Manual

MOVIAxis® Multi-Axis Servo Inverters
Parameter Description
Contents

1 **MX Parameter Description** ... 5
 1.1 Parameter description for display values ... 5
 1.1.1 Process values of active drive ... 5
 1.1.2 Process values of output stage ... 7
 1.1.3 Unit status .. 11
 1.1.4 Unit data .. 14
 1.1.5 Unit nameplate .. 17
 1.1.6 Error history 0 – 5 ... 18
 1.2 Parameter description of drive data .. 23
 1.2.1 Controller parameter P1 / P2 / P3 ... 23
 1.2.2 Motor parameter P1/P2/P3 .. 36
 1.2.3 Control functions P1 / P2 / P3 ... 41
 1.2.4 Limit values P1/P2/P3 .. 51
 1.2.5 User-defined units P1/P2/P3 .. 54
 1.2.6 Reference travel P1/P2/P3 ... 58
 1.3 Communication parameter description .. 73
 1.3.1 PDO Editor Process Data Object Editor 73
 1.3.2 Basic settings 73
 1.3.3 IN buffer .. 81
 1.3.4 Control words 0 – 3 .. 83
 1.3.5 Error message words .. 88
 1.3.6 IN process data ... 89
 1.3.7 Status words 0 – 3 ... 91
 1.3.8 OUT process data .. 98
 1.3.9 OUT buffer 0 – 7 ... 100
 1.3.10 I/O basic unit ... 104
 1.3.11 I/O option 1 ... 104
 1.3.12 I/O option 2 ... 107
 1.4 Encoder parameter description .. 110
 1.4.1 Encoder input of basic unit .. 110
 1.4.2 Position mode settings ... 114
 1.4.3 Actual values .. 115
1.5 Parameter description for FCB parameter setting 120
 1.5.1 FCB Function Control Block .. 120
 1.5.2 Basic settings ... 120
 1.5.3 FCB 05 Speed control ... 122
 1.5.4 FCB 06 Interpolated speed control .. 125
 1.5.5 FCB 07 Torque control .. 131
 1.5.6 FCB 08 Interpolated torque control.. 132
 1.5.7 FCB 09 Positioning .. 134
 1.5.8 FCB 10 Interpolated positioning .. 142
 1.5.9 FCB 12 Reference travel ... 144
 1.5.10 FCB 18 Encoder adjustment.. 145
 1.5.11 FCB 20 Jog mode.. 153
 1.5.12 FCB 21 Brake test ... 155
 1.5.13 FCB 22 Multi-drive... 159
 1.5.14 FCB 25 Rotor position identification .. 165
 1.5.15 FCB 26 Stop at user limits... 170

1.6 Parameter description for unit functions ... 172
 1.6.1 Setup ... 172
 1.6.2 Output stage error response.. 175
 1.6.3 Reset behavior.. 181

2 MXR Parameter Description ... 182
 2.1 Parameter description for display values .. 182
 2.1.1 Process values output stage.. 182
 2.1.2 Unit status .. 183
 2.1.3 Unit data .. 183
 2.1.4 Unit nameplate... 183
 2.1.5 Error history .. 184
 2.1.6 Line process values ... 184

 2.2 Parameter description of system data .. 184
 2.2.1 Startup ... 184
 2.2.2 Controller parameters .. 185
 2.2.3 Basic settings ... 186

 2.3 Communication parameter description ... 186
 2.3.1 Control word CAN1 / CAN2 / communication options 186
 2.3.2 Status word CAN1 / CAN2 / communication options 187

 2.4 Parameter description for unit functions ... 189
 2.4.1 Setup .. 189
 2.4.2 Reset behavior... 189

Index ... 190
1 MX Parameter Description

The index contains a list with parameters sorted in ascending index order with references to the pages with the relevant parameter description.

Default values are underlined.

1.1 Parameter description for display values

1.1.1 Process values of active drive

10120.1 Velocity
Unit: User-defined unit (default: rpm)
Resolution: 10^-3
Value range: -2147483648 – 0 – 2147483647, step 1
Current actual velocity in user-defined units.

9704.1 Position
Unit: User-defined unit (default: rev)
Resolution: 1/65536
Value range: -2147483648 – 0 – 2147483647, step 1
Current actual position in user-defined units.

9839.1 Modulo position
Unit: User-defined unit (default: rev)
Resolution: 1/65536
Value range: -2147483648 – 0 – 2147483647, step 1
Current actual modulo position in user-defined units with the set modulo limits:
- Parameter 9594.10 modulo overflow (page 53),
- Parameter 9594.1 modulo underflow (page 54).

9985.1 Torque
Unit: User-defined unit (default: % nominal motor torque)
Resolution: 10^-3
Value range: -2147483648 – 0 – 2147483647, step 1
Current torque in user-defined units.

9980.1 Speed
Unit: 1/min
Resolution: 10^-3
Value range: -2147483648 – 0 – 2147483647, step 1
Current actual speed (system unit).

10068.1 Position
Unit: Increments
Resolution: 1/65536
Value range: -2147483648 – 0 – 2147483647, step 1
Current actual position in increments (system unit).
9784.1 Torque

Unit: % nominal motor torque
Resolution: 10^{-3}
Value range: -2147483648 – 0 – 2147483647, step 1
Current motor torque (system unit).

9951.1 Effective minimum torque

Unit: %
Resolution: 10^{-3}
Value range: -2147483648 – 0 – 2147483647, step 1
Effective minimum torque (system unit).
This parameter indicates the currently effective negative torque limit. This limit can be
- the system limit,
- the application limit,
- the current limit,
- one of the FCB limits,
- or a thermal limit of the axis module ($I \times t$ model)
depending on which limit would apply first.

9951.2 Effective maximum torque

Unit: %
Resolution: 10^{-3}
Value range: -2147483648 – 0 – 2147483647, step 1
Effective maximum torque (system unit).
This parameter indicates the currently effective positive torque limit. This limit can be
- the system limit,
- the application limit,
- the current limit,
- one of the FCB limits,
- or a thermal limit of the axis module ($I \times t$ model)
depending on which limit would apply first.

9872.255 KTY temperature motor

Unit: °C
Resolution: 10^{-3}
KTY motor temperature of the current parameter set.
This is the temperature of the sensor, which may deviate from the motor temperature depending on the dynamics.
Remedy: Motor utilization with calculated motor model.
The KTY sensor has a tolerance of ± 5 %.
Parameter Description for Display Values

9874.255 Motor utilization, maximum KTY model

- **Unit:** %
- **Resolution:** 10^{-3}

Motor utilization of the current parameter set.

The motor utilization uses a motor model to calculate the temperature transition of the motor to the KTY sensor. The injected current is also taken into account. The display is output in % and starts at a motor model temperature of 40 °C = 0% and a shutdown temperature = 100%.

1.1.2 Process values of output stage

MOVIAXIS® monitors a number of internal values to prevent overloading in the axis module. These values include:

- Chip hub
- Chip temperature
- Heat sink temperature
- Load on electromechanics

The customer benefits lie in the predictable behavior of MOVIAXIS®, which for example, prevents unwanted or unexpected machine failure and ensures reproducible behavior.

9793.1 Output frequency

- **Unit:** Hz
- **Resolution:** 10^{-3}

Displays the current output frequency to the motor in Hz.

9786.1 Output current

- **Unit:** % nominal axis current
- **Resolution:** 10^{-3}

Displays the present output current in % of the nominal axis current.

9787.1 Torque current

- **Unit:** % nominal axis current
- **Resolution:** 10^{-3}

Displays the torque-generating Q current in % of the nominal axis current.

9788.1 Magnetization current

- **Unit:** % nominal axis current
- **Resolution:** 10^{-3}

Displays the magnetization-generating D current in % of the nominal axis current.
MX Parameter Description
Parameter description for display values

<table>
<thead>
<tr>
<th>Parameter Description</th>
<th>Unit</th>
<th>Resolution</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>8326.0 Output current</td>
<td>A</td>
<td>10^{-3}</td>
<td>Displays the current output current in A (output current).</td>
</tr>
<tr>
<td>9853.1 Torque current</td>
<td>A</td>
<td>10^{-3}</td>
<td>Displays the torque-generating Q current in A.</td>
</tr>
<tr>
<td>9855.1 Magnetization current</td>
<td>A</td>
<td>10^{-3}</td>
<td>Displays the magnetization-generating D current in A.</td>
</tr>
<tr>
<td>8325.0 DC link voltage</td>
<td>V</td>
<td>10^{-3}</td>
<td>Displays the actual DC link voltage in V.</td>
</tr>
<tr>
<td>9706.1 Output voltage</td>
<td>V</td>
<td>10^{-3}</td>
<td>Displays the current output voltage in V.</td>
</tr>
<tr>
<td>9791.1 Torque voltage</td>
<td>V</td>
<td>10^{-3}</td>
<td>Displays the torque-generating Q voltage in V.</td>
</tr>
<tr>
<td>9792.1 Magnetization voltage</td>
<td>V</td>
<td>10^{-3}</td>
<td>Displays the magnetization-generating D voltage in V.</td>
</tr>
<tr>
<td>9859.1 Thermal current limit</td>
<td>% nominal axis current</td>
<td>10^{-3}</td>
<td>Displays the current thermal current limit in % of the nominal axis current. The axis has a brief overload capacity up to this maximum limit (maximum operating point). The thermal current limit is dynamically adjusted according to the utilization of the axis. It starts at 250% and becomes smaller depending on the utilization.</td>
</tr>
</tbody>
</table>
9811.5 Total utilization

Unit: %
Resolution: 10^{-3}
Total utilization of the axis in percent.
The highest value of the 4 utilization calculations
- Chip rise,
- Chip absolute,
- Heat sink,
- And electromechanics
is displayed.
The axis trips at 100%.
The parameter is filtered for display because utilization can change very dynamically in particular for the chip.

9811.1 Dynamic utilization chip rise

Unit: %
Resolution: 10^{-3}
Dynamic utilization of the chip rise in percent ($I\times t$ utilization).
The parameter is unfiltered.

9811.2 Dynamic utilization chip absolute

Unit: %
Resolution: 10^{-3}
Absolute dynamic utilization of the chip in percent ($I\times t$ utilization).
The parameter is unfiltered.

9811.4 Heat sink utilization

Unit: %
Resolution: 10^{-3}
Heat sink utilization in percent ($I\times t$ utilization).
The parameter is unfiltered.

9795.1 Heat sink temperature

Unit: °C
Resolution: 10^{-3}
Temperature of the heat sink in °C.
Parameter Description MOVIAXIS® – MOVIAXIS® Multi-Axis Servo Inverters

Parameter description for display values

9811.3 Electromechanical utilization

- **Unit:** %
- **Resolution:** 10^{-3}
- Electromechanical utilization in percent (I×t utilization).
- The parameter is unfiltered.

8328.0 ON hours

- **Unit:** h
- **Resolution:** 10^{-2}
- The ON hours are recorded every minute as long as the 24 V control voltage is present and then stored in a non-volatile memory. The quantification in minutes means that a maximum of one minute of ON hours can be lost in case the unit is switched off or rebooted as error acknowledgement.
- The value is displayed in hours with 2 decimal places. The ON hours are reset via the parameter 8596.0 Reset statistics data or 9727.3 Delivery status.
- When an axis error occurs, the ON hours are written to the error memory (see error memory parameters) to better diagnose the time at which the error occurred.
- For more thorough SEW internal diagnostics, there is an additional ON hours counter that cannot be reset.

8329.0 Enable hours

- **Unit:** h
- **Resolution:** 10^{-2}
- In contrast to the ON hours, the enable hours are counted only when the output stage is active. This is based on the status parameter 9702.1 Bit 0 output stage enabled.
- The enable hours are recorded every minute and stored in a non-volatile memory. The quantification in minutes means that a maximum of one minute of enable hours can be lost in case the unit is switched off or rebooted as error acknowledgement.
- The value is displayed in hours with 2 decimal places. The enable hours are reset via the parameter 8596.0 Reset statistics data or 9727.3 Delivery status.
- When an axis error occurs, the enable hours are written to the error memory (see error memory parameters) to better diagnose the time at which the error occurred.
1.1.3 Unit status

9702.2 Axis status
- Value range:
 - 0 = Not ready
 - 1 = Ready, output stage inhibited
 - 2 = Ready, output stage enabled

Displays axis status.

