Contents

1 General Information .. 5
 1.1 How to use this documentation ... 5
 1.2 Structure of the safety notes .. 5
 1.2.1 Meaning of signal words ... 5
 1.2.2 Structure of the section-related safety notes .. 5
 1.2.3 Structure of the embedded safety notes .. 5
 1.3 Right to claim under warranty .. 6
 1.4 Exclusion of liability .. 6
 1.5 Copyright .. 6
 1.6 Product names and trademarks ... 6
 1.7 Applicable documentation ... 6
2 Safety Notes .. 7
 2.1 General information ... 7
 2.2 Target group .. 7
 2.3 Designated use ... 8
 2.3.1 Hoist applications.. 8
 2.4 Bus systems .. 8
3 System Description ... 9
 3.1 Fields of application .. 9
 3.2 Simple positioning speed characteristics ... 10
4 Project Planning ... 12
 4.1 Prerequisites ... 12
 4.1.1 PC and software ... 12
 4.1.2 Inverters, motors, encoders, and cables .. 12
 4.2 Project planning for hoists ... 13
 4.2.1 Project planning guidelines for hoists .. 13
 4.3 Functional description ... 14
 4.3.1 Four operating modes.. 14
 4.3.2 Limit switches, reference position and machine zero 14
 4.4 Process data assignment for control via fieldbus gateway (SBus) 15
 4.4.1 Process output data... 15
 4.4.2 Process input data... 16
5 Installation .. 17
 5.1 MOVITOOLS® MotionStudio software ... 17
 5.2 Technology variant ... 17
 5.3 Wiring diagram for MOVITRAC® B .. 18
 5.4 MOVITRAC® B bus installation .. 19
 5.5 Terminal control via FIO21B digital module .. 20

Manual – MOVITRAC® B Simple Positioning Application Module
1 General Information

1.1 How to use this documentation

The documentation is part of the product and contains important information. The documentation is for everyone who works with this product.

The documentation must be accessible and legible. Make sure that persons responsible for the system and its operation, as well as persons who work independently with the software and the connected devices from SEW-EURODRIVE, have read through the documentation carefully and understood it. If you are unclear about any of the information in this documentation, or if you require further information, contact SEW-EURODRIVE.

1.2 Structure of the safety notes

1.2.1 Meaning of signal words

The following table shows the grading and meaning of the signal words for safety notes, warnings regarding potential risks of damage to property, and other notes.

<table>
<thead>
<tr>
<th>Signal word</th>
<th>Meaning</th>
<th>Consequences if disregarded</th>
</tr>
</thead>
<tbody>
<tr>
<td>DANGER</td>
<td>Imminent danger</td>
<td>Severe or fatal injuries</td>
</tr>
<tr>
<td>WARNING</td>
<td>Possible dangerous situation</td>
<td>Severe or fatal injuries</td>
</tr>
<tr>
<td>CAUTION</td>
<td>Possible dangerous situation</td>
<td>Minor injuries</td>
</tr>
<tr>
<td>NOTICE</td>
<td>Possible damage to property</td>
<td>Damage to the drive system or its environment</td>
</tr>
<tr>
<td>INFORMATION</td>
<td>Useful information or tip: Simplifies the handling of the drive system.</td>
<td></td>
</tr>
</tbody>
</table>

1.2.2 Structure of the section-related safety notes

Section-related safety notes do not apply to a specific action, but to several actions pertaining to one subject. The used symbols indicate either a general or a specific hazard.

This is the formal structure of a section-related safety note:

<table>
<thead>
<tr>
<th>SIGNAL WORD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type and source of danger.</td>
</tr>
<tr>
<td>Possible consequence(s) if disregarded.</td>
</tr>
<tr>
<td>• Measure(s) to prevent the danger.</td>
</tr>
</tbody>
</table>

1.2.3 Structure of the embedded safety notes

Embedded safety notes are directly integrated in the instructions just before the description of the dangerous action.

This is the formal structure of an embedded safety note:

• **SIGNAL WORD** Nature and source of hazard.
 Possible consequence(s) if disregarded.
 • Measure(s) to prevent the danger.
1.3 **Right to claim under warranty**

A requirement of fault-free operation and fulfillment of any rights to claim under limited warranty is that you adhere to the information in the documentation at hand. Therefore, read the documentation before you start working with the software and the connected devices from SEW-EURODRIVE.

Make sure that the documentation is available to persons responsible for the machinery and its operation as well as to persons who work independently on the devices. Also ensure that the documentation is legible.

1.4 **Exclusion of liability**

You must adhere to this documentation and the documentation of the connected devices from SEW-EURODRIVE to ensure safe operation and to achieve the specified product characteristics and performance features.

SEW-EURODRIVE assumes no liability for injury to persons or damage to equipment or property resulting from non-observance of the documentation. In such cases, any liability for defects is excluded.

1.5 **Copyright**

© 2012 – SEW-EURODRIVE. All rights reserved.

Unauthorized duplication, modification, distribution or any other use of the whole or any part of this documentation is strictly prohibited.

1.6 **Product names and trademarks**

All brands and product names in this documentation are trademarks or registered trademarks of their respective titleholders.

1.7 **Applicable documentation**

Observe the following applicable documents:

- MOVITRAC® B operating instructions and associated manuals

Make sure you always use the latest documentation and software version.

Our documentation is available in various languages for download from the SEW homepage (www.sew-eurodrive.com). If you are unclear about any of the information in this documentation, or if you require further information, please contact SEW-EURODRIVE.

If required, you can order printed copies of the documentation from SEW-EURODRIVE GmbH & Co KG.
2 Safety Notes

2.1 General information

The following basic safety notes must be read carefully to prevent injury to persons and damage to property. The operator must ensure that the basic safety notes are read and adhered to.

Ensure that persons responsible for the machinery and its operation as well as persons who work independently have read through the documentation carefully and understood it. If you are unclear about any of the information in this documentation or if you require further information, please contact SEW-EURODRIVE.

The following safety notes refer to the use of the software. Also adhere to the supplementary safety notes in this document and in the documentation of the connected devices from SEW-EURODRIVE.

This document does not replace the detailed documentation of the connected devices. This document assumes that the user has access to and is familiar with the documentation for all connected devices from SEW-EURODRIVE.

Never install or start up damaged products. Submit a complaint to the shipping company immediately in the event of damage.

During operation, the devices may have live, uninsulated, and sometimes moving or rotating parts as well as hot surfaces depending on their degree of protection.

Removing covers without authorization, improper use as well as incorrect installation or operation may result in severe injuries to persons or damage to property. Refer to the documentation for additional information.

2.2 Target group

Any work with the software may only be performed by adequately qualified personnel. Qualified personnel in this context are persons who have the following qualifications:

- Appropriate instruction.
- Knowledge of this documentation and other applicable documentation.
- SEW-EURODRIVE recommends additional product training for products that are operated using this software.

