree of hardness</th>
<th>Water quality</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 - 5°dH</td>
<td>Very soft water</td>
</tr>
<tr>
<td>5 - 10°dH</td>
<td>Soft water</td>
</tr>
<tr>
<td>10 - 20°dH</td>
<td>Medium-hard water</td>
</tr>
<tr>
<td>20- 30°dH</td>
<td>Hard water</td>
</tr>
<tr>
<td>> 30°dH</td>
<td>Very hard water</td>
</tr>
</tbody>
</table>

As rule-of-thumb for the conversion of the German hardness, 10 mg/l of hardness formers corresponds to 1°dH.

A further criterion for the evaluation of the water quality is the pH-value.

Table 2: Sub-division of the pH-value

<table>
<thead>
<tr>
<th>pH-Value</th>
<th>Water quality</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.5</td>
<td>Strongly acidic</td>
</tr>
<tr>
<td>4.5 - 6.0</td>
<td>Acidic</td>
</tr>
<tr>
<td>6.0 - 6.8</td>
<td>Weakly acidic</td>
</tr>
<tr>
<td>7.0</td>
<td>Neutral</td>
</tr>
<tr>
<td>7.2 - 7.7</td>
<td>Weakly alkaline</td>
</tr>
<tr>
<td>7.7 - 8.2</td>
<td>Alkaline</td>
</tr>
<tr>
<td>8.2</td>
<td>Strongly alkaline</td>
</tr>
</tbody>
</table>
In the case of heat exchangers with copper and copper-nickel pipes, the pH-value should not be lower than 6, since, with lower pH-values, corrosion problems can result. In case of alkaline waters, the water hardness should not be lower than 6°dH, since corrosion can then result due to free carbonic acid.

1.2 Material contents

As well as the water quality, further material contents play an important role in the evaluation of cooling water. Both chemical substances and solid material contents are included here. The following recommendations apply for copper pipes:

<table>
<thead>
<tr>
<th>Evaluation feature</th>
<th>Rough concentration range in mg/l</th>
<th>Evaluation</th>
</tr>
</thead>
<tbody>
<tr>
<td>pH-value</td>
<td><6</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>6 to 9</td>
<td>+</td>
</tr>
<tr>
<td></td>
<td>> 9</td>
<td>0</td>
</tr>
<tr>
<td>Chloride</td>
<td>Up to 1000</td>
<td>+</td>
</tr>
<tr>
<td></td>
<td>> 1000</td>
<td>0</td>
</tr>
<tr>
<td>Sulfate</td>
<td>Up to 70</td>
<td>+</td>
</tr>
<tr>
<td></td>
<td>70 to 300</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>>300</td>
<td>-</td>
</tr>
<tr>
<td>Nitrate</td>
<td>Up to 100</td>
<td>+</td>
</tr>
<tr>
<td></td>
<td>> 100</td>
<td>0</td>
</tr>
<tr>
<td>Free (aggressive) carbonic acid</td>
<td>Up to 20</td>
<td>+</td>
</tr>
<tr>
<td></td>
<td>20 to 50</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>> 50</td>
<td>-</td>
</tr>
<tr>
<td>Oxygen</td>
<td>Up to 2*)</td>
<td>+</td>
</tr>
<tr>
<td></td>
<td>> 2</td>
<td>0</td>
</tr>
<tr>
<td>Ammonium</td>
<td>Up to 2</td>
<td>+</td>
</tr>
<tr>
<td></td>
<td>2 to 20</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>> 20</td>
<td>-</td>
</tr>
<tr>
<td>Iron (dissolved)</td>
<td>Up to 10</td>
<td>+</td>
</tr>
<tr>
<td></td>
<td>> 10</td>
<td>0</td>
</tr>
<tr>
<td>Manganese (dissolved)</td>
<td>Up to 1</td>
<td>+</td>
</tr>
<tr>
<td></td>
<td>> 1</td>
<td>0</td>
</tr>
<tr>
<td>Sulfide</td>
<td></td>
<td>-</td>
</tr>
<tr>
<td>Free chlorine</td>
<td>Up to 5</td>
<td>+</td>
</tr>
<tr>
<td></td>
<td>> 5</td>
<td>0</td>
</tr>
<tr>
<td>Ammonia</td>
<td></td>
<td>-</td>
</tr>
</tbody>
</table>
+ : Usually good resistance
0 : Corrosion problems can arise, in particular if several factors are weighted with 0
- : Utilization is inadvisable

*) What has proved best is SF copper, with absolute absence of oxygen and sulfides dissolved in the water.

As a rule, higher values apply for copper-nickel pipes.

1.3 Typical cooling water

1.3.1 Industrial water

In the case of industrial water, untreated water is generally involved, which is not suitable as drinking water. Since this water, under certain circumstances, contains severe chemical contamination, a water analysis is necessary for precise evaluation.

As a rule, copper, brass and steel indicate good resistance against such water.

1.3.2 Stream and river water

Due to the strong dirt accumulation, the same applies here as with industrial water. The employment of copper-nickel pipes is recommended. Parts made of cast iron should be protected against corrosion by a suitable coating.

1.3.3 Sea water

Because of its high NaCl content, sea water is a very good electrolyte. With the union of different materials, electrochemical corrosion can result. Materials should thus be employed which are not far from each other in the electrochemical series or a reactive anode should be attached. Brass and copper-nickel alloys have proved themselves as suitable materials for this application.

1.3.4 Brackish water

By brackish water is meant a mixture of lake and river water. Due to the mostly very high ammonia and chloride content, no brass should be employed here. Otherwise, the same recommendations apply as in the case of sea water.