9702.3 Current FCB
- Displays currently active FCB.

9702.6 Current FCB instance
- Displays the currently active FCB instance.
 - The following FCBs offer more than one instance:
 - FCB09 Positioning (64 instances)
 - FCB05 Speed control
 - FCB Torque control

9702.4 Active parameter set
- Displays current parameter set 1 – 3.

9873.1 Active factory setting
- Value range:
 - 0 = No factory setting (cannot be selected via parameter tree)
 - 1 = Basic initialization
 - 2 = Delivery state
 - 3 = Factory setting
 - 4 = Customer set 1
 - 5 = Customer set 2

This parameter indicates whether and what type of initialization is currently active.
For a description of the individual initialization options, see section "Unit Functions / Setup" (page 172).

9702.1 Status display
- Bit 0 Output stage enabled
 - "Output stage enabled" is a subset of "Ready for operation" which is set to "1" in all FCBs except for FCB 01 Output stage inhibit.
- Bit 1 Ready
 - 0 signal: The axis is currently not ready for operation. Reasons can be error states or operating states outside FCB processing (supply voltage off, supply module not ready). All errors are "locked" in the final state.
 - 1 signal: The axis is in FCB processing. If no FCB is selected, the default FCB 13 Stop at application limits will become active. The 7-segment display will show the number "13". All errors are "locked" in the final state. See also the operating instructions "MOVIAxis® MX Multi-Axis Servo Inverters", chapter "Operating Displays and Errors".
MX Parameter Description
Parameter description for display values

• Bit 2 Setpoints active
 This signal is active in all setpoint processing FCBs when setpoints are being processed. This is FCB 05 – FCB 10. The signal is set to "0" in all stop FCBs as well as in the default FCB.
 The signal is still 0 during the brake release time.

• Bit 5 Error response display only
 This signal is a subset of "Fault" and displays error responses that are configured to "Display fault". The drive continues to operate normally.

• Bit 6 Error response is not equal to output stage inhibit
 This signal is a subset of "Fault" and indicates that the drive can be decelerated using a ramp (motor does not coast to a halt / mechanical brake is not applied). This bit is also set when "Signal displayed error".

• Bit 7 Error response output stage inhibit
 This signal is a subset of "Fault" and indicates that the motor coasts to a halt or, if installed, the mechanical brake is applied.

• Bit 8 24 V standby mode
 Is set when the power supply is removed.
 The threshold for this is a parameterizable DC link voltage. See parameter 9617.7 DC link voltage - one level default ff.

• Bit 9 Supply module not ready for operation.
 If the supply module does not send a ready signal, e.g. due to brake resistor overload or supply system undervoltage.

• Bit 10 Axis module not ready
 This parameter is a subset of "Bit 1 Ready" and refers only to the axis module.

• Bit 11 Safe stop 1
 Indicates whether a safety relay 1 has detected a safe stop. Only active in conjunction with optional safety relays (device type MXA81A - or MXA82A -..).

• Bit 12 Safe stop 2
 Indicates whether a safety relay 2 has detected a safe stop. Only active in conjunction with two optional safety relays (MXA82A -..).

• Bit 13 Process data not ready "C3"
 Is displayed when one of the 16 "In buffers" is set to communication and the corresponding PDO has never been received. This signal is not generated any longer once the PDO was received once. Instead, a timeout error is generated when the communication is disconnected.

• Bit 19 Encoder not ready
 Displays whether the encoder is communicating. No communication means the encoder or wiring might be defective or that motor startup was not executed.

• Bit 20 Parameter download active
 Indicates whether parameters are currently being downloaded.
• Bit 22 Synchronization missing
 If a synchronization source is set in parameter 9836.1 Synchronization source, but the synchronization signal has not been received yet after a reboot.

• Bit 30 Line voltage on
 Shows whether the supply voltage is present at the supply module.
 • Line voltage present = TRUE
 • Line voltage not present = FALSE
 You can parameterize how fast a power failure is detected. See parameter 9746.1 Power off response.

• Bit 31 Line voltage off
 Shows whether the supply voltage is present at the supply module.
 • Line voltage present = FALSE
 • Line voltage not present = TRUE
 You can parameterize how fast a power failure is detected. See parameter 9746.1 Power off response.

9950.1 Error end status
Displays the currently pending error status:
• Bit 0 Displaying
 The axis only displays the error in the 7-segment display. The axis continues to run in normal operation.
• Bit 1 Waiting
 The axis waits for a manual reset. The error is reset and operation is continued without boot reset of the firmware.
• Bit 2 Locked
 The axis waits for a manual reset. The axis then reboots (like when it is switched on).

9702.5 Error code
Displays the pending error code. See also list of faults in the MOVIAxis® operating instructions.

10071.1 Suberror code
Displays the pending suberror code. See also list of faults in the MOVIAxis® operating instructions.

8617.0 Manual reset
Value range:
• 0 = No
• 1 = Yes
 Manual reset to reset the error.
1.1.4 Unit data

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9701.1 – 5 Axis type</td>
<td>Displays the order designation of the unit, e.g. MXA-80A-004-503-00.</td>
</tr>
<tr>
<td>9701.10 Unit series</td>
<td>Displays the unit series, e.g. MOVIAXIS®.</td>
</tr>
<tr>
<td>9701.11 Unit variant</td>
<td>Displays the unit variant.</td>
</tr>
<tr>
<td>9701.13 Nominal unit voltage</td>
<td>Unit: mV
Value range: 0 – 2000000, step 1
Displays the nominal unit voltage.</td>
</tr>
<tr>
<td>9701.14 Number of input phases</td>
<td>Value range:
• 1 = Single-phase
• 3 = Three phase
Displays the number of input phases.</td>
</tr>
<tr>
<td>9701.15 Radio interference suppression on mains end</td>
<td>Value range:
• 1 = none
• 2 = A
• 3 = B
Displays the implemented radio interference suppression compliant with the EMC product standard EN 61800-3.</td>
</tr>
<tr>
<td>9617.1 Maximum possible output speed</td>
<td>Unit: 10^{-3}/min
Value range: 0 – 1000000, step 1
Maximum possible output speed that the axis module can control.</td>
</tr>
<tr>
<td>9617.6 Nominal unit current</td>
<td>Unit: mA
Value range: 0 – 30000 – 1000000, step 1
Nominal unit current, r.m.s. value.</td>
</tr>
<tr>
<td>9617.2 Maximum output current</td>
<td>Unit: mA
Value range: 0 – 12000 – 1000000, step 1
Maximum possible output current, r.m.s. value.</td>
</tr>
<tr>
<td>9701.17 Standard encoder system</td>
<td>Value range:
• 13 = Hiperface®/resolver
Displays the SEW standard encoder for the unit.</td>
</tr>
<tr>
<td>9701.18 Unit serial number</td>
<td>Value range: 0 – 4294967295, step 1
Displays the serial number.</td>
</tr>
<tr>
<td>Parameter Description</td>
<td>Description</td>
</tr>
<tr>
<td>-----------------------</td>
<td>-------------</td>
</tr>
<tr>
<td>MX Parameter Description</td>
<td>Parameter description for display values</td>
</tr>
<tr>
<td>9823.1 – 5 Unit signature</td>
<td>Display and entry of the unit signature. You can assign a name to the device to have it displayed in the hardware tree and the visualization components.</td>
</tr>
<tr>
<td>9701.30 Firmware part number basic unit</td>
<td>Displays the firmware part number of the basic unit.</td>
</tr>
<tr>
<td>9701.31 Firmware status basic unit</td>
<td>Displays the firmware status of the basic unit.</td>
</tr>
<tr>
<td>9701.32 Firmware version number basic unit</td>
<td>Displays the firmware version number of the basic unit.</td>
</tr>
<tr>
<td>9880.3 Initial boot loader part number</td>
<td>Value range: 0 – 4294967295, step 1 Initial boot loader part number.</td>
</tr>
<tr>
<td>9880.5 Initial boot loader status</td>
<td>Value range: 0 – 4294967295, step 1 Initial boot loader status.</td>
</tr>
<tr>
<td>9881.3 Boot loader part number</td>
<td>Value range: 0 – 4294967295, step 1 Bootloader part number.</td>
</tr>
<tr>
<td>9881.5 Boot loader status</td>
<td>Value range: 0 – 4294967295, step 1 Boot loader status.</td>
</tr>
<tr>
<td>9701.33 DSP firmware part number</td>
<td>Value range: 0 – 4294967295, step 1 DSP firmware part number.</td>
</tr>
<tr>
<td>9701.34 DSP firmware status</td>
<td>Value range: 0 – 4294967295, step 1 DSP firmware status.</td>
</tr>
<tr>
<td>9701.35 DSP firmware version number</td>
<td>Value range: 0 – 4294967295, step 1 DSP firmware version number.</td>
</tr>
<tr>
<td>9701.37 FPGA status</td>
<td>Value range: 0 – 4294967295, step 1 FPGA firmware status.</td>
</tr>
<tr>
<td>9701.38 FPGA status</td>
<td>Value range: 0 – 4294967295, step 1 FPGA firmware status.</td>
</tr>
</tbody>
</table>
Parameter description for display values

9701.41 Signal electronics
Value range: 0 – 4294967295, step 1
Hardware status (computer card).

9701.50 Option in slot 1
Value range:
- 0 = No option
- 1 = Unknown option
- 2 = XIO11A (Digital I/O)
- 3 = XIA11A (Analog-Digital I/O)
- 4 = XHE41A (Plug-in control)
- 5 = XHC41A (Plug-in control)
- 6 = XHA41A (Plug-in control)
- 7 = XGS11A (Multi-encoder card)
- 8 = XGH11A (Multi-encoder card)
- 9 = XFE24A (EtherCAT card)
- 13 = XFA11A (K-Net)

9701.60 Option in slot 2
Value range:
See parameter 9701.50 "Option in slot 1" (page 16).

9701.70 Option in slot 3
Value range:
See parameter 9701.50 "Option in slot 1" (page 16).

9701.53 Option in slot 1, firmware part number
Displays firmware part number of option 1.

9701.63 Option in slot 2, firmware part number
Displays firmware part number of option 2.

9701.73 Option in slot 3, firmware part number
Displays firmware part number of option 3.

9701.54 Option in slot 1, firmware status
Displays firmware status of option 1.

9701.64 Option in slot 2, firmware status
Displays firmware status of option 2.

9701.74 Option in slot 3, firmware status
Displays firmware status of option 3.
1.1.5 **Unit nameplate**

The electronic motor nameplate with the corresponding motor data is supported.

9701.110 **Status 1**
Delivery state unit status field 1: Unit firmware.

9701.111 **Status 2**
Delivery state unit status field 2: FPGA/DSP firmware.

9701.113 **Status 4**
Delivery state unit status field 4: Control electronics.

9701.114 **Status 5**
Delivery state unit status field 5: Power section.

9701.115 **Status 6**
Delivery state unit status field 6: Switched-mode power supply.

9701.116 **Status 7**
Delivery state unit status field 7: Attenuation.

9701.117 **Status 8**
Delivery state unit status field 8: Safe technology.

9701.118 **Status 9**
Delivery state unit status field 9: Reserve.

9701.125 **Option 1**
software status
Delivery state option 1: Status field 1 software.

9701.126 **Option 1**
hardware status
Delivery state option 1: Status field 2 hardware.

9701.135 **Option 2**
software status
Delivery state option 2: Status field 1 software.

9701.136 **Option 2**
hardware status
Delivery state option 2: Status field 2 hardware.

9701.145 **Option 3**
software status
Delivery state option 3: Status field 1 software.

9701.146 **Option 3**
hardware status
Delivery state option 3: Status field 2 hardware.

9701.155 **Option 4**
software status
Delivery state option 4: Status field 1 software.

9701.156 **Option 4**
hardware status
Delivery state option 4: Status field 2 hardware.

9701.165 **Option 5**
software status
Delivery state option 5: Status field 1 software.

9701.166 **Option 5**
hardware status
Delivery state option 5: Status field 2 hardware.
1.1.6 Error history 0 – 5

MOVIAxis® stores the last 6 error states in a ring memory. A certain number of parameters are "frozen" here. Parameter 9626.1 Pointer to error memory t0 – t5 (page 18) points to the last error saved. Another index range is described each time an error is saved.

The parameter tree adapts the interface so that the error ring memory 0 – 5 is always sorted chronologically. Error ring memory 0 is the last one saved.

Error memory t5 is described below.