Any mechanical work on connected units may only be performed by adequately qualified personnel. Qualified staff in the context of this documentation are persons familiar with the design, mechanical installation, troubleshooting and servicing of the product who possess the following qualifications:

- Training in mechanical engineering, e.g. as a mechanic or mechatronics technician (final examinations must have been passed).
- Knowledge of this documentation and other applicable documentation.
Any electrical work on connected units may only be performed by adequately qualified electricians. Qualified electricians in the context of this documentation are persons familiar with electrical installation, startup, troubleshooting and servicing of the product who possess the following qualifications:

- Training in electrical engineering, e.g. as an electrician or mechatronics technician (final examinations must have been passed).
- Knowledge of this documentation and other applicable documentation.
- Knowledge of the relevant safety regulations and laws.
- Knowledge of the other standards, guidelines, and laws mentioned in this documentation.

The above mentioned persons must have the authorization expressly issued by the company to operate, program, configure, label and ground units, systems and circuits in accordance with the standards of safety technology.

All work in further areas of transportation, storage, operation and waste disposal must only be carried out by persons who are trained appropriately.

2.3 Designated use

The "Simple Positioning" application module is used in applications that are less complex than a system with motor encoder evaluation.

The "Simple Positioning" application module may only be used in connection with the technology variant (/T) of MOVITRAC® B.

2.3.1 Hoist applications

Hoist applications are only permitted when the "Project planning guidelines for hoists" (page 13) are observed.

2.4 Bus systems

A bus system makes it possible to adapt frequency inverters and/or motor starters to the specific conditions of the machinery within wide limits. This results in the risk that a change of parameters that cannot be detected externally can result in unexpected, though not uncontrolled, system behavior.
3 System Description

3.1 Fields of application

The "Simple Positioning" application module replaces applications previously realized with rapid/creep switch-over and initiator evaluation. The variable definition of any set-point position along with different speeds and acceleration ramps ensures more flexibility.

With an accuracy of 1/4 of a motor revolution, the "Simple Positioning" application module is suitable for the following industries and applications with non-dynamic positioning:

- **Materials handling**
 - Trolleys
 - Roller conveyors
- **Logistics**
 - Trolleys
 - Transverse carriages
- **Format adjustment**

"Simple Positioning" offers the following advantages in these applications:

- User-friendly user interface.
- You only have to enter the parameters required for simple positioning (reduction ratios, speeds, diameters).
- Guided parameter setting process instead of complicated programming.
- Monitor mode for optimum diagnostics.
- Users do not need any programming experience.
- It does not take long to get to know the system.

Consider the following properties for project planning:

- No direct position control
 - To hold a position, the application of the brake is activated in the position window.
- No time-critical positioning tasks
- Supported encoder types:
 - Built-in encoder EI7C (96 increments/revolution)
 - HTL encoder

Simple Positioning can be operated in two ways:

- Control via fieldbus gateway (SBus) using 3 process data words (functionally compatible with bus positioning of MOVIDRIVE® B)
- Control via terminals using digital module FIO21B
System Description
Simple positioning speed characteristics

3.2 **Simple positioning speed characteristics**

The speed characteristics of Simple Positioning are divided into the following phases:

- **Acceleration and constant travel**

 The motor speed is increased to the setpoint speed along the specified setpoint ramp. The motion sequence is controlled exclusively via the selected operating mode (e.g. V/f, VFC) of the inverter. Simultaneously with the movement, IPOS\(^\text{plus}\)\(^\circ\) cyclically calculates the switch-over position for initiating the deceleration stage (run-in to target).

- **Deceleration phase**

 When the calculated switch-over position is passed, the IPOS\(^\text{plus}\)\(^\circ\) program controls the speed until the specified position window is reached. After reaching the position window, the enable signal is revoked in the program. This causes the brake to be applied, the drive stops and the bit for the "InPosition" message is set.

- **Hold target position / re-positioning**

 If the drive leaves the position window after the target position has been reached for the first time, a re-positioning sequence is initiated. In this case, check the set position window and make it larger. When the operating mode "VFC & hoist" is selected, or the start-stop speed is increased, you can deactivate the re-positioning function in the "Monitoring functions" startup window by setting the "Deactivate re-positioning" selection field to "Yes". Otherwise, the drive would be re-positioned once with each new start edge, if necessary.

The deceleration phase can be controlled in two different ways. You can select them in the startup wizard in MOVITOOLS\(^\circ\) MotionStudio in the "Scaling" window in the [encoder type] selection field.

- **Method 1:** IPOS\(^\text{plus}\)\(^\circ\) controlled run-in to target with linear deceleration ramp and controlled brake application (standard method if "EI7C" encoder type is selected).

\[\text{[1] Speed curve in the acceleration and constant travel phases} \]
\[\text{[2] Speed curve when approaching the target position} \]
System Description
Simple positioning speed characteristics

• Method 2: IPOSplus®-controlled run-in to target with asymptotic deceleration ramp and controlled brake application (method compatible with MQx module if "HTL" encoder type is selected).

[1] Speed curve in the acceleration and constant travel phases
[2] Speed curve when approaching the target position
4 Project Planning

4.1 Prerequisites

4.1.1 PC and software

The "Simple Positioning" application module is implemented as an IPOSPlus® program and forms part of the SEW MOVITOOLS® MotionStudio software version 5.60 and higher. In order to use MOVITOOLS® MotionStudio, you must have a PC with one of the following operating systems: Windows® 95, Windows® 98, Windows NT® 4.0 or Windows® 2000.

4.1.2 Inverters, motors, encoders, and cables

Inverter

The "Simple Positioning" application module can only be used with MOVITRAC® B units in technology design (/T).

Motors

Asynchronous DR motors with built-in EI7C encoder.

Encoder

The encoder must be mounted directly to the motor. External mounting, e.g. in applications with non-positive connection between motor shaft and load, is not supported.

Cables

The following prefabricated cables can be used for the M12 (8-pole) connection configuration of the built-in encoders:

<table>
<thead>
<tr>
<th>Installation type</th>
<th>Part number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Suitable for cable carriers</td>
<td>1 362 328 1</td>
</tr>
<tr>
<td>Fixed</td>
<td>1 362 237 3</td>
</tr>
</tbody>
</table>

Technical data of the encoder input

<table>
<thead>
<tr>
<th>Technical data of encoder input</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Encoder signals (2 tracks)</td>
<td>Tracks A and B</td>
</tr>
<tr>
<td>Phase position</td>
<td>90° ± 20°</td>
</tr>
<tr>
<td>Mark space ratio</td>
<td>1:1 ± 20%</td>
</tr>
<tr>
<td>Max. pulse frequency</td>
<td>120 kHz</td>
</tr>
<tr>
<td>Connection of track A</td>
<td>MOVITRAC® B: Terminal X12:5 (DI04)</td>
</tr>
<tr>
<td>Connection of track B</td>
<td>MOVITRAC® B: Terminal X12:4 (DI03)</td>
</tr>
<tr>
<td>Reference potential</td>
<td>GND to PE potential</td>
</tr>
</tbody>
</table>
4.2 Project planning for hoists

WARNING
Risk of fatal injury if the hoist falls.
Severe or fatal injuries.
• Observe the "Project planning guidelines for hoists".