9626.1 Error memory pointer
Value range: 0 – 5, step 1
Pointer to error memory t0 – t5.

9628.1 Inputs
Value range: 0 – 4294967295, step 1
Displays binary inputs of basic unit t5.

9630.1 Outputs
Value range: 0 – 4294967295, step 1
Displays binary outputs of basic unit t5.

9629.1 Inputs
Value range: 0 – 4294967295, step 1
Displays binary inputs of option 1 t5.

9631.1 Outputs
Value range: 0 – 4294967295, step 1
Displays binary outputs option 1 t5.

9629.2 Inputs
Value range: 0 – 4294967295, step 1
Displays binary inputs of option 2 t5.

9631.2 Outputs
Value range: 0 – 4294967295, step 1
Displays binary outputs option 2 t5.

9508.1 Resolution
Value range: 0 – 4294967295, step 1
User-defined unit position resolution t5.

9509.10 Denominator
Value range: 0 – 4294967295, step 1
User-defined unit position denominator t5.

9509.1 Numerator
Value range: 0 – 4294967295, step 1
User-defined unit position numerator t5.

9507.50 Position
Value range: 0 – 4294967295, step 1
User-defined unit position t5.

9502.1 Resolution
Value range: 0 – 4294967295, step 1
User-defined unit speed resolution t5.
<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9503.10 Denominator</td>
<td>Value range: 0 – 4294967295, step 1 User-defined unit speed denominator t5.</td>
</tr>
<tr>
<td>9503.1 Numerator</td>
<td>Value range: 0 – 4294967295, step 1 User-defined unit speed numerator t5.</td>
</tr>
<tr>
<td>9501.50 Velocity</td>
<td>Value range: 0 – 4294967295, step 1 User-defined unit speed characters 0 – 3 t5.</td>
</tr>
<tr>
<td>9501.51 Velocity</td>
<td>Value range: 0 – 4294967295, step 1 User-defined unit speed characters 4 – 7 t5.</td>
</tr>
<tr>
<td>9501.52 Velocity</td>
<td>Value range: 0 – 4294967295, step 1 User-defined unit speed characters 8 – 11 t5.</td>
</tr>
<tr>
<td>9501.53 Velocity</td>
<td>Value range: 0 – 4294967295, step 1 User-defined unit speed characters 12 – 15 t5.</td>
</tr>
<tr>
<td>9812.1 Rel.</td>
<td>Unit: % Resolution: 10^-3 Value range: 0 – 300000, step 1 Dynamic utilization relative t5.</td>
</tr>
<tr>
<td>9623.1 Abs.</td>
<td>Unit: % Resolution: 10^-3 Value range: 0 – 300000, step 1 Dynamic utilization absolute t5.</td>
</tr>
<tr>
<td>10069.1 Model</td>
<td>Unit: % Resolution: 10^-3 Value range: 0 – 300000, step 1 Motor utilization current motor model t5.</td>
</tr>
<tr>
<td>9538.1 KTY</td>
<td>Unit: % Resolution: 10^-3 Value range: 0 – 300000, step 1 Motor utilization current motor KTY t5.</td>
</tr>
<tr>
<td>9622.1 Heat exchanger</td>
<td>Unit: % Resolution: 10^-3 Value range: 0 – 300000, step 1 Cooling unit utilization t5.</td>
</tr>
</tbody>
</table>
MX Parameter Description

Parameter description for display values

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Unit</th>
<th>Resolution</th>
<th>Value Range</th>
<th>Step</th>
</tr>
</thead>
<tbody>
<tr>
<td>9624.1 Thermal</td>
<td>Thermal utilization</td>
<td>%</td>
<td>10^{-3}</td>
<td>0 – 300000</td>
<td>1</td>
</tr>
<tr>
<td>9635.1 Device</td>
<td>Device utilization</td>
<td>%</td>
<td>10^{-3}</td>
<td>0 – 300000</td>
<td>1</td>
</tr>
<tr>
<td>9627.1 Error</td>
<td>Display error code</td>
<td></td>
<td></td>
<td>0 – 99</td>
<td>1</td>
</tr>
<tr>
<td>10072.1 Suberror</td>
<td>Suberror code</td>
<td></td>
<td></td>
<td>0 – 32767</td>
<td>1</td>
</tr>
<tr>
<td>9636.1 DC link voltage</td>
<td>DC link voltage</td>
<td>mV</td>
<td></td>
<td>0 – 1000000</td>
<td>1</td>
</tr>
<tr>
<td>9505.1 Output voltage</td>
<td>Output voltage</td>
<td>mV</td>
<td></td>
<td>0 – 1000000</td>
<td>1</td>
</tr>
<tr>
<td>9500.6 Actual speed</td>
<td>Displays actual velocity current parameter set in</td>
<td>10^{-3}/min</td>
<td></td>
<td>-11000000 – 11000000</td>
<td>1</td>
</tr>
<tr>
<td>10070.1 Model</td>
<td>Motor temperature current motor model</td>
<td>°C</td>
<td>10^{-3}</td>
<td>-2147483648 – 0 – 2147483647</td>
<td>1</td>
</tr>
<tr>
<td>9545.1 KTY</td>
<td>Motor temperature current motor KTY</td>
<td>°C</td>
<td>10^{-3}</td>
<td>-2147483648 – 0 – 2147483647</td>
<td>1</td>
</tr>
</tbody>
</table>
Parameter Description

MX Parameter Description
Parameter description for display values

9505.30 ON hours

Unit: h
Resolution: 10^-2

The ON hours are recorded every minute as long as the 24 V control voltage is present and then stored in a non-volatile memory. The quantification in minutes means that a maximum of one minute of ON hours can be lost in case the unit is switched off or rebooted as error acknowledgement.

The value is displayed in hours with 2 decimal places. The ON hours are reset via the parameter 8596.0 Reset statistics data or 9727.3 Delivery status.

When an axis error occurs, the ON hours are written to the error memory (see error memory parameter) to better diagnose the time at which the error occurred.

For more thorough SEW internal diagnostics, there is an additional ON hours counter that cannot be reset.

9505.40 Enable hours

Unit: h
Resolution: 10^-2

In contrast to the ON hours, the enable hours are counted only when the output stage is active. This is based on the status parameter 9702.1 Bit 0 output stage enabled.

The enable hours are recorded every minute and stored in a non-volatile memory. The quantification in minutes means that a maximum of one minute of enable hours can be lost in case the unit is switched off or rebooted as error acknowledgement.

The value is displayed in hours with 2 decimal places. The enable hours are reset via the parameter 8596.0 Reset statistics data or 9727.3 Delivery status.

When an axis error occurs, the enable hours are written to the error memory (see error memory parameter) to better diagnose the time at which the error occurred.

9632.1 Device status

Value range: 0 – 4294967295, step 1
Displays unit status t5.

9506.6 Actual position

Unit: U
Resolution: 1/65536
Value range: -2147483648 – 0 – 2147483647, step 1
Actual position t5.

9633.1 Output current

Unit: % nominal axis current
Resolution: 10^-3
Value range: 0 – 300000, step 1
Output current t5.

9852.1 Phase failure detection

Value range: see index 8617.0 (page 181).
Line phase failure t5.
<table>
<thead>
<tr>
<th>MX Parameter Description</th>
<th>Parameter description for display values</th>
</tr>
</thead>
<tbody>
<tr>
<td>9504.1 Frequency</td>
<td>Unit: Hz</td>
</tr>
<tr>
<td></td>
<td>Resolution: 10^{-3}</td>
</tr>
<tr>
<td></td>
<td>Value range: 0 – 1000000, step 1</td>
</tr>
<tr>
<td></td>
<td>Frequency t5.</td>
</tr>
<tr>
<td>9634.1 Active current</td>
<td>Unit: % nominal axis current</td>
</tr>
<tr>
<td></td>
<td>Resolution: 10^{-3}</td>
</tr>
<tr>
<td></td>
<td>Value range: 0 – 300000, step 1</td>
</tr>
<tr>
<td></td>
<td>Active current t5.</td>
</tr>
</tbody>
</table>
1.2 Parameter description of drive data

MOVIAXIS® operates with the CFC control mode for asynchronous and synchronous motors with encoder feedback. MOVIAXIS® can be operated in the basic control types torque, speed and position control. This means that the customer can activate closed-loop control circuits where they are most suitable for the application. MOVIAXIS® can be implemented in a wide range of applications and, in many cases, can take on all the tasks of a motion controller.

1.2.1 Controller parameter P1 / P2 / P3

\[
8537.0 / 8538.0 / 9720.0 \text{ Direction of rotation reversal}
\]

Value range:
- \(0 = \text{Off}\)
- \(1 = \text{On}\)

Direction of rotation reversal P1.

INFORMATION
Sections and chapters that contain "P1 / P2 / P3" apply to all 3 parameter sets.
MX Parameter Description
Parameter description of drive data

The SEW-EURODRIVE standard defines that the motor rotates in clockwise direction (right) when the speed is positive and with increasing positions when viewed onto the motor shaft. Reversing the direction of rotation changes the sense of rotation of the motor without having to reverse the setpoint. Activating a reversal of the direction of rotation will invert the direction of rotation of the motor phases and encoder evaluation.

<table>
<thead>
<tr>
<th>Direction of rotation reversal</th>
<th>Speed setpoint</th>
<th>Direction of rotation motor shaft (looking onto the drive-end bearing shield)</th>
<th>Position</th>
<th>Actual speed value</th>
<th>Actual acceleration value</th>
</tr>
</thead>
<tbody>
<tr>
<td>0=Off, standard</td>
<td>Positive</td>
<td>Clockwise, "right"</td>
<td>Increases</td>
<td>Positive</td>
<td>Derived from the actual speed value</td>
</tr>
<tr>
<td></td>
<td>Negative</td>
<td>Counterclockwise, "left"</td>
<td>Decreases</td>
<td>Negative</td>
<td>Derived from the actual speed value</td>
</tr>
<tr>
<td>1=On, inverted</td>
<td>Positive</td>
<td>Counterclockwise, "left"</td>
<td>Increases</td>
<td>Positive</td>
<td>Derived from the actual speed value</td>
</tr>
<tr>
<td></td>
<td>Negative</td>
<td>Clockwise, "right"</td>
<td>Decreases</td>
<td>Negative</td>
<td>Derived from the actual speed value</td>
</tr>
</tbody>
</table>

The assignment of limit switches to the system is maintained.

When using this parameter, it is important to carefully check that the limit switch is connected properly and the reference point and travel positions are defined correctly.

Example: Reversal of direction of rotation 8537.0=0 (off) (page 23)
When the motor turns in clockwise direction, the drive will be properly stopped once it hits the positive limit switch. If it reaches the negative limit switch, the drive will respond with error code “27” (limit switches reversed).

Example: Reversal of direction of rotation 8537.0=1 (ON) (page 23)
When the motor turns in counterclockwise direction, the drive will be properly stopped once it hits the positive limit switch. If it reaches the negative limit switch, the drive will respond with error code “27” (limit switches reversed).

Do not mistake the parameter "Direction of rotation reversal P1; P8537.0 (page 23)" for the parameter "Counting direction encoder 1; P9719.1 (page 111)", see the "Encoders" chapter.

Current controller
9813.1 Activate I×t current reduction

Value range:
• 0 = Off
• 1 = On

The parameter cannot be edited in the parameter tree.

A current limit is set using the parameter setting "On" to ensure reliable operation of the axes even in the case of an overload.

The switch is only implemented in "Controller inhibit active" status.
Parameter Description of Drive Data

<table>
<thead>
<tr>
<th>Function</th>
<th>Feature</th>
<th>Consistency</th>
</tr>
</thead>
<tbody>
<tr>
<td>On default setting</td>
<td>Current is reduced before heat sink or power semiconductor triggers shutdown. Maximum available current < 250%.</td>
<td>Possibility of compensating load peaks that occur once. Might trigger subsequent errors because the required torque is not delivered any longer (e.g. lag error).</td>
</tr>
<tr>
<td>Off</td>
<td>Maximum available current = 250%</td>
<td>Immediate shutdown in the event of overload (results in controller inhibit). The entire device performance can be utilized.</td>
</tr>
</tbody>
</table>

9748.1 / 9748.2 / 9748.3 PWM frequency

- **Value range:**
 - 0 = 4 kHz
 - 1 = 8 kHz
 - 2 = 16 kHz

The **PWM frequency** is used to set the switching frequency at the inverter output. The cycle frequency is set to a fixed value and is not automatically reduced with high unit utilization.

A smaller modulation frequency reduces the switching losses in the output stage and, consequently, unit utilization. The motor noise, however, will increase.
The FCBs use different control structures.

The following table gives an overview of control structures activated by the FCBs.

<table>
<thead>
<tr>
<th>FCB No.</th>
<th>Name</th>
<th>Torque control</th>
<th>Speed control</th>
<th>Position control</th>
<th>External profile generation</th>
<th>Internal profile generation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>No function block selected (starts FCB 13)</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Controller inhibit</td>
<td>Controller inhibited</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Speed control</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Speed control, interpolated</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Torque control</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Torque control, interpolated</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>Positioning</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>Positioning, interpolated</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>Referencing</td>
<td></td>
<td></td>
<td>X</td>
<td>Reference Basic setting</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>Stop (application limits)</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>Stop (emergency stop limit)</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>Stop (system limits)</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>Electronic cam</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>Synchronous operation</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>Encoder adjustment</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>Hold control</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>Jog</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>Brake test</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>Double drive</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The variants "Var 1 - 4" are depicted in the figure "Control structure overview" (page 27).
Control structure overview

The control structure is cascaded (position, speed, current-torque controller). The following diagram shows an overview of the control structures described in detail on the following pages.

See also the control structure table. (page 26)
MX Parameter Description
Parameter description of drive data

Speed control FCB 05 (page 122), 06 (page 125), 12 (page 144), 13, 14
Position control with internal profile generator
FCB 09, 10, 15, 16, 19

Parameter description of drive data

- **Position control with internal profile generator FCB 09, 10, 15, 16, 19**
 - **P gain:** 9797.1 [1/s]
 - **Time constant integrator:** 9799.1 [ms]

- **Setpoint pos. of FCB09**
 - **Xsetp:** 9602.1 [1/65536U]

- **Motor speed max:** 9605.1 [10^{-3}/min]

- **Speed application limit:** 9716.1; 9716.10 [AE]

- **Acceleration application limit:** 9571.1; 9572.1 [AE]

- **Acceleration precontrol gain:** 10402.2 [0.01 U/min/s]
 - **Setpoint acceleration:** 10402.3 [0.01 U/min/s]

- **Speed precontrol gain:** 9796.1 [10^{-3}/min]
 - **Actual speed filter:** 9980.1 [10^{-3}/u/min]
 - **Actual speed, filtered:** 10120.1 [AE]

- **Actual speed, unfiltered:** 9704.1 [AE]

- **Actual position in increments:** 10068.1 [1/65536U]
 - **Actual position:** 9704.1 [AE]
 - **Module actual position:** 8662.3 [AE]
Reference to the illustration for limits that are activated.

The relationship between the min/max delimiters 1 – 3 and the specific limit statement is listed in the following table.

Significance "1" means that this delimiter limits the input parameters and sets the limit values to its output. Vice versa with "0".
The speed limits are then clearly implemented using the limited torque specifications.

<table>
<thead>
<tr>
<th>Delimiter 1</th>
<th>Delimiter 2</th>
<th>Delimiter 3</th>
<th>Limitation information</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>No (M_{\text{setp}}) limit</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>(M_{\text{setp}}) is limited by the specified speed</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>No (M_{\text{setp}}) limit</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>(M_{\text{setp}}) is limited by motor control ((\text{max. motor current, } I_{\text{max. thermal}}, \text{ current limit, } –))</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>No (M_{\text{setp}}) limit</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>(M_{\text{setp}}) is limited by the specified speed</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>No (M_{\text{setp}}) limit</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>(M_{\text{setp}}) is limited by the torque limit</td>
</tr>
</tbody>
</table>

9734.1 / 9734.2 / 9734.3 LI controller
Unit: H
Resolution: \(10^{-7} \)
Value range: 0 – 214748367, step 1
Branch inductance of the motor.
Is used to set the parameters of the current controller \((I \text{ controller})\) \((P1/P2/P3)\). The integrative time and the gain are set using this parameter.

9558.1 / 9558.2 / 9558.3 Current limit
Unit: mA
Value range: 0 – 2000000, step 1
The current limit indirectly limits the torque-generating current \((Q \text{ current})\), see figure "Torque/current controller" \((\text{page 30})\). This is the only value in MOVIAXIS® that is directly entered in \([\text{mA}]\). All other "current" values refer to the nominal current of the device.

9826.1 / 9826.2 / 9826.3 Voltage limit
Unit: mV
Value range: 0 – 230000 – 1000000, step 1
The value \(V_{\text{rms}} \) is the phase unit, the default value is 230 V.
This parameter limits the maximum output voltage, see figure "Torque/current -controller" \((\text{page 30})\).
MX Parameter Description
Parameter description of drive data

Scanning frequency
9821.1 / 9821.2 / 9821.3 Scanning frequency

Value range:
- 0 = 1 ms
- 1 = 0.5 ms
- 2 = 0.25 ms

Scanning frequency n-/X control P1 / P2 /P3

Is used to set the scanning frequency of the speed and position controller.
A high scanning frequency is only needed when the desired dynamic response requires it. This is only needed for drives with fast cycle times (<100 ms positioning time).

A higher scanning frequency results in a rougher actual speed value resolution. This means the scanning frequency should be set to a lower value for applications that require a very even speed.

These effects are more likely to occur in encoder systems with unfavorable resolution. See encoder resolution, chapter "Encoder" (page 110).

With the same stiffness and clearance settings, the scanning frequency has no influence on the gain, integrative time and control technology filter settings that are suggested at startup.

9797.1 / 9797.2 / 9797.3 P-gain

Unit: $10^{-3}/s$

Value range: 0 – 100000 – 10000000, step 1

P-gain N controller P1/P2/P3.

The unit of the gain is chosen in such a way that the velocity difference (speed setpoint/actual speed value) results in acceleration.

Controller configuration is independent of the used inverter and connected mass moment of inertia because the control operates in SI units (revolution; rpm; rpm/s). Of course, you need to enter the current total mass moment of inertia "9817.1/2/3 (page 35)" to ensure the conversion of acceleration into torque.

9970.1 / 9970.2 / 9970.3 Speed precontrol gain

Unit: %

Resolution: 10^{-3}

Value range: 0 – 100000 – 10000000, step 1

Velocity precontrol gain P1/P2/P3

100% is the optimum value. This gain multiplies the theoretically calculated velocity precontrol values.
Parameter Description

Parameter description of drive data

<table>
<thead>
<tr>
<th>Parameter Code</th>
<th>Parameter Description</th>
<th>Unit</th>
<th>Value Range</th>
<th>Resolution</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>9806.1 / 9806.2 / 9806.3</td>
<td>Acceleration precontrol gain</td>
<td>%</td>
<td>0 – 100000 – 10000000, step 1</td>
<td>10^{-3}</td>
<td>100% is the optimum value. This gain multiplies the theoretically calculated acceleration precontrol values.</td>
</tr>
<tr>
<td>9841.1 / 9841.2 / 9841.3</td>
<td>Speed setpoint filter</td>
<td>µs</td>
<td>0 – 10000000, step 1</td>
<td></td>
<td>FCB 05 Speed control (page 122) Speed setpoint filter P1/P2/P3. Is only active in all speed controlled operating modes. It filters the received speed setpoint. It is important that the "cycle time of the external controller" is set to "0 ms" at startup when the internal speed profile generator is used.</td>
</tr>
<tr>
<td>9842.1 / 9842.2 / 9842.3</td>
<td>Actual speed value filter</td>
<td>µs</td>
<td>0 – 1000 – 10000000, step 1</td>
<td></td>
<td>Actual speed value filter P1/P2/P3. This filter is active in the actual speed branch and also in the speed precontrol branch to smoothen the noise of the actual speed value information.</td>
</tr>
<tr>
<td>9838.1 / 9838.2 / 9838.3</td>
<td>Acceleration precontrol filter</td>
<td>µs</td>
<td>0 – 5000 – 10000000, step 1</td>
<td></td>
<td>Acceleration precontrol filter P1/P2/P3 is only active in all speed controlled FCBs. It is important that the "cycle time of the external controller" is set to "0 ms" at startup when the internal speed profile generator is used.</td>
</tr>
</tbody>
</table>
| 10058.1 / 10058.2 / 10058.3 | Switched integrator | | | | Value range:
 • 0 = Switched
 The integrator is stopped when the control limit is reached to achieve a low overshoot of the actual speed value when reentering the control range.
 • 1 = Not switched
 Is required for the "dual drive" special control function. Closed-loop speed controller switched integrator P1/P2/P3
 The control limit can be reached with very large setpoint changes at the speed control input. The control limit is characterized by various specified limits that are calculated online (current limit, acceleration limits, motor limits, inverter limits, voltage limit, etc.). |
Parameter description of drive data

9994.1 / 9994.2 / 9994.3 Integrator mode

Value range:
- 0 = Hold
- 1 = Delete
- 2 = "Initialize" using the source of parameter 9995. *Integrator initialization* (page 35).

Speed control integrator mode P1/P2/P3.

The start value of the integrator behavior can be influenced by this parameter.

The changes are naturally very much dependent on the "Integrator integrative time; P9799.1".

The higher the integrative time, the longer lasts the adjustment of the start value to the actual disturbance.

The integrator behavior depends on the selected parameter set.

Hold: The content of the integrator is maintained when the speed control loop opens. When the speed control loop closes again, the torque previously contained in the integrator is directly adjusted at the motor shaft again. This operating mode is particularly useful in hoists to prevent the load from sagging when the brake is released.

The speed control loop can be closed by selecting *FCB 05 speed control (page 122)* or any other FCB (e.g. *FCB 09 Positioning (page 134)*) that activates the speed controller.

At a software reset, the content of the integrator is stored in non-volatile memory from where it is loaded again. With a software cold start (after power off/on), the integrator will always be cleared because the values are not saved when switching the power supply off.

Delete: The content of the integrator is set to zero when the speed control loop opens. When the speed control loop closes once again, the integral component is set to zero and adjusted to a torque of "zero".

Initialize: This setting lets you set the I component of the speed controller (torque) to a predefined value. The source of this value is defined in parameter 9995.1 *Integrator - initialization* (page 35). This value takes effect when the speed control loop closes.

Diagram:

- Speed control is closed with e.g. DI00=1; FCB05 selection
- Integrator mode; 994.1 ?
 - Hold (0=default)
 - Delete (1)
 - Integrator new = integrator old (e.g. hoist application)
- Local setpoint
- Process data buffer 0..15
- Initializing (2)
- Integrator initialization; 9995.1 ?
- Integrator new = integrator local/9996.1 (e.g. systems with def. static friction)
- Integrator new = process data buffer 0..15 (e.g. systems with def. static friction)
Parameter Description

9995.1 / 9995.2 / 9995.3 Integrator initialization

Value range:
- 0 = Local setpoint from parameter 9996.1 Local integrator.
- 1 – 16 = Process data buffer, channel 0 – 15

Speed control integrator initialization source P1/P2/P3.
Takes effect when parameter 9994.1 Integrator mode (page 34) is set to "Initialize".

9996.1 / 9996.2 / 9996.3 Local integrator

Unit: %
Resolution: 10^{-3}
Value range: $-1000000 – 0 – 1000000$, step 1

Speed control integrator initialization local P1/P2/P3.
When the speed control loop closes, the torque of parameter 9996.1 "Local integrator" is directly adjusted at the motor shaft.
It only takes effect if parameter 9994.1 Integrator mode (page 34) is set to "Initialize" and -parameter 9995.1 Integrator initialization (page 35) is set to "local".
This parameter must also be specified in the user-defined unit.
For default setting of the user-defined unit torque
- Parameter 9555.1 Torque resolution (page 57) = $10E-3$.
- Parameter 9556.1 Torque numerator (page 57) = 1.
The unit is $[10E-03 \times \% \times$ nominal torque; parameter 9610.1 (page 37)].
This setting can also be made using the bus, see the description on setting the torque, parameter 9555.1 (page 57); parameter 9556.1 (page 57); parameter 9557.1 (page 58).

9817.1 / 9817.2 / 9817.3 Total mass moment of inertia

Unit: kgm2
Resolution: 10^{-7}
Value range: 0 – 2147483647, step 1
Total mass moment of inertia P1.

Position controller

9843.1 / 9843.2 / 9843.3 P-gain

Unit: 10^{-3}/s
Value range: 0 – 50000 – 10000000, step 1
Gain X controller P1/P2/P3.

10201.1 / 10201.2 / 10201.3 Setpoint limit position controller

Value range:
- 0 = Off
- 1 = On
Equalizing controller

(10060.1) / 10060.2 / 10060.3
NMin source

Value range: See parameter 9995.1 Integrator initialization (page 35).

Equalizing controller NMin source P1.

For details, see FCB 22 Dual drive (page 159).

(10062.1) / 10062.2 / 10062.3
NMin local

Unit: 10^{-3}/min

Value range: $-2147483648 – 2147483647$, step 1

Equalizing controller NMin local P1.

For details, see FCB 22 Dual drive (page 159).