4.2.1 Project planning guidelines for hoists

For hoist applications, we recommend a motor encoder for direct position control. MOVITRAC® B has no direct position control function; the "Simple Positioning" application module evaluates the built-in encoder only for the generation of a speed profile.

For safety reasons, observe the following project planning guidelines:

• Motor startup:
 – Under operating mode, select "Vector-controlled" and "Hoist".
 – In parameter P500 speed monitoring, select the "Motor/regenerative" option.

• Startup of the application module:
 – Go to the "Set monitoring functions" window.
 – Select "Yes" for the "Deactivate re-positioning" function.

• Control of the application module:
 – Make sure that in "Positioning" mode, the setpoint for the position is not changed while the axis is enabled or during a positioning operation.
4.3 Functional description

4.3.1 Four operating modes

- **Jog mode**
 - The direction is selected via the 2 signals "Jog +" and "Jog −".
 - With control via fieldbus, the speed can be specified variably, and the ramp can be switched via a control bit.
 - With control via terminals, a terminal input switches between rapid and creep speed. The ramp is predefined during startup.

- **Teach mode (only with terminal control)**
 - In a referenced axis status, the actual position can be saved to the selected table position.

- **Referencing mode**
 - Reference travel establishes the reference point (machine zero) for absolute positioning operations.

- **Positioning mode**
 - In fieldbus control mode, the speed and target position can be specified variably, and the ramp can be switched via a control bit.
 - Control via terminals allows for binary selection of 8 positions with corresponding ramp and speed.

4.3.2 Limit switches, reference position and machine zero

The hardware and software limit switches are evaluated in IPOSplus®. Note the following points during project planning:

- The software limit switches must be located within the travel range of the hardware limit switches.

- You can enter a reference offset during startup if you do not want the machine zero to be located on the reference position. The following formula applies: Machine zero = reference position + reference offset. This way, you can alter the machine zero without having to move the reference position.
4.4 Process data assignment for control via fieldbus gateway (SBus)

The higher-level controller (PLC) sends three process output data words (PO1 – PO3) to the inverter and receives three process input data words (PI1 – PI3) from the inverter.

4.4.1 Process output data

The process output data words are assigned as follows:

- **PO1**: Control word 2
- **PO2**: Setpoint speed
- **PO3**: Target position

PO= Process output data
PO1 = Control word 2
PO2 = Setpoint speed
PO3 = Target position

PI= Process input data
PI1 = Status word (IPOS PI data)
PI2 = Actual speed
PI3 = Actual position

Manual – MOVITRAC® B Simple Positioning Application Module
4.4.2 Process input data

The process input data words are assigned as follows:

- **PI1: Status word 1**

<table>
<thead>
<tr>
<th>Bit 8 – bit 15:</th>
<th>Inverter status/error code</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bit 15</td>
<td>Inverter status/error code</td>
</tr>
</tbody>
</table>

- **Motor is turning**
- **Inverter Ready**
- **Drive referenced**
- **Target position reached**
- **Brake released**
- **Error/warning**
- **Limit switch CW active**
- **Limit switch CCW active**

- **PI2: Actual speed**

<table>
<thead>
<tr>
<th>Actual speed (user unit)</th>
</tr>
</thead>
<tbody>
<tr>
<td>15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0</td>
</tr>
</tbody>
</table>

- **PI3: Actual position**

<table>
<thead>
<tr>
<th>Actual position (user unit)</th>
</tr>
</thead>
<tbody>
<tr>
<td>15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0</td>
</tr>
</tbody>
</table>
5 Installation

5.1 MOVITOOLS® MotionStudio software

The "Simple Positioning" application module is available in MOVITOOLS® MotionStudio version 5.60 and higher. Proceed as follows to install MOVITOOLS® MotionStudio on your computer:

- Insert the MOVITOOLS® MotionStudio CD into the CD-ROM drive of your PC.
- Wait until the installation starts automatically. The "Start.htm" file is displayed in the browser.

INFORMATION

If the "Start.htm" file does **NOT** automatically open, open the file manually from the root directory of the installation CD.

- Click on the link "MOVITOOLS® MotionStudio".
- Click on the link "Start installation".
- The MOVITOOLS® MotionStudio setup wizard is started. You will be guided through the installation process: Follow the instructions.

5.2 Technology variant

The "Simple Positioning" application module can only be used with the technology variants (/T) of MOVITRAC® B units. The application module cannot be used with the standard unit variant (-00).
5.3 **Wiring diagram for MOVITRAC® B**

Irrespective of the bus type used, you must wire the basic MOVITRAC® B unit according to the following wiring diagram.

Binary input

<table>
<thead>
<tr>
<th>Binary input</th>
<th>Assignment</th>
</tr>
</thead>
<tbody>
<tr>
<td>X12:1 (DI00)</td>
<td>No function / IPOS input (limit switch right)</td>
</tr>
<tr>
<td>X12:2 (DI01)</td>
<td>CW/stop</td>
</tr>
<tr>
<td>X12:3 (DI02)</td>
<td>No function / IPOS input (limit switch left)</td>
</tr>
<tr>
<td>X12:4 (DI03)</td>
<td>IPOS input (connection of track B of encoder evaluation)</td>
</tr>
<tr>
<td>X12:5 (DI04)</td>
<td>IPOS input (connection of track A of encoder evaluation)</td>
</tr>
<tr>
<td>X12:6 (DI05)</td>
<td>No function / TF signal</td>
</tr>
</tbody>
</table>

Diagram Legend

- **X1** to **X12**: Input/output pins
- **L1, L2, L3**: Line connections
- **PE**: Protective earthing
- **N**: Neutral connection
- **M**: 3-phase connection
- **U, V, W**: Phase connections
- **+R**: Reference potential
- **-R**: Reference potential
- **24VIO**: Power supply for TF/TH
- **REF1, REF2**: Reference potential for analog signals
- **NC contact relay, NO contact relay**: Control and relay contacts
- **Switch**: Control switch
- **+10V**: Power supply for TF/TH
- **S11**: Signal strength
- **n1 (0...10 VDC, 0...20 mA, 4...20 mA)**: Reference potential for binary signals

3285813131
5.4 **MOVITRAC® B bus installation**

The fieldbus gateways convert standard fieldbuses to SBus. This means that up to 8 inverters can be addressed through one fieldbus gateway.

The gateway is available in 2 different variants:

- Integrated in the inverter: The fieldbus interface DF.B is installed in the inverter (see following figure).

- In separate housing: The fieldbus interface DF.B is installed in a UOH11B housing, or is available as gateway (e.g. UFI1B for INTERBUS) (see following figure).

Fieldbus gateways are available for connecting fieldbuses the following bus systems.