(10059.1) / 10059.2 / 10059.3
NMax source

Value range: See parameter 9995.1 Integrator initialization (page 35).

Equalizing controller NMax source P1.

For details, see FCB 22 Dual drive (page 159).

(10061.1) / 10061.2 / 10061.3
NMax local

Unit: 10^{-3}/min

Value range: $-2147483648 – 2147483647$, step 1

Equalizing controller NMax local P1.

For details, see FCB 22 Dual drive (page 159).

1.2.2 Motor parameter P1/P2/P3

9820.1 / 9820.2 / 9820.3 Motor type

Value range:
• $0 = \text{Asynchronous motor}$
• $1 = \text{Synchronous motor}$

Motor type P1/P2/P3.

9732.1 / 9732.2 / 9732.3 Number of pole pairs

Value range: $1 – 3 – 64$, step 1

Number of pole pairs P1/P2/P3.

The number of motor pole pairs is set here.
Parameter Description

Parameter description of drive data

9610.1 / 9610.2 / 9610.3 Nominal torque

Unit: Nm
Resolution: \(10^{-5}\)
Value range: \(0 – 100000 – 2147483647\), step 1

Nominal motor torque P1/P2/P3.

The values specified in "torque" in MOVIAXIS® refer to this nominal torque value.
All values specified in "current" in MOVIAXIS® refer to the nominal current of the unit.

9861.1 / 9861.2 / 9861.3 Maximum torque

Unit: Nm
Resolution: \(10^{-5}\)
Value range: \(0 – 2147483647\), step 1

Maximum motor torque P1/P2/P3.

9605.1 / 9605.2 / 9605.3 Maximum speed

Unit: \(10^{-3}/\text{min}\)
Value range: \(0 – 3000000 – 10000000\), step 1

Maximum permitted motor speed P1/P2/P3.

9987.1 / 9987.2 / 9987.3 Maximum current

Unit: mA
Value range: \(0 – 2000000\), step 1

Maximum motor current P1/P2/P3.

9609.1 / 9609.2 / 9609.3 Nominal current \(I_q\)

Unit: mA
Value range: \(0 – 2000000\), step 1

\(I_q\) nominal current P1/P2/P3.

9819.1 / 9819.2 / 9819.3 Nominal current \(I_d\)

Unit: mA
Value range: \(0 – 2000000\), step 1

\(I_d\) nominal current P1/P2/P3.

9606.1 / 9606.2 / 9606.3 Nominal flow

Unit: \(\mu\text{Vs}\)
Value range: \(0 – 2147483647\), step 1

Nominal flow P1/P2/P3.

9736.1 / 9736.2 / 9736.3 Leakage inductance

Unit: H
Value range: \(0 – 2147483647\), step 1

CFC LSigma P1/P2/P3.

9738.1 / 9738.2 / 9738.3 Rotor resistance

Unit: \(\mu\Omega\)
Value range: \(0 – 2147483647\), step 1

Rotor resistance P1/P2/P3.
MX Parameter Description

Parameter description of drive data

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9737.1 / 9737.2 / 9737.3</td>
<td>Flow time constant</td>
</tr>
<tr>
<td>9816.1 / 9816.2 / 9816.3</td>
<td>Rotor time constant</td>
</tr>
<tr>
<td>9834.1 / 9834.2 / 9834.3</td>
<td>Encoder offset</td>
</tr>
<tr>
<td>9597.1 / 9597.2 / 9597.3</td>
<td>Actual speed source</td>
</tr>
<tr>
<td>9744.1 / 9744.2 / 9744.3</td>
<td>Actual position source</td>
</tr>
</tbody>
</table>

9737.1 / 9737.2 / 9737.3 Flow time constant

- **Unit**: µs
- **Value range**: 0 – 10000000, step 1
- Flow time constant P1/P2/P3.

9816.1 / 9816.2 / 9816.3 Rotor time constant

- **Unit**: µs
- **Value range**: 0 – 4294967295, step 1
- Time constant rotor P1/P2/P3.

9834.1 / 9834.2 / 9834.3 Encoder offset

- **Unit**: U
- **Resolution**: $1/2^{32}$
- **Value range**: 0 – 2147483647, step 1
- Encoder offset P1/P2/P3 is indicated in angular degrees in MotionStudio ($2^{32} = 360,000$ degrees).

The encoder offset refers to the mechanical revolution of the motor. A mechanical revolution is the electrical revolution multiplied by the number of poles specified in parameter 9732.1 (page 36).

Encoder

9597.1 / 9597.2 / 9597.3 Actual speed source

- **Value range**:
 - 0 = No encoder
 - 1 = Encoder 1
 - 2 = Encoder 2
 - 3 = Encoder 3
- Source actual speed P1/P2/P3
- The parameter is set in the parameter tree folder "Motor data".
- This parameter is used to select the encoder that provides the information for the speed controller, current controller and commutation of the motor control.
- The source of the actual speed may **not** be switched to another source during controller enable.
- Only the encoder assigned to the parameter set number can be chosen as source. This is verified when activating controller enable.
- See also parameter 9595.2 *Connected to drive no.* in the "Encoder" chapter (page 116).

9744.1 / 9744.2 / 9744.3 Actual position source

- **Value range**:
 - 0 = No encoder
 - 1 = Encoder 1
 - 2 = Encoder 2
 - 3 = Encoder 3
- Actual position source P1/P2/P3.
- The parameter is set in the parameter tree folder "Motor data".
- This parameter is used to select the encoder that provides the actual position information for the position controller of the motor control.
The source of the actual position may be switched to another source during controller enable.

Only the encoder assigned to the parameter set number can be chosen as source. This is verified as long as the controller is enabled.

See also parameter 9595.2 Connected to drive no. in the "Encoder" chapter (page 116).

Brake

Brake control

The parameters for the brake function are usually set by the startup process when the connected motor is entered or the data is read from the electronic nameplate.

The brake control is an independent function that is called up directly after the FCBs. It processes the requests of the FCB currently used and controls the control terminal for the brake accordingly.

The brake terminal is monitored for supply voltage and control signal level during the same time interval and depends on the relevant requirements of the FCBs on brake control.

![CAUTION]

When output stage enable is revoked or output stage inhibit is set, the brake signal is immediately set to "close" and the output stage is disabled => A moving motor makes an emergency stop using the installed brake, or coasts to a halt.

CMP, CMD, DS motors can be equipped with a servo holding brake. In this case, only a very limited number of emergency stops is possible.

Brake control

Brake release time parameter 8749.0 / 8750.0 / 9745.3

Brake application time parameter 8585.0 / 8586.0 / 8587.0

Brake type parameter 9833.1/2/3

Brake function on/off

Parameter 8584.0 / 8586.0 / 8587.0

Currently used FCB

"Release brake"

Request

"Apply brake"

Request

Control signal "Brake rel./appl."

Brake output DB00 brake

Error signals
MX Parameter Description
Parameter description of drive data

10230.1 / 10230.2 / 10230.3 Brake name

Unit:
Value range:

9833.1 / 9833.2 / 9833.3 Brakes

Value range:
- 0 = None
- 1 = Brake connected to brake rectifier
- 2 = Brake directly connected

Brake type P1.

The control terminal and supply voltage for the brake are monitored:
1. Supply voltage within the specified tolerances or not => Error message "E13 Brake supply". Monitoring is only active when the brake is released or while the brake is being released.
2. No brake connected or brake control output overloaded => Error message "E12 Brake output". The brake message signal is monitored with a delay of t = 150 ms after the signal to release the brake has been issued. The current rise time is bridged until the required brake current is reached. Monitoring is active as long as the brake is released.

\[\text{CAUTION} \]

Monitoring is only active when the brake type parameter is set to "Brake directly connected".

The three- or two-wire brake from SEW-EURODRIVE is **not** monitored (setting: "Brake connected to brake rectifier" or "None").

\[\text{INFORMATION} \]

If parameter 9833.1 / 2 / 3 Brake type is set to "No brake", the brake output is set to "Brake applied".

This means that the setting of parameter 8584.0/8586.0/8587.0 Brake function (page 43) has no effect on the brake output.

8749.0 / 8750.0 / 9745.3 Brake release time

Unit: ms
Value range: 0 – 2000, step 1
Brake release time P1/P2/P3.

During the brake release time, the drive is moved with speed control at the setpoint speed "zero", for example to prevent the load from sagging.
Parameter Description

Parameter description of drive data

8585.0 / 8587.0 / 9726.3 Brake application time

- **Unit:** ms
- **Value range:** 0 – 200 – 2000, step 1

Brake application time P1/P2/P3

During the brake application time, the output stage is enabled and speed control with the set value "zero" is active, for example to prevent the load from sagging.

Temperature sensor

- **Value range:**
 - 0 = No sensor
 - 1 = TF / TH
 - 2 = KTY(84 – 130)

Temperature sensor type P1/P2/P3.

This parameter is used to set the temperature sensor to ensure it is evaluated properly.

1.2.3 Control functions P1 / P2 / P3

Speed monitoring

- **Value range:**
 - 0 = Off
 - 1 = Motor mode
 - 2 = Regenerative mode
 - 3 = Motor / regenerative mode

Speed monitoring P1/P2/P3.

Is set by the motor startup procedure.

If speed monitoring is not set to "off", the control variable limit of the speed controller are monitored. If a certain adjustable delay time is set for parameter 8558.0 Delay time (page 42), an error response will be triggered. Events in which the control limit is reached for a short time period while the drive is accelerating or decelerating can be blocked using the appropriate setting in parameter 8558.0 Delay time (page 42).

The control variable limit is based on all acceleration limit values. This includes data such as system limits, application limits, FCB limits, maximum motor torque limits as well as maximum axis current and thermally limited axis current.

Also see figure "Torque/current controller" (page 30).

Motor / regenerative modes are distinguished as follows:

- Sign of (speed × torque) = positive → motor speed limit → results in E08: Suberror code 1.
- Sign of (speed × torque) = negative → regenerative speed limit → results in E08: Suberror code 2.

Monitoring is always activated at speeds lower than 10 rpm (if parameter 88557 ≠ 0). This is independent of whether the cause is regenerative or associated with the motor. This is because the actual speed value information is distorted by noise during resolver evaluations and at small actual speeds. In this way, it cannot be clearly defined whether a motor or regenerative load is present.
MX Parameter Description

Parameter description of drive data

INFORMATION

If the actual speed exceeds the maximum permitted system limits of parameter 9579.1 (page 51) "positive" and parameter 9579.10 (page 51) "negative", a unit error will be triggered. Unlike monitoring of the control limit, this type of monitoring cannot be deactivated or limited by setting speed monitoring to "off".

8558.0 / 8560.0 / 9722.3 Speed monitoring delay time

Unit: ms

Value range: 0 – 50 – 1000, step 1

N monitoring delay time P1/P2/P3.

Is set by the motor startup procedure.

When the control limit of the speed controller is reached, a timer responsible for the delay time is started. Once the delay time is exceeded, a unit error is triggered. If the speed controller leaves its control limit before the delay time expires, the timer will be decremented until "zero" is reached.

Also see the following figure.

9718.1 / 9718.2 / 9718.3 Speed monitoring reset time factor

Unit: ms

Value range: 0 – 1000, step 1

N monitoring reset time factor P1/P2/P3.

Is set by the motor startup procedure.

Use the "Speed monitoring reset time" factor to set how fast the timer decrements when leaving the control limit compared to the delay time. Usually this factor is equal to 1. For example, a factor of 3 means the counter decrements three times faster.
Brake function

8584.0 / 8586.0 / 9725.3

Value range:

- **0 = Off**
- **1 = On**

Brake function P1.

This parameter has an effect when stopping in STOP FCBs 14, 13 and 12, and when starting in the other FCBs (for example, FCB 05 (page 122), 09 (page 134)).

See figure "Brake control" (page 39).

This parameter can be used to activate or deactivate the brake function regardless of whether a brake is connected (parameter 9833.1/2/3 Brake type (page 40)).

- **0 = Off**

When the drive is stopped, the brake is not applied if motor standstill is detected. The output stage remains enabled and the drive adjusts to the speed setpoint "zero", unless hold control is active.

Upon enable, the drive starts running without delay caused by a brake release time.

- **1 = On**

When the drive is stopped, the brake is applied if motor standstill is detected. The brake application time is taken into account. The output stage is blocked and the drive is electrically connected with no torque if this brake application time has expired.

When the motor brake is applied, asynchronous motors are premagnetized upon receiving an enable signal.

If synchronous motors are connected, the output stage and control will be activated.

Then the brake is released taking the brake release time into account with activated control. Once the brake release time has elapsed, the selected FCB is activated with the set setpoint.

INFORMATION

The "Brake function" parameter has no effect on the brake output if parameter 9833.1/2/3 Brake type (page 40) is set to "no brake". This way, the brake output is permanently set to the status "Apply brake".
Standstill current function

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
</table>
| 9826.11 | Value range:
- 0 = Off
- 1 = On
Activates/deactivates the standstill current function. This function is only effective for asynchronous motors. In a synchronous motor, no current is impressed even if the standstill current function is activated. A prerequisite for the standstill current function is that the motor has a brake and that the brake function is activated. Another prerequisite for the standstill current function is the activated controller enable (D100 = "1"). In case of an activated stop (FCB00, FCB13, FCB14, FCB15), the standstill current function automatically impresses a current which is defined in the parameter "standstill current value". In case of a travel command, the activated standstill current function shortens the premagnetization time in the standstill phase until the motor begins to turn. If a standstill current of 100% is set, the premagnetization time is reduced to zero, as in this case the standstill current equals the magnetization current. |
| 9826.12 / 9826.13 | |

Standstill current value

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
</table>
| 9826.21 / 9826.22 / 9826.23 | Unit: %
Value range: 0 – 100 – 200, step 1
Defines the magnitude of the standstill current of the motor in [%], based on the nominal magnetization current "Nominal current Id" of the motor, also see parameter 9819.1 – 3 (page 37). |

Limit switch evaluation

A certain travel range of a drive can be monitored using hardware limit switches. Software limit switch monitoring can be activated if there are no hardware limit switches or for early detection purposes. Each limit switch (positive or negative software limit switch) can be activated/deactivated independently of one another. Furthermore, the source of the software limit switches (encoder1 – encoder3) can also be set. A prerequisite for software limit switch monitoring is that the selected encoder is referenced. The acknowledgement behavior applies both to software and hardware limit switches. You can set whether acknowledgement is required in the error response. You can choose between "Auto-reset" or "Waiting". When a limit switch was hit, the error must be acknowledged depending on the programmed limit switch response before the drive moves clear of the limit switch. The acknowledgement is accepted even if the drive has not yet reached standstill. In this case, movement clear of the limit switch will be triggered immediately once the axis stop was detected. Limit switch processing checks the sign of the currently present setpoint (e.g. target position of positioning). The drive moves along with the currently set ramp of the currently set FCB if this setpoint results in leaving the limit switch. If the setpoint makes the drive move further into the limit switch, the drive will remain stopped. This "moving clear" is caused by FCB 11 Limit switch.
Once the drive has moved clear of the limit switch, the currently selected FCB is chosen and the drive continues to move using the setpoints and limits of this FCB.

The limit switch signals are debounced by the software (debouncing time 200 ms).

A certain travel range of a drive can be monitored using hardware limit switches. If hardware limit switches are not used or, for example, an early warning alarm should be activated when a specific position is exceeded, the software limit switches integrated in MOVIAXIS® can be activated.

Each limit switch (positive or negative software limit switch) can be activated/deactivated independently of one another. Furthermore, the source of the software limit switches (encoder1 – encoder3) can also be set. If the drive hits one of the two software or hardware limit switches, it reacts using one of the responses set by the user.

Software and hardware limit switches basically react in the same way. In order to enable the monitoring function, the appropriate encoder must be referenced.

9729.6 / 9729.7 / 9729.8 Hardware limit switch response

Value range:

- 0 = No response
- 6 = Emergency stop / waiting
- 10 = Stop at system limit / waiting
- 18 = Emergency stop / autoreset
- 19 = Stop at system limit / autoreset

Hardware limit switch response P1/P2/P3.

The hardware limit switch response sets the error response when a hardware limit switch is hit.

- No response
 Error is ignored
- Emergency stop / waiting
 The motor is stopped along the emergency stop ramp. After a restart, the axis performs a warm start. This means that the axis is immediately ready to operate again (without delay).
- Stop at system limit/waiting
 The motor is stopped at the system limit. After a restart, the axis performs a warm start. This means that the axis is immediately ready to operate again (without delay).
• **Emergency stop / autoreset**
The motor is stopped along the emergency stop ramp. No reset is expected.

• **Stop at system limit / autoreset**
The motor is stopped at the system limit. No reset is expected.

For detailed information about this topic, refer to the operating instructions in the "Operation" chapter.

9824.1 / 9824.2
9824.3 Software limit switch monitoring source

Value range: See parameter 9744.1 Actual speed source (page 117).

Software limit switch monitoring source P1/P2/P3.

9729.13 / 9729.14 / 9729.15 Software limit switch response

Value range: see parameter 9729.6 Hardware limit switch response (page 45).

Software limit switch response P1/P2/P3.

9798.1 / 9798.2 / 9798.3 Monitor software limit switch negative

Value range:

- 0 = Off
- 1 = On

Monitor software limit switch negative P1/P2/P3.

- Off
- On

Software limit switch is not monitored.

Software limit switch is monitored.

9961.1 / 9961.2 / 9961.3 Software limit switch negative

Unit: U
Resolution: 1/65536
Value range: -2147483648 – 2147483647, step 1
Negative software limit switch P1/P2/P3.

9801.1 / 9801.2 / 9801.3 Monitor software limit switch positive

Value range:

- 0 = Off
- 1 = On

Monitor software limit switch positive P1/P2/P3.

- Off
- On

Software limit switch is not monitored.

Software limit switch is monitored.

10064.1 / 10064.2 / 10064.3 Software limit switch positive

Unit: U
Resolution: 1/65536
Value range: -2147483648 – 2147483647, step 1
Positive software limit switch P1/P2/P3.
"Motor at standstill" signal

10056.1 / 10056.2 / 10056.3 Velocity threshold "Motor at standstill" – status bit

Unit: 10^{-3}/min

Value range: 10000 – 50000, step 1

Velocity threshold motor at standstill P1/P2/P3

If the actual velocity is lower than this value, the "Motor at standstill" bit is set once the filter time of parameter "100057.1" has expired. If the velocity threshold is exceeded during the filter time, the filter will be reset to "zero" and starts again when the actual velocity drops below the velocity threshold again.

10057.1 / 10057.2 / 10057.3 Filter time "Motor at standstill" – status bit

Unit: ms

Value range: 0 – 25, step 1

Filter time motor at standstill P1/P2/P3

See parameter 10056.1 Velocity threshold motor at standstill (page 47).

Motor protection

When MOVIAXIS® detects that the maximum temperature of the motor is exceeded, it can respond in five different ways. These responses can be configured at startup. The responses range from "No response", through "Display", to different stop types.

MOVIAXIS® has a total of four different types / options to monitor the thermal properties of a motor and protect it from overload / irreparable damage. The types differ in quality and response capability.

1. Motor monitoring with TF / TH sensor

With this method, the configured action is executed when the limit temperature is exceeded.

2. Motor monitoring for types CMP, CM, CMD with KTY sensor

With this method, the configured action is triggered using temperature recording (in °C) and evaluation of the warning threshold of the motor when a limit temperature is exceeded. For all specified SEW-EURODRIVE motors, a KTY is used as a temperature sensor (initial values) to calculate the amount and time of the motor currents (history and course) in a motor-specific, thermal motor model in MOVIAXIS®.

The KTY also protects motors, e.g. CMP40, for which a purely mechanical temperature detection function would be too slow so that the motor might be damaged as a result. This functionality is only available for the specified SEW-EURODRIVE motors. It is the best way to ensure thermal protection for SEW-EURODRIVE servomotors.

3. Motor monitoring with KTY sensor

With this method, the configured action is executed when the limit temperature is exceeded.
4. Motor monitoring with KTY sensor and i^2t table

With this method, the KTY sensor is used to read in initial temperature values. A torque/speed curve point table (max. 8 curve points) supplied by the motor manufacturer can be used to adjust the dynamic behavior, or the values can be calculated in the inverter.

The combination of the two values can be used to offer better protection for the motor than is available with a KTY alone.

This is the best way to protect a non-SEW motor connected to MOVIAXIS®.

The motor protection / connected motor temperature sensor is set at startup.

KTY is set: The implementation monitors wire breakage (> 1767 Ω; approx. 196 °C with KTY84 – 130) and short circuit (< 305 Ω; approx. -52 °C with KTY).

TF/TH is set: Implementation switches at 1725 Ω (approx. 117 mV).

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value range</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>8904.0 / 8905.0 / 10046.1 (not in parameter tree)</td>
<td>• 0 = No sensor • 1 = TF / TH • 2 = KTY84 – 130</td>
<td>Temperature sensor type TMU1/TMU2/TMU3.</td>
</tr>
</tbody>
</table>

8904.0 / 8905.0 / 10046.1 (not in parameter tree)

Value range:
- 0 = No sensor
- 1 = TF / TH
- 2 = KTY84 – 130

Temperature sensor type TMU1/TMU2/TMU3.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value range</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>10063.1 / 10063.2 / 10063.3 (not in parameter tree)</td>
<td>• 0 = TMU1 • 1 = TMU2 • 2 = TMU3</td>
<td>Thermal motor monitoring used in parameter set P1/P2/P3. Three thermal monitoring functions are available to being able to operate three motors alternately on one inverter. As default, parameter set 1 is assigned monitoring 1, parameter set 2 is assigned monitoring 2, etc. For example, the thermal monitoring used in parameter set 2 should be set to "1" if the same motor as in parameter set 1 is used in parameter set 2. When using a model, doing so will prevent that heat drawn into the motor is distributed to several models and distorts the model values.</td>
</tr>
</tbody>
</table>

10063.1 / 10063.2 / 10063.3 (not in parameter tree)

Value range:
- 0 = TMU1
- 1 = TMU2
- 2 = TMU3

Thermal motor monitoring used in parameter set P1/P2/P3.

Three thermal monitoring functions are available to being able to operate three motors alternately on one inverter. As default, parameter set 1 is assigned monitoring 1, parameter set 2 is assigned monitoring 2, etc.

For example, the thermal monitoring used in parameter set 2 should be set to "1" if the same motor as in parameter set 1 is used in parameter set 2. When using a model, doing so will prevent that heat drawn into the motor is distributed to several models and distorts the model values.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Unit</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9872.1 / 9872.2 / 9872.3 Temperature KTY sensor</td>
<td>°C</td>
<td>KTY temperature sensor TMU1/TMU2/TMU3. Temperature of the sensor TMUx accurate within ±5.7 °C.</td>
</tr>
</tbody>
</table>

9872.1 / 9872.2 / 9872.3 Temperature KTY sensor

Unit: °C
Resolution: 10⁻⁶

KTY temperature sensor TMU1/TMU2/TMU3. Temperature of the sensor TMUx accurate within ±5.7 °C.
9800.1 / 9800.2 / 9800.3 Thermal motor model temperature

Unit: °C
Resolution: 10^{-6}

Winding temperature model P1/P2/P3
Temperature of the thermal motor model P1/P2/P3

9705.1 / 9705.2 / 9705.3 KTY sensor motor utilization

Unit: %
Resolution: 10^{-3}

KTY TMU1/TMU2/TMU3 motor utilization

The following applies to the relative utilization values:

\[
\text{Motor utilization KTY sensor} = \frac{\text{Temperature KTY sensor} - 40 \degree \text{C}}{\text{T}_{\text{Motor max}} - 40 \degree \text{C}}
\]

A temperature of 40 °C corresponds to a utilization of 0%.

9874.1 / 9874.2 / 9874.3 Thermal motor model motor utilization

Unit: %
Resolution: 10^{-3}

Motor utilization model P1/P2/P3.

The motor utilization uses a motor model to calculate the temperature transition of the motor to the KTY sensor. The injected current is also taken into account. The display is output in % and starts at a motor model temperature of 40 °C = 0% and a shutdown temperature = 100%.

\[
\text{Motor utilization thermal model} = \frac{\text{Thermal motor model} - 40 \degree \text{C}}{\text{T}_{\text{Motor max}} - 40 \degree \text{C}}
\]

9962.1 / 9962.2 / 9962.3 Motor utilization prewarning threshold

Unit: %
Resolution: 10^{-3}

Value range: 0 – 80000 – 100000, step 1

Motor utilization prewarning threshold TMU1/TMU2/TMU3

The prewarning threshold refers to parameter 9705.1 KTY sensor motor utilization (page 49) and parameter 9874.1 Thermal motor model motor utilization (page 49) (if calculated). If one of the parameters exceeds this threshold, an error is triggered with the error response "Display only".

The 7-segment display shows the "E69" status but the axis does not respond (continues to operate).