<table>
<thead>
<tr>
<th>Bus</th>
<th>Separate housing</th>
<th>Integrated in the inverter (not in size 0XS)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PROFIBUS</td>
<td>DFP21B/UOH11B</td>
<td>MC07B.../FSC11B/DFP21B</td>
</tr>
<tr>
<td>DeviceNet</td>
<td>DFD11B/UOH11B</td>
<td>MC07B.../FSC11B/DFD11B</td>
</tr>
<tr>
<td>EtherCAT</td>
<td>DFE24B/UOH11B</td>
<td>MC07B.../FSC11B/DFE24B</td>
</tr>
<tr>
<td>PROFINET</td>
<td>DFE32B/UOH11B</td>
<td>MC07B.../FSC11B/DFE32B</td>
</tr>
<tr>
<td>EtherNet/IP</td>
<td>DFE33B/UOH11B</td>
<td>MC07B.../FSC11B/DFE33B</td>
</tr>
<tr>
<td>PROFIBUS / PROFIsafe</td>
<td>DFS11B/UOH11B</td>
<td>MC07B.../FSC11B/DFS11B</td>
</tr>
<tr>
<td>PROFINET / PROFIsafe</td>
<td>DFS21B/UOH11B</td>
<td>MC07B.../FSC11B/DFS21B</td>
</tr>
<tr>
<td>INTERBUS</td>
<td>UFI11A (823 898 7)</td>
<td>–</td>
</tr>
</tbody>
</table>
Installation

Terminal control via FIO21B digital module

5.5 Terminal control via FIO21B digital module

Functions of the input terminals X42:1 – 7 at the FIO21B digital module:

<table>
<thead>
<tr>
<th>Binary input terminal X42</th>
<th>Jog mode</th>
<th>Operating mode</th>
<th>Teach mode</th>
<th>Referencing mode</th>
<th>Positioning mode</th>
</tr>
</thead>
<tbody>
<tr>
<td>DI10/X42:1</td>
<td>0</td>
<td></td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>DI11/X42:2</td>
<td>0</td>
<td></td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>DI12/X42:3</td>
<td>/SWLS</td>
<td>Start</td>
<td>Start</td>
<td>Start</td>
<td></td>
</tr>
<tr>
<td>DI13/X42:4</td>
<td>Jog +</td>
<td>Position 2<sup>0</sup></td>
<td>Reserved</td>
<td>Position 2<sup>0</sup></td>
<td></td>
</tr>
<tr>
<td>DI14/X42:5</td>
<td>Jog –</td>
<td>Position 2<sup>1</sup></td>
<td>Reserved</td>
<td>Position 2<sup>1</sup></td>
<td></td>
</tr>
<tr>
<td>DI15/X42:6</td>
<td>Rapid speed</td>
<td>Position 2<sup>2</sup></td>
<td>Reserved</td>
<td>Position 2<sup>2</sup></td>
<td></td>
</tr>
<tr>
<td>DI16/X42:7</td>
<td>Error reset</td>
<td>Error reset</td>
<td>Error reset</td>
<td>Error reset</td>
<td></td>
</tr>
</tbody>
</table>

Function of the output terminals (basic unit):

<table>
<thead>
<tr>
<th>Binary output terminal X13</th>
<th>Jog mode</th>
<th>Operating mode</th>
<th>Teach mode</th>
<th>Referencing mode</th>
<th>Positioning mode</th>
</tr>
</thead>
<tbody>
<tr>
<td>DO01/X13:1</td>
<td>/Fault</td>
<td></td>
<td>/Fault</td>
<td>/Fault</td>
<td>/Fault</td>
</tr>
<tr>
<td>DO02/X13:2</td>
<td>Brake released</td>
<td>Brake released</td>
<td>Brake released</td>
<td>Brake released</td>
<td></td>
</tr>
<tr>
<td>DO03/X13:3</td>
<td>No function</td>
<td>Position saved</td>
<td>Drive referenced</td>
<td>Drive in position</td>
<td></td>
</tr>
</tbody>
</table>
6 Startup

6.1 General information

Correct project planning and installation are the prerequisites for successful startup. Refer to the MOVITRAC® B system manual for detailed project planning instructions.

Check the installation, the encoder connection and the installation of the fieldbus interfaces by following the installation instructions in the MOVITRAC® B operating instructions, in the fieldbus manuals and in this manual.

6.2 Starting the "Simple Positioning" application module

6.2.1 General information

- Start MOVITOOLS® MotionStudio.
- Check the unit firmware (1822.563.2.10 or higher). To do so, choose [Startup] / [Parameter tree] from the context menu of the unit. Select parameter P076 Firmware of basic unit.
- Startup MOVITRAC® B in "VFC" operating mode ("VFC & hoist", if applicable). Test in manual operation whether the unit has been started up correctly.
- Inhibit the unit (X12:2 DI01 CW/stop to "0")
- Start the "Simple Positioning" application module. To do so, choose [Application module] / [Simple positioning] from the context menu of the unit (see following figure).
6.2.2 Initial screen

The initial screen of the “Simple Positioning” application module opens (see following figure).

- To commence startup, click the [Startup] button.
 Select one of the following options:
 - “Create new” to perform the initial startup
 - “Read from file” to load an existing parameter set
 - “Upload from device” to perform a re-startup
 The following chapters describe the next steps.
- To monitor or control the started up application, click the [Monitor] button. For more information, refer to chapter “Operation and service”.
 The [Monitor] button is disabled when
 - You are not online
 - The application module has not been detected
6.2.3 Selecting a setpoint source

In this window, you can specify the setpoint/control signal source (see following figure).

In the "setpoint/control signal source" dropdown menu, you specify whether the application is controlled via fieldbus gateway (setting: fieldbus gateway SBus) or via terminals (setting: terminal with FIO21B).
6.2.4 Calculating the scaling factors

In this window, you can set the scaling factors for distance and velocity.

Make the following settings in this window:

- **Calculating the scaling factors**
 - Enter the values for "Drive wheel diameter" or "Spindle pitch" in [mm] in the entry field according to your application.
 - In the edit boxes "Gearing ratio" and "External ratio", enter the total gear ratio of the drive with up to 2 decimal places.
 - Specify the unit for the velocity values. You can select from [mm/s], [m/min] or [rpm].
 - "Encoder type" selection field
 Encoder type "EI7C" is set by default. The control mode "IPOSplus®-controlled run-in to target with linear deceleration ramp and controlled brake application" is activated.
 If you use another encoder type, select "HTL". You can use the "HTL" setting also for applications with EI7C encoders (recommendation for systems prone to slip).
 The control mode "IPOSplus®-controlled run-in to target with asymptotic deceleration ramp and controlled brake application" is activated. Consider the internal quadrupling of the physical resolution when choosing the "HTL" setting. This means that for an encoder with a physical resolution of 24 increments/revolution, for example, you must enter the value "96".
 - Click the [Calculation] button. The "Distance" scaling factor is determined and displayed in the "Pulses/distance" display field. The "Velocity" scaling factor is determined and displayed in the "numerator/denominator" display field.