• E69.1 KTY: Warning threshold exceeded,
• E69.2 Synchronous model: Warning threshold exceeded,
• E69.3 I^2t-model: Warning threshold exceeded.

The function "Prewarning motor temperature (KTY)" can be applied to a status word and consequently also to an output to allow a timely response in the machine controller.
Value range:

- 0 = No response
- 1 = Display only
- 2 = Output stage inhibit / locked
- 3 = Stop at emergency stop limit / locked
- 5 = Output stage inhibit / waiting
- 6 = Stop at emergency stop limit / waiting
- 8 = Stop at application limit / waiting
- 9 = Stop at application limit / locked
- 10 = Stop at system limit / waiting
- 11 = Stop at system limit / locked

If the parameter 9705.1 KTY sensor motor utilization (page 49) and parameter 9874.1 Thermal motor model motor utilization (page 49) (if calculated) exceed 100 %, error message E31.x will be issued. The error response to this message is set in response TF/TH/KTY message.

- **No response**
 Error is ignored
- **Display only**
 The 7-segment display shows the "E031" status but the axis does not respond (continues to operate).
- **Output stage inhibit / locked**
 The axis changes to the controller inhibit state and applies the mechanical brake, if installed. If no brake is installed, the motor will coast to a halt. After a reset, the axis performs a system restart.
- **Stop at emergency stop limit / locked**
 The motor is stopped along the emergency stop ramp. After a reset, the axis performs a system restart.
- **Output stage inhibit/waiting**
 The axis changes to the controller inhibit state and applies the mechanical brake, if installed. If no brake is installed, the motor will coast to a halt. After a reset, the axis performs a warm start. This means that the axis is immediately ready to operate again (without delay).
- **Stop at emergency stop limit / waiting**
 The motor is stopped along the emergency stop ramp. After a reset, the axis performs a warm start. This means that the axis is immediately ready to operate again (without delay).
- **Stop at application limit/waiting**
 The motor is stopped at the application limit. After a reset, the axis performs a warm start. This means that the axis is immediately ready to operate again (without delay).
- **Stop at application limit / locked**
 The motor is stopped at the application limit. After a reset, the axis performs a system restart.
• **Stop at system limit/waiting**
 The motor is stopped at the system limit. After a reset, the axis performs a warm start. This means that the axis is immediately ready to operate again (without delay).

• **Stop at system limit / locked**
 The motor is stopped at the system limit. After a reset, the axis performs a system restart.
 For detailed information about this topic, refer to the operating instructions in the "Operation" chapter.

1.2.4 Limit values P1/P2/P3

System values can only be changed when the controller is disabled.
Application limits can be changed when the controller is enabled.

System limits

9573.1 / 9573.2 / 9573.3 **Maximum acceleration**

Unit: \(10^{-2}/(\text{min} \times s)\)

Value range: 0 – 300000 – 2147483647, step 1

Maximum velocity within the system limits in user-defined units.

Special handling with FCB 00, 05 (page 122), 11, 12 (page 144), 13, 14, 15, 20 (page 153) for system limit acceleration = 0: The value 0 completely deactivates the acceleration limit. The application or emergency stop limits as well as local values are not effective.

9574.1 / 9574.2 / 9574.3 **Maximum deceleration**

Unit: \(10^{-2}/(\text{min} \times s)\)

Value range: 0 – 300000 – 2147483647, step 1

Maximum deceleration within the system limits in user-defined units.

Special handling with FCB 00, 05 (page 122), 11, 12 (page 144), 13, 14, 15, 20 (page 153) for system limit acceleration = 0: The value 0 completely deactivates the acceleration limit. The application or emergency stop limits as well as local values are not effective.

9579.1 / 9579.2 / 9579.3 **Maximum positive velocity**

Unit: \(10^{-3}/\text{min}\)

Value range: 0 – 10000000, step 10

Maximum positive speed within the system limits in user-defined units.

9579.10 / 9579.11 / 9579.12 **Maximum negative velocity**

Unit: \(10^{-3}/\text{min}\)

Value range: 0 – 10000000, step 10

Maximum negative speed within the system limits in user-defined units.

9580.1 / 9580.2 / 9580.3 **Maximum torque**

Unit: %

Resolution: \(10^{-3}\)

Value range: 0 – 100000 – 100000, step 1

Torque limit within the system limits in user-defined units.
Parameter Description of Drive Data

9583.1 / 9583.2 / 9583.3 Maximum jerk

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Value Range</th>
<th>Step</th>
</tr>
</thead>
<tbody>
<tr>
<td>9583.1</td>
<td>Maximum jerk limit within the system limits.</td>
<td>1 – 2147483647</td>
<td>1</td>
</tr>
</tbody>
</table>

Special handling with FCB 00, 07 (page 131), 13, 14, 15 for jerk = 0: The value 0 completely deactivates the acceleration limit. Application or emergency stop limits as well as local values are not effective.

Emergency stop

9576.1 / 9576.2 / 9576.3 Emergency stop deceleration

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Value Range</th>
<th>Step</th>
</tr>
</thead>
<tbody>
<tr>
<td>9576.1</td>
<td>Emergency stop deceleration in user-defined units.</td>
<td>0 – 300000 – 2147483647</td>
<td>1</td>
</tr>
</tbody>
</table>

Application limits

9571.11 / 9571.12 / 9571.13 Maximum acceleration source

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Value Range</th>
<th>Step</th>
</tr>
</thead>
<tbody>
<tr>
<td>9571.1</td>
<td>Maximum acceleration within the application limits in user-defined units.</td>
<td>0 – 300000 – 2147483647</td>
<td>1</td>
</tr>
</tbody>
</table>

9572.11 / 9572.12 / 9572.13 Maximum deceleration source

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Value Range</th>
<th>Step</th>
</tr>
</thead>
<tbody>
<tr>
<td>9572.1</td>
<td>Maximum deceleration within the application limits in user-defined units.</td>
<td>0 – 300000 – 2147483647</td>
<td>1</td>
</tr>
</tbody>
</table>

9716.21 / 9716.22 / 9716.23 Maximum positive velocity source

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Value Range</th>
<th>Step</th>
</tr>
</thead>
<tbody>
<tr>
<td>9716.1</td>
<td>Maximum positive speed within the application limits in user-defined units.</td>
<td>0 – 1000000</td>
<td>10</td>
</tr>
</tbody>
</table>

Parameter Description MOVIAXIS® – MOVIAXIS® Multi-Axis Servo Inverters
Parameter description of drive data

9716.31 / 9716.32 / 9716.33 Maximum negative velocity source

Unit:

Value range: See parameter 9598.1 / 10440.1 Velocity setpoint source (page 123).

Description: See parameter 9598.1 / 10440.1 Velocity setpoint source (page 123).

9716.10 / 9716.11 / 9716.12 Maximum negative velocity

Unit: \(10^{-3}/\text{min}\)

Value range: 0 – 10000000, step 10

Maximum negative speed within the application limits in user-defined units.

9740.11 / 9740.12 / 9740.13 Maximum torque source

Unit:

Resolution:

Value range: See parameter 9598.1 / 10440.1 Velocity setpoint source (page 123).

Description: See parameter 9598.1 / 10440.1 Velocity setpoint source (page 123).

9740.1 / 9740.2 / 9740.3 Maximum torque

Unit: %

Resolution: \(10^{-3}\)

Value range: 0 – 100000 – 100000, step 1

Torque limit within the application limits in user-defined units.

9582.11 / 9582.12 / 9582.13 Maximum jerk source

Unit:

Value range: See parameter 9598.1 / 10440.1 Velocity setpoint source (page 123).

Description: See parameter 9598.1 / 10440.1 Velocity setpoint source (page 123).

9582.1 / 9582.2 / 9582.3 Maximum jerk

Unit: \(1/(\text{min} \times \text{s}^2)\)

Value range: 1 – 2147483647, Step 1

Maximum jerk limit within the application limits.

Modulo limits

9594.10 / 9594.11 / 9594.12 Modulo overflow

Unit: U

Resolution: 1/65536

Value range: -2147483648 – 2147483647, step 1

Modulo overflow is needed in all modulo operating modes, e.g. in FCB 09 Positioning (page 134).

Modulo overflow specifies the position from which an overflow takes place. The parameter is set in the user-defined units and has residual management for infinite gear ratios (set using the user-defined unit numerator / denominator factor at motor startup), for example.

Parameter 9998.1 Positioning mode (page 114) should be set to "ON". This means endless positioning is possible in one direction without losing positions within the modulo travel range.
Parameter description of drive data

MX Parameter Description

1.2.5 User-defined units P1/P2/P3

MOVIAXIS® offers customers the option of using the controller to send process output data for the position, speed, acceleration and torque to MOVIAXIS® in user-defined units.

In the axis, this process data is converted into internal units (basis: increments) in the setpoint cycle of a minimum of 500 µs.

The same process applies to the process input data returned from MOVIAXIS® to the controller. The data for position, speed, or acceleration are converted into the customer's user units.

The big advantage for customers / PLC programmers is that they do not have to convert the complex physical conditions in the machine into SEW-EURODRIVE-specific units in their programs. Customers can simply select the units most suitable for their applications and send them as specifications to MOVIAXIS®.

For example, customers can specify the following:

- For the position
 - "Compartments", "Packages", "Bottles", etc.
- For the speed
 - "Bottles / minute", "Pouches / second", etc.
- For the acceleration
 - "Pouches / seconds²", "Compartments/ min×s", etc.

<table>
<thead>
<tr>
<th>Position</th>
<th>Displays the unit text of the position entered by the user. The text consists of a maximum of 16 characters and is set to "Rev." as default, which corresponds to one motor revolution. It is set at motor startup.</th>
</tr>
</thead>
<tbody>
<tr>
<td>9539.1 – 4</td>
<td></td>
</tr>
<tr>
<td>9540.1 – 4</td>
<td></td>
</tr>
<tr>
<td>9541.1 – 4</td>
<td></td>
</tr>
</tbody>
</table>

Modulo underflow

Unit: U

Resolution: 1/65536

Value range: -2147483648 – 2147483647, step 1

Modulo underflow is the opposite of modulo overflow. This means it is the start of the modulo travel range. In many applications it is "0" but can also range between -180° and + 180°.
Position resolution

Value range:

- 0 = 0
- 1 = 1
- 2 = 2
- 3 = 3
- 4 = 4
- 5 = 5
- 6 = 6

The position resolution interprets the decimal places because communication buses communicate using integers only.

Example: The position resolution is "3", the user-defined unit is millimeters. This means that the number "1000" is interpreted via the bus as "1.000" mm.

The parameter tree in MotionStudio displays all values already with decimal point.

Position numerator

Value range: 1 – 65536 – 16777215, step 1

The numerator/denominator factor is used for converting user-defined units into MOVIAXIS® basic units. The basic unit is “revolution” with four decimal places. It is set at motor startup.

Position denominator

See parameter 9543.1 Position numerator (page 55). Default value: 1000.

Velocity unit text

Displays the unit text of the velocity entered by the user. The text consists of a maximum of 16 characters and is set to "rpm". It is set at motor startup.

Velocity resolution

Value range:

- 0 = 0
- 1 = 1
- 2 = 2
- 3 = 3
- 4 = 4
- 5 = 5
- 6 = 6

The velocity resolution interprets the decimal places because communication buses communicate using integers only.

Example: The velocity resolution is "3" and the user-defined unit is "rpm". This means that the number "1000" is interpreted via the bus as "1.000 rpm".

The parameter tree in MotionStudio displays all values already with decimal point.
Parameter Description
Parameter description of drive data

9536.1 / 9536.2 / 9536.3 Velocity numerator

Value range: 1 – 16777215, step 1

The numerator/denominator factor is used for converting user-defined units into MOVIAXIS® basic units. The basic unit is "rpm" with three decimal places. It is set at motor startup.

9537.1 / 9537.2 / 9537.3 Velocity denominator

See parameter 9536.1 Velocity numerator (page 56).

Acceleration

9546.1 – 4
9547.1 – 4
9548.1 – 4 Acceleration unit text

Displays the unit text for the acceleration entered by the user. The text consists of a maximum of 16 characters and is set to "rpm". It is set at motor startup.

9549.1 / 9549.2 / 9549.3 Acceleration resolution

Value range:
• 0 = 0
• 1 = 1
• 2 = 2
• 3 = 3
• 4 = 4
• 5 = 5
• 6 = 6

The acceleration resolution interprets the decimal places because communication buses communicate using integers only.

Example: The acceleration resolution is "3" and the user-defined unit is "rpm×s". This means that the number "1000" is interpreted via the bus as "1.000 rpm×s".