 The scaling factors are limited to 2^{13}.
6.2.5 Setting parameters and limits

In this window, you can enter the position of the software limit switches, the reference offset, the reference travel type, and the speed limits.

- **"Limit switch" group**

 In the edit boxes "Software limit switch CCW/CW", enter the position of the software limit switches. Make sure the positions of the software limit switches are within the travel distance of the hardware limit switches and that they do not overlap the reference position. If you enter the value "0" in both edit boxes, the software limit switches are deactivated.

 The processing of hardware and software limit switches is implemented in IPOSplus®.

- **"Reference travel" group**

 Enter the reference offset in user units in the "Reference offset" edit box. The reference offset is used to correct the machine zero. The following formula applies:

 \[
 \text{Machine zero} = \text{reference position} + \text{reference offset}
 \]
Starting the "Simple Positioning" application module

- Select the correct reference travel type (3, 4, 5, 8) from the "Reference travel type" selection box. The reference travel type specifies the reference travel strategy that is used to establish the machine zero of a machine.

| Type 3: The reference position is the CW hardware limit switch. No reference cam is required. | Machine zero = reference position + reference offset |
| --- |
| Type 4: The reference position is the CCW hardware limit switch. No reference cam is required. | Machine zero = reference position + reference offset |
| Type 5: No reference travel. The reference position is the current position. | Machine zero = current position + reference offset |
| Type 8: No reference travel. The reference position is the current position. In contrast to type 5, type 8 reference travel can also be performed when the system is in status "No enable/controller inhibit". | Machine zero = current position + reference offset |

- Edit boxes for reference travel speed 1 and 2

 When selecting reference travel type 3 or 4, the hardware limit switch is "searched" with reference travel speed 1. Next, the drive moves away from the hardware limit switch with reference travel speed 2.

- "Speed limits" group
 - "Maximum speed positioning mode" input field
 You can limit the specified positioning speed by entering a value here.
 - "Maximum speed jog mode" input field
 You can limit the specified jog speed by entering a value here.
 - "Maximum motor speed" edit box
 Enter a value at least 10% higher than the maximum positioning or jog speed.
 - "Minimum motor speed" display field
 Displays the limit for speed setpoints that was defined during motor startup.

- "Ramps" group (only for fieldbus control)
 - "Ramp 1", "Ramp 2" edit boxes
 You can switch between the ramp times via PO1:Bit 14 when using fieldbus gateway control.
6.2.6 Setting parameters for terminal control

For terminal control (setting "Terminal with FIO21B" in the "Setpoint/control signal source" dropdown list, see section "Setpoint selection"), you have to set the following parameters for jog and positioning mode (see following figure).

- **"Jog mode" group**

Enter the values for rapid and creep speed and the ramp time.

- **"Positioning mode" group**

 Here, you can enter up to 8 setpoint positions with corresponding ramp and velocity values.

 The setpoints for the ramp times are specified in [ms]. The maximum setpoint value is 10,000 [ms].

 The setpoint for the velocity is scaled in [rpm].
6.3 Setting the monitoring functions

Startup window for setting the monitoring functions (see following figure).

- "Monitoring 1" group
 - "Position window" edit box
 Positioning is completed (i.e. brake is applied) when the actual position is in this range (target position ± position window).
 The setpoint is specified in motor increments. We recommend to use a setpoint of at least 1/4 motor revolution.
 Example: For the encoder type EI7C with [96 inc/motor revolution], you should not use a setpoint below "24".
 - "Deactivate re-positioning" entry field
 No (standard setting): The "InPosition" message is evaluated cyclically. When it is reset to "0" (e.g. because the specified target was exceeded), a re-positioning operation is initiated.
 Yes: The positive edge of the "InPosition" signal causes the brake to be applied. Exceeding the target position does not cause any re-positioning. This setting must be activated in "VFC & hoist" operating mode. Another positioning operation is only triggered with the specification of another target position or a new start edge.
• "Monitoring 2" group
 – "Temperature sensor evaluation" selection field
 Activate or deactivate temperature sensor evaluation (TF signal) via binary input DI05.
 – "Encoder monitoring" selection field
 Activate or deactivate encoder monitoring. When encoder monitoring is activated, the encoder signals are monitored with respect to plausibility (direction of rotation) and wire breakage.
 – "Encoder monitoring timeout" edit box
 After the timeout interval set here has elapsed, the error message F116, suberror code 14 (encoder) is issued during startup when encoder monitoring is active and an error occurs.

INFORMATION
For more information, refer to chapter "Monitoring functions".
6.4 **Finishing startup**

Once you have entered all parameters, save the configuration by clicking the [Save configuration] button [1]. To generate a PDF file with the current configuration, click on [Create documentation] [2].

Click the [Download] button [3] to download the data into the inverter (see following figure).

The following functions are performed when completing startup (download):

- Downloading the SHELL parameters
- Downloading the IPOSPlus® variables
- Downloading the IPOSPlus® program, if the option "Download with application" has been selected. This option is selected automatically during initial startup.

If, for example, the encoder type is changed during re-startup, the IPOSPlus® program must be downloaded. After updating the IPOSPlus® program, we recommend to switch the inverter off and on again to carry over the changes.
6.5 Parameters and IPOSplus® variables

The following parameters and IPOSplus® variables are set automatically during startup and are loaded into the inverter during the download.

<table>
<thead>
<tr>
<th>Parameter P...</th>
<th>Index</th>
<th>Description</th>
<th>Setting</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>8461</td>
<td>Setpoint source</td>
<td>IPOS</td>
</tr>
<tr>
<td>101</td>
<td>8462</td>
<td>Control signal source</td>
<td>SBus1 or terminals</td>
</tr>
<tr>
<td>130</td>
<td>8807</td>
<td>Ramp t11 up</td>
<td>Reserved</td>
</tr>
<tr>
<td>131</td>
<td>8808</td>
<td>Ramp t11 down</td>
<td>Reserved</td>
</tr>
<tr>
<td>134</td>
<td>8474</td>
<td>Ramp t12 up = down</td>
<td>Reserved</td>
</tr>
<tr>
<td>136</td>
<td>8476</td>
<td>Stop ramp t13</td>
<td>Reserved</td>
</tr>
<tr>
<td>300</td>
<td>8515</td>
<td>Start/stop speed</td>
<td>Motor startup parameter</td>
</tr>
<tr>
<td>301</td>
<td>8516</td>
<td>Minimum speed</td>
<td>Motor startup parameter</td>
</tr>
<tr>
<td>302</td>
<td>8517</td>
<td>Maximum speed</td>
<td>Motor startup parameter</td>
</tr>
<tr>
<td>608</td>
<td>8844</td>
<td>Binary input D100</td>
<td>IPOS input/no function</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Reserved</td>
<td></td>
</tr>
<tr>
<td>601</td>
<td>8336</td>
<td>Binary input D101</td>
<td>CW/stop (fixed assignment)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• 0: No unit enable</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• 1: Unit enabled</td>
<td></td>
</tr>
<tr>
<td>602</td>
<td>8337</td>
<td>Binary input D102</td>
<td>IPOS input / no function</td>
</tr>
<tr>
<td>603</td>
<td>8338</td>
<td>Binary input D104</td>
<td>IPOS input (position)</td>
</tr>
<tr>
<td>604</td>
<td>8339</td>
<td>Binary input D105</td>
<td>TF signal/no function</td>
</tr>
<tr>
<td>620</td>
<td>8350</td>
<td>Binary output DO01</td>
<td>IPOS output</td>
</tr>
<tr>
<td>621</td>
<td>8351</td>
<td>Binary output DO02</td>
<td>Brake released</td>
</tr>
<tr>
<td>622</td>
<td>8916</td>
<td>Binary output DO03</td>
<td>IPOS output</td>
</tr>
<tr>
<td>809</td>
<td>10204</td>
<td>IPOS enable</td>
<td>ON</td>
</tr>
<tr>
<td>870</td>
<td>8304</td>
<td>Setpoint description PO1</td>
<td>Control word 2</td>
</tr>
<tr>
<td>871</td>
<td>8305</td>
<td>Setpoint description PO2</td>
<td>IPOS PO data</td>
</tr>
<tr>
<td>872</td>
<td>8306</td>
<td>Setpoint description PO3</td>
<td>IPOS PO data</td>
</tr>
<tr>
<td>873</td>
<td>8307</td>
<td>Actual value description P11</td>
<td>IPOS PI data</td>
</tr>
<tr>
<td>874</td>
<td>8308</td>
<td>Actual value description P12</td>
<td>IPOS PI data</td>
</tr>
<tr>
<td>875</td>
<td>8309</td>
<td>Actual value description P13</td>
<td>IPOS PI data</td>
</tr>
<tr>
<td>876</td>
<td>8622</td>
<td>Process data enable</td>
<td>1: Yes</td>
</tr>
<tr>
<td>938</td>
<td>8888</td>
<td>Task 1 velocity</td>
<td>5</td>
</tr>
<tr>
<td>939</td>
<td>8962</td>
<td>Task 2 speed</td>
<td>4</td>
</tr>
</tbody>
</table>
Parameters and IPOSplus® variables

Startup

Parameters and IPOSplus® variables

<table>
<thead>
<tr>
<th>IPOSplus® variable H..</th>
<th>Index</th>
<th>Description</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Scaling</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H018</td>
<td>11018</td>
<td>Encoder resolution</td>
<td>Increments/revolution</td>
</tr>
<tr>
<td>H020</td>
<td>11020</td>
<td>Scaling distance numerator</td>
<td></td>
</tr>
<tr>
<td>H021</td>
<td>11021</td>
<td>Scaling distance denominator</td>
<td></td>
</tr>
<tr>
<td>H022</td>
<td>11022</td>
<td>Scaling speed numerator</td>
<td></td>
</tr>
<tr>
<td>H023</td>
<td>11023</td>
<td>Scaling speed denominator</td>
<td></td>
</tr>
<tr>
<td>Limits and reference travel</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H030</td>
<td>11030</td>
<td>Software limit switch left</td>
<td>User unit</td>
</tr>
<tr>
<td>H031</td>
<td>11031</td>
<td>Software limit switch right</td>
<td>User unit</td>
</tr>
<tr>
<td>H032</td>
<td>11032</td>
<td>Hardware limit switch</td>
<td>1 = active / 0 = inactive</td>
</tr>
<tr>
<td>H033</td>
<td>11033</td>
<td>Reference offset</td>
<td>User unit</td>
</tr>
<tr>
<td>H034</td>
<td>11034</td>
<td>Reference type</td>
<td></td>
</tr>
<tr>
<td>H035</td>
<td>11035</td>
<td>Reference speed 1</td>
<td>0.1/min</td>
</tr>
<tr>
<td>H036</td>
<td>11036</td>
<td>Reference speed 2</td>
<td>0.1/min</td>
</tr>
<tr>
<td>H040</td>
<td>11040</td>
<td>Maximum speed in positioning mode</td>
<td>0.1/min</td>
</tr>
<tr>
<td>H041</td>
<td>11041</td>
<td>Maximum speed in jog mode</td>
<td>0.1/min</td>
</tr>
<tr>
<td>Ramps (with fieldbus gateway control)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H042</td>
<td>11042</td>
<td>Ramp 1</td>
<td>ms</td>
</tr>
<tr>
<td>H043</td>
<td>11043</td>
<td>Ramp 2</td>
<td>ms</td>
</tr>
<tr>
<td>Speeds and ramps (for terminal control) – jog mode</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H061</td>
<td>11061</td>
<td>Slow speed</td>
<td>0.1/min</td>
</tr>
<tr>
<td>H062</td>
<td>11062</td>
<td>Rapid speed</td>
<td>0.1/min</td>
</tr>
<tr>
<td>H063</td>
<td>11063</td>
<td>Ramp</td>
<td>ms</td>
</tr>
<tr>
<td>Speeds and ramps (for terminal control) – positioning mode</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H065</td>
<td>11065</td>
<td>Tab. 0: Position</td>
<td>User unit</td>
</tr>
<tr>
<td>H066</td>
<td>11066</td>
<td>Tab. 0: Velocity</td>
<td>0.1/min</td>
</tr>
<tr>
<td>H067</td>
<td>11067</td>
<td>Tab. 0: Ramp</td>
<td>ms</td>
</tr>
<tr>
<td>...</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H086</td>
<td>11086</td>
<td>Tab. 7: Position</td>
<td>User unit</td>
</tr>
<tr>
<td>H087</td>
<td>11087</td>
<td>Tab. 7: Velocity</td>
<td>0.1/min</td>
</tr>
<tr>
<td>H088</td>
<td>11088</td>
<td>Tab. 7: Ramp</td>
<td>ms</td>
</tr>
<tr>
<td>Other</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H050</td>
<td>11050</td>
<td>Position window</td>
<td>Increments</td>
</tr>
<tr>
<td>H054</td>
<td>11054</td>
<td>Deactivate re-positioning</td>
<td>1 = Yes / 0 = No</td>
</tr>
<tr>
<td>H055</td>
<td>11055</td>
<td>Temperature sensor evaluation</td>
<td>1 = Yes / 0 = No</td>
</tr>
<tr>
<td>H056</td>
<td>11056</td>
<td>Encoder monitoring</td>
<td>1 = Yes / 0 = No</td>
</tr>
<tr>
<td>H057</td>
<td>11957</td>
<td>Encoder monitoring timeout</td>
<td>ms</td>
</tr>
</tbody>
</table>

INFORMATION

Do not alter these parameters and IPOSplus® variables after startup!
7 Operation and Service

7.1 Starting the drive

Following the download, switch to the "Simple Positioning" monitor by clicking "Next".

7.1.1 Operating modes

INFORMATION

Note that after changing the operating mode, the signals "Jog +", "Jog −" and "Start" must be delayed by 50 ms.

Control via fieldbus:

<table>
<thead>
<tr>
<th>Operating mode</th>
<th>Invalid mode</th>
<th>Jog mode</th>
<th>Referencing mode</th>
<th>Positioning mode</th>
</tr>
</thead>
<tbody>
<tr>
<td>PO1:Bit 11</td>
<td>"0"</td>
<td>"1"</td>
<td>"0"</td>
<td>"1"</td>
</tr>
<tr>
<td>PO1:Bit 12</td>
<td>"0"</td>
<td>"0"</td>
<td>"1"</td>
<td>"1"</td>
</tr>
</tbody>
</table>

Control via terminals:

<table>
<thead>
<tr>
<th>Operating mode</th>
<th>Jog mode</th>
<th>Teach mode</th>
<th>Referencing mode</th>
<th>Positioning mode</th>
</tr>
</thead>
<tbody>
<tr>
<td>DI10</td>
<td>"0"</td>
<td>"1"</td>
<td>"0"</td>
<td>"1"</td>
</tr>
<tr>
<td>DI11</td>
<td>"0"</td>
<td>"0"</td>
<td>"1"</td>
<td>"1"</td>
</tr>
</tbody>
</table>

• Jog mode

The drive can be moved via the "Jog +" and "Jog −" signals.

 – Fieldbus control:

 Specify the setpoint speed with process output data word PO2. With a value ≤ 0, the drive runs at minimum speed.

 If PO2:Bit 14 (ramp switch-over) is set to "1", ramp 2 is active instead of ramp 1.

 – Terminal control (see section "Setting parameters for terminal control"):

 The drive is moved with "Creep speed" and the ramp set during startup in jog mode. If the binary input DI15 is set to "1", "Rapid speed" is selected.

• Teach mode (only with terminal control)

In a referenced state, the current position can be saved to the previously selected table cell through an edge change (min. 200 ms per status) "0" - "1" - "0" at binary input DI12 (Start). The teaching process is successfully completed when binary output DO03 is set to "1" (position saved).

INFORMATION

A non-referenced drive is signaled via DO01 (/fault) = "0". Note that MOVITRAC® B does not display an error in this case.
• **Referencing mode**

 The reference position is defined through reference travel (e.g. to one of the two hardware limit switches). Set PO1: bit 8 (or DI12) "Start" to "1" to start reference travel. The "1" signal must be present for the entire duration of the reference travel. Once reference travel has been completed successfully, PI1: bit 2 (or DO03) "Drive referenced" is set. The "1" signal at PO1: bit 8 (or DI12) "Start" can now be revoked. The drive is now referenced.

• **Positioning mode**

 – In positioning mode, the drive can be positioned absolutely based on the machine zero point (reference position).

 – After you have specified the setpoint speed via PO2 and the setpoint position via PO3 (or binarily selected the table cell with position bits DI13 – DI15), you can start the positioning process via PO1: bit 8 (or DI12) "Start".

 – With a setpoint speed selection ≤ 0, the drive runs at minimum speed.

 – With terminal control, the ramp assigned to the selected table cell is active.

 – If PO2: bit 14 (ramp switch-over) is set to "1" in fieldbus control mode, ramp 2 is active instead of ramp 1.

 – If the software limit switch is activated, the drive cannot travel outside the limit switch ranges.

 – A new target position is immediately adopted during traveling.

 – Once the target position has been reached (± position window), the brake is applied and PI1: bit 3 (or DO03) "Target position reached" is set.

INFORMATION

In terminal control mode, a non-referenced drive is signaled via DO01 (/fault) = "0". Note that MOVITRAC® B does not display an error in this case.
7.2 Monitoring functions

- **Function of the hardware limit switches**
 If the hardware limit switches were activated during startup, the axis is stopped (ramp t11) when it reaches a hardware limit switch. The error message F116, suberror code 29 (limit switch reached) is displayed.

- **Moving clear of hardware limit switches**
 The hardware limit switches can be cleared in the opposite travel direction when "Jog mode" is selected and the "Reset" input bit is set permanently while the drive moves clear.

- **Function of the software limit switches**
 - Monitoring of the software limit switches is activated if the value of the right software limit switch is larger than the value of the left software limit switch during startup and if the axis is referenced.
 - In jog mode, the axis is stopped when three position windows before the software limit switch position are reached (stop ramp t13).
 - In jog mode, setting PO1:Bit 15 (or DI12) switches off monitoring of the software limit switches.

- **Moving clear of the software limit switch**
 - Opposite direction of travel
 The drive can move beyond the software limit switch travel range when "jog mode" is selected, the "Reset" input bit is set permanently while the drive moves clear, and "opposite direction of travel" is specified.
 - Direction of travel in both directions
 Select "jog mode", set the input bits "Reset" and "/SWLS" (deactivated software limit switches) permanently while the drive moves clear and select the direction of travel to move the axis. It is possible to move further into the travel range of the software limit switches.
 - Reference travel
 The axis is referenced again when you select reference travel and set the "Reset" input bit permanently while the drive moves clear. You can now move the drive again in the travel range of the software limit switches.

- **Encoder monitoring function**
 When encoder monitoring is activated, the encoder signals are monitored with respect to plausibility (direction of rotation) and wire breakage. In case of an error, the error message F116, suberror code 14 (encoder) is issued when the timeout interval set during startup has elapsed.

- **Display of suberror codes**
 - Terminal control:
 The suberror code pertaining to F116 is displayed on the interface of the application module and via the parameter tree in error status (P012).
 - Fieldbus control:
 In addition to terminal control, the suberror code is issued via PI1: bit 8 – 15.
7.3 **Diagnostics**

7.3.1 **Monitor mode**

You can call up the monitor during operation by selecting [MotionStudio] / [Application modules] / [Simple Positioning]. Next click the [Monitor] button (see chapter “Start Simple Positioning”, section “Start monitor”).

7.3.2 **Fieldbus mode**

The process input and output data transferred via fieldbus are displayed in decoded form (see following figure).
7.3.3 Terminal mode

The binary input and output signals are displayed in decoded form (see following figure).

The assignment of input and output signals depends on the selected operating mode. Read chapter "Terminal control via digital module FIO21B".
7.4 **Control mode**

You can use the [Control] button to move the drive manually via the user interface. The process data (in fieldbus mode) or the binary signals (in terminal mode) are ignored. Before control mode becomes active, you must acknowledge the following safety note.

- If communication is interrupted, the drive stops after the timeout interval set here.
- In control mode, you can specify the respective signals and send them to the drive by clicking [Send data].
- You can stop the drive at any time using the [Stop] button.

To go back to the status view, click the [Status] button and acknowledge the following safety information (see following figure).
8 Appendix

8.1 Compatibility analysis for positioning with MOVIDRIVE® B / MOVITRAC® B

<table>
<thead>
<tr>
<th>Fieldbus interface</th>
<th>MOVIDRIVE® B Positioning</th>
<th>MOVITRAC® B Simple positioning</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>3 PD</td>
<td>3 PD</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Terminal assignment</th>
<th>MOVIDRIVE® B</th>
<th>MOVITRAC® B</th>
</tr>
</thead>
<tbody>
<tr>
<td>DI00: /Controller inhibit</td>
<td>DI00: CW limit switch</td>
<td></td>
</tr>
<tr>
<td>DI01: Enable</td>
<td>DI01: CW stop</td>
<td></td>
</tr>
<tr>
<td>DI02: Error reset</td>
<td>DI02: CCW limit switch</td>
<td></td>
</tr>
<tr>
<td>DI03: Cam</td>
<td>DI03: IPOS input for encoder evaluation</td>
<td></td>
</tr>
<tr>
<td>DI04: /CW limit switch</td>
<td>DI04: IPOS input for encoder evaluation</td>
<td></td>
</tr>
<tr>
<td>DI05: /CCW limit switch</td>
<td>DI05: TF evaluation</td>
<td></td>
</tr>
<tr>
<td>DO00: No error</td>
<td>DO00: No malfunction</td>
<td></td>
</tr>
<tr>
<td>DO01: Ready</td>
<td>DO02: Brake released</td>
<td></td>
</tr>
<tr>
<td>DO02: IPOS output</td>
<td>DO02: IPOS output</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Motor encoder</th>
<th>Direct position control</th>
<th>Open loop – no position control</th>
</tr>
</thead>
<tbody>
<tr>
<td>External encoder</td>
<td>Direct position control</td>
<td>Not possible</td>
</tr>
<tr>
<td>Hiperc® encoder</td>
<td>Direct position control</td>
<td>Not possible</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Encoder monitoring</th>
<th>MOVIDRIVE® B</th>
<th>MOVITRAC® B</th>
</tr>
</thead>
<tbody>
<tr>
<td>Realized via firmware</td>
<td>Realized via IPOSplus®</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Position control</th>
<th>Yes (drive remains energized)</th>
<th>No (brake is applied, de-energized drive)</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Setting range</th>
<th>High</th>
<th>Low</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Ramp type</th>
<th>Linear</th>
<th>Linear or asymptotic</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Additional ramp type</th>
<th>Sine, square, jerk</th>
<th>Not possible</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Reference travel</th>
<th>Realized via firmware (Type 0 – 8)</th>
<th>Realized via IPOSplus® program (Type 3, 4, 5, 8)</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Jog mode</th>
<th>Position-controlled</th>
<th>Speed-controlled</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Positioning mode</th>
<th>Position-controlled</th>
<th>Speed-controlled</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Positioning characteristics</th>
<th>MOVIDRIVE® B</th>
<th>MOVITRAC® B</th>
</tr>
</thead>
<tbody>
<tr>
<td>Direct position control (via firmware)</td>
<td>• EI7C encoder type: IPOSplus®-controlled run-in to target with linear deceleration ramp and controlled brake application.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• HTL encoder type: IPOSplus®-controlled run-in to target with asymptotic deceleration ramp and controlled brake application.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>On-the-fly</th>
<th>MOVIDRIVE® B</th>
<th>MOVITRAC® B</th>
</tr>
</thead>
<tbody>
<tr>
<td>Setpoint position</td>
<td>Setpoint position</td>
<td></td>
</tr>
<tr>
<td>Setpoint speed</td>
<td>Setpoint speed</td>
<td></td>
</tr>
<tr>
<td>Ramp switch-over</td>
<td>Ramp switch-over</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Error messages:</th>
<th>MOVIDRIVE® B</th>
<th>MOVITRAC® B</th>
</tr>
</thead>
<tbody>
<tr>
<td>• F78 software limit switch</td>
<td>Firmware trips inverter error and stops the drive</td>
<td></td>
</tr>
<tr>
<td>• F79 hardware limit switch approached</td>
<td>IPOSplus® stops movement and displays error.</td>
<td></td>
</tr>
<tr>
<td>• F14 encoder error</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Index

A
Applicable documentation .. 6

B
Bus installation MOVITRAC® B 19
Bus system .. 8

C
Cables .. 12
Compatibility comparison of MDX B / MC B........... 39
Control mode ... 38
Copyright .. 6

D
Description of functions
Four operating modes .. 14
Diagnostics ... 36
Fieldbus mode .. 36
Monitor mode ... 36
Terminal mode .. 37
Documentation, applicable ... 6

E
Embedded safety notes ... 5
Exclusion of liability .. 6

F
Fields of application ... 9
Functional Description .. 14
Functional description
Four operating modes .. 14
Limit switches, reference position and machine zero .. 14

H
Hoist applications .. 8

I
Installation .. 17
Bus installation MOVITRAC® B 19
MOVITOOLS® MotionStudio 17
Terminal control via digital module FIO21B 20
Wiring diagram MOVITRAC® B 18

L
 Liability .. 6
 Liability for defects ... 6

M
Monitoring functions .. 35

N
Notes
Designation in the documentation 5

O
Operating modes, overview 33

P
Parameters and IPOS variables 31
Prerequisites ... 12
Inverters, motors and encoders 12
PC and software ... 12
Process data assignment for control via fieldbus gateway (SBus) .. 15
Process input data .. 16
Process output data ... 15
Product names .. 6
Project planning ... 12
Limit switches, reference position and machine zero .. 14
PC and software ... 12
Prerequisites ... 12
Project planning guidelines for hoists 8, 13

S
Safety notes .. 7
Designation in the documentation 5
General information .. 7
Structure of the embedded safety notes 5
Structure of the section-related safety notes 5
Section-related safety notes 5
Setting the monitoring functions 28
Signal words in safety notes 5
Simple positioning speed characteristics 10
Starting the drive .. 33
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Startup</td>
<td>21</td>
</tr>
<tr>
<td>Calculating the scaling factors</td>
<td>24</td>
</tr>
<tr>
<td>Finish</td>
<td>30</td>
</tr>
<tr>
<td>General requirements</td>
<td>21</td>
</tr>
<tr>
<td>Initial screen</td>
<td>22</td>
</tr>
<tr>
<td>Parameters and IPOS variables</td>
<td>31</td>
</tr>
<tr>
<td>Selecting a setpoint source</td>
<td>23</td>
</tr>
<tr>
<td>Setting parameters and limits</td>
<td>25</td>
</tr>
<tr>
<td>Setting the monitoring functions</td>
<td>28</td>
</tr>
<tr>
<td>Setting the parameters for terminal control</td>
<td>27</td>
</tr>
<tr>
<td>Starting the application module</td>
<td>21</td>
</tr>
<tr>
<td>System description</td>
<td>9</td>
</tr>
<tr>
<td>T Target group</td>
<td>7</td>
</tr>
<tr>
<td>Terminal control via digital module FIO21B</td>
<td>20</td>
</tr>
<tr>
<td>Trademarks</td>
<td>6</td>
</tr>
<tr>
<td>U Use, designated</td>
<td>8</td>
</tr>
</tbody>
</table>