The parameter tree in MotionStudio displays all values already with decimal point.

9550.1 / 9550.2 / 9550.3 Acceleration numerator

Value range: 1 – 16777215, step 1

The numerator/denominator factor is used for converting user-defined units into MOVIAXIS® basic units. The basic unit is "rpm×s" with three decimal places. This means one speed change per second. It is set at motor startup.

9551.1 / 9551.2 / 9551.3 Acceleration denominator

See parameter 9550.1 Acceleration numerator (page 56).
Torque

Torque setting:
The default setting displays the torque in "%" of the rated motor torque selected at startup.

- Torque resolution = 3
- Torque numerator = 1
- Torque denominator = 1
- Torque unit text = "%"

Example:
Set user-defined unit "Newton meter":

- Torque parameter "9552.1 – 4 unit text" = "Nm",
- Torque parameter "9555.1 Resolution" = 3.

\[
\frac{\text{Parameter "9556.1 Torque numerator"}}{\text{Parameter "9557.1 Torque denominator"}} = \frac{100}{\text{Parameter "9610.1 Nominal torque"}}
\]

→ In the parameter tree, torques are entered in "Nm" with three decimal places.
→ The torque has the unit \(10^{-3} \text{ Nm}\) via the bus to the PDOs.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value range</th>
</tr>
</thead>
<tbody>
<tr>
<td>9552.1 – 4</td>
<td>displays the customer's unit text for torque. The text consists of a maximum of 16 characters and is set to "%" as default. It is set at motor startup.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value range</th>
</tr>
</thead>
<tbody>
<tr>
<td>9555.1 / 9555.2 / 9555.3 Torque resolution</td>
<td>1 – 16777215, step 1</td>
</tr>
<tr>
<td></td>
<td>The torque resolution interprets the decimal places only for the MotionStudio user interface because communication buses communicate using integers only.</td>
</tr>
<tr>
<td></td>
<td>Example: The acceleration resolution is "3" and the user-defined unit is Nm. This means that the number "1000" is interpreted via the bus as "1 Nm". The parameter tree in MotionStudio displays all values already with decimal point.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value range</th>
</tr>
</thead>
<tbody>
<tr>
<td>9556.1 / 9556.2 / 9556.3 Torque numerator</td>
<td>1 – 16777215, step 1</td>
</tr>
<tr>
<td></td>
<td>The numerator/denominator factor is used for converting user-defined units into MOVIAXIS® basic units. The basic unit is "%" of the motor torque with three decimal places. It is set at motor startup.</td>
</tr>
</tbody>
</table>
1.2.6 Reference travel P1/P2/P3

MOVIAXIS® offers a number of options for reference travel. The reference travel type "Reference to fixed stop" is new.

The aim of reference travel is to reference / match the drive and its position data with the machine design. Referencing is used to identify the real zero point of the drive. This value is then used to define distances necessary for positioning processes.

MOVIAXIS® offers the following reference travel types:

- Deactivated
- Zero pulse negative direction
- Negative end reference cam
- Positive end reference cam
- Positive limit switch
- Negative limit switch
- No reference travel
- Reference cam flush limit switch positive
- Reference cam flush limit switch negative
- Fixed stop positive
- Fixed stop negative

The reference travel types differ according to the first search direction or the switching contact (reference cam, limit switch or fixed stop) used for referencing. Reference travel can apply to all three encoders.

Using the reference point determined by reference travel, the machine zero point can be changed using the reference offset according to the following equation.

\[
\text{Machine zero} = \text{reference position} - \text{reference offset}
\]
Parameter Description MOVIAXIS® – MOVIAXIS® Multi-Axis Servo Inverters

Parameter description of drive data

Parameter description of drive data

9658.2 / 10442.1 / 10443.1 Reference travel type

Value range:

- 0 = Deactivated
- 1 = Zero pulse negative direction
- 2 = Negative end reference cam
- 3 = Positive end reference cam
- 4 = Positive limit switch
- 5 = Negative limit switch
- 6 = No reference travel
- 7 = Reference cam flush with positive limit switch
- 8 = Reference cam flush with negative limit switch
- 9 = Fixed stop positive
- 10 = Fixed stop negative

Reference travel types:

- General information about reference travel

For applications using absolute positioning commands, you must define the reference point (machine zero). When using absolute encoders, the reference point must be defined once at initial startup. With all other encoder types, machine zero must be defined each time the machine is switched on.

MOVIAXIS® supports 10 different reference travel types that are set via the parameter 9658.2 Reference travel type.

If referencing is set to the hardware limit switches and/or the reference cam, these must be set as binary inputs in the control word.

If a hardware limit switch is hit during reference travel type 1 or 2 and the reference point has not yet been found, the drive turns and continues reference travel in the other direction.

Machine zero = reference point + reference offset.

The status "Referenced" is reset when the servo inverter is switched off or if error messages relating to the position measuring system are issued.

An exception are absolute encoders, see section below. For Hiperface® and SSI absolute encoders, the status "referenced" is always set and is only reset during reference travel. The status "Not referenced" remains if the reference travel is canceled.

When deciding whether to reference to the reference cam or zero pulse, note the following points:

- The zero pulse shifts when the motor is replaced.
- The reference cam could become inaccurate as a result of age, wear or switching hysteresis.
- If the reference point is determined using the zero pulse and reference cam, and the zero pulse is located exactly at the end of the reference cam, the switching transition of the reference cam may be detected before or after the zero pulse (switching hysteresis). The result may be a reference position which varies by a motor revolution from one time to the next. The situation can be remedied by shifting the reference cam by about half a motor revolution.
MX Parameter Description
Parameter description of drive data

- Unidirectional drives can only be referenced using a reference cam. Also note that there is no defined distance between the reference cam and zero pulse of the encoder for non-integer ratios. This means that in this case only the end of the reference cam can be selected as the reference point.

- The length of the reference cam and the reference speeds must be selected so the drive can reliably decelerate to the slower reference speed (reference speed 2) on the reference cam. The end of the reference cam or the closest zero pulse of the encoder system can be used as reference point.

- The zero pulse can only be used as a reference point when the encoder has a zero pulse and the zero track is connected to the servo inverter.

As an option, travel to the start position can be selected after the reference procedure for each reference travel type using the parameter 9656.1 Travel to start position (page 71). This allows you to freely define the drive position regardless of the reference point using FCB 12 Reference travel (page 144). This dispenses with the controller performing a positioning travel procedure. The start position is set using parameter 9730.2 Start position (page 72). The travel speed to the start position is set using parameter 9731.1 Start position velocity (page 72).

Explanation of symbols for the figures "Reference travel types"

- [1] Reference point
- [3] Stop position after start position travel (optional)
- [4] Reference cam
- [5] Hardware limit switch
- [6] Fixed stop

1240575627

[1] Reference point
[3] Stop position after start position travel (optional)
[4] Reference cam
[5] Hardware limit switch

- Left zero pulse
For this reference travel type, it is mandatory to set parameter "9750.1 Referencing to zero pulse" (page 71) to "YES".

1240733707

[1] 9731.2 Clear velocity (page 72)
[2] 9731.1 Start position velocity (page 72)
[3] 9730.1 Reference offset (page 72)
[4] 9730.2 Start position (page 72)
The reference position is the first zero pulse CCW of the starting position of reference travel. A reference cam is not required. Only parameter 9731.2 Clear velocity (page 72) (reference speed 2) is used for reference travel.

- Negative end reference cam

Parameter 9750.1 Reference to zero pulse (page 71) is set to "YES".

Parameter 9750.1 Reference to zero pulse (page 71) is set to "NO".

The reference position is the negative end of the reference cam or the first negative zero pulse after the end of the reference cam.

A bit in control word 0 – 3 must be set to "REFERENCE CAM".
The reference travel starts with the search velocity in a negative rotational direction up to the first positive edge of the reference cam. Search velocity changes to clear velocity once the reference cam is detected.

The reference point will then be the falling edge (negative end) of the reference cam without "Referencing to zero pulse". If "Reference to zero pulse = yes", the reference point will be the first zero pulse after the falling edge of the reference cam.

Parameter 9657.1 **Hardware limit switch for velocity changeover** (page 72) is not relevant for this reference travel type.

- **Positive end reference cam**

 Parameter 9750.1 **Reference to zero pulse** (page 71) is set to "YES".

 ![Positive end reference cam diagram]

 Parameter 9750.1 **Reference to zero pulse** (page 71) is set to "NO".

 ![Positive end reference cam diagram with NO setting]

Parameter 9750.1 **Reference to zero pulse** (page 71) is set to "NO".
The reference position is the positive end of the reference cam or the first positive zero pulse after the end of the reference cam.

A bit in control word 0 – 3 must be set to "REFERENCE CAM".

Reference travel starts in positive direction. The search velocity is used up to the first positive edge of the reference cam. Search velocity changes to clear velocity once the reference cam is detected.

The reference point will then be the falling edge (right end) of the reference cam without "Referencing to zero pulse". If "Reference to zero pulse = yes", the reference point will be the first zero pulse after the falling edge of the reference cam.

Parameter 9657.1 Hardware limit switch for velocity changeover (page 72) is not relevant for this reference travel type.

- Limit switch positive

![Diagram of reference travel](image)

1240746251

[1] 9731.3 Search velocity (page 72)
[2] 9731.2 Clear velocity (page 72)
[3] 9731.1 Start position velocity (page 72)
[4] 9730.1 Reference offset (page 72)
[5] 9730.2 Start position (page 72)

The reference position is the first zero pulse to the left of the positive limit switch.

Reference travel starts in positive direction. Search velocity is used up to the falling edge of the positive limit switch, then clear velocity is used.

Parameter 9657.1 Hardware limit switch for velocity changeover (page 72) is not relevant for this reference travel type.
• Limit switch negative

The reference point is the first zero pulse to the right of the negative limit switch. Reference travel starts in negative direction. Search velocity is used up to the falling edge of the negative limit switch, then clear velocity is used.

Parameter 9657.1 Hardware limit switch for velocity changeover (page 72) is not relevant for this reference travel type.

• No reference travel

The reference position is the current position. It makes sense to use this type of reference travel with absolute encoders and for drives that are to be referenced at standstill. For example, the position of a feed axis can be set to "zero" when the drive is at standstill. In this way, the machine operator can tell where the drive is located within each feed movement.
• Reference cam flush with positive limit switch

Parameter 9750.1 Reference to zero pulse (page 71) is set to "YES".

![Diagram showing reference cam flush with positive limit switch.]

Parameter 9750.1 Reference to zero pulse (page 71) is set to "NO".

![Diagram showing reference cam flush with positive limit switch.]

Parameter 9750.1 Reference to zero pulse (page 71) is set to "NO".

1240971147

[1] 9731.3 Search velocity (page 72)
[2] 9731.2 Clear velocity (page 72)
[3] 9731.1 Start position velocity (page 72)
[4] 9730.1 Reference offset (page 72)
[5] 9730.2 Start position (page 72)

Parameter 9750.1 Reference to zero pulse (page 71) is set to "NO".

![Diagram showing reference cam flush with positive limit switch.]

1240973579

[1] 9731.3 Search velocity (page 72)
[2] 9731.1 Start position velocity (page 72)
[3] 9730.1 Reference offset (page 72)
[4] 9730.2 Start position (page 72)

The reference position is the negative end of the reference cam or the first zero pulse to the left after the end of the reference cam.

A bit in control word 0 – 3 must be set to "REFERENCE CAM".

Reference travel starts in positive direction. Search velocity is used up to the first positive edge of the reference cam, then clear velocity is used. In contrast to the type "Negative end reference cam", the drive starts to the right and turns on the reference cam.

Depending on the setting "Reference to zero pulse", referencing takes place to the falling edge of the reference cam or to the zero pulse following the falling edge of the reference cam.
The reference cam must start just before or in line with the positive hardware limit switch and must project into the limit switch. This ensures that no hardware limit switch is hit during reference travel. Parameter 9657.1 Hardware limit switch for velocity changeover (page 72) is not relevant for this reference travel type.

- Reference cam flush with negative limit switch

Parameter 9750.1 Reference to zero pulse (page 71) is set to "YES".

Parameter 9750.1 Reference to zero pulse (page 71) is set to "NO".

The reference position is the right end of the reference cam or the first zero pulse to the right after the end of the reference cam.

A bit in control word 0 – 3 must be set to "REFERENCE CAM".
Reference travel starts in negative direction. Search velocity is used up to the first positive edge of the reference cam, then clear velocity is used. In contrast to the type "Positive end reference cam", the drive starts to the left and turns on the reference cam.

Depending on the setting "Reference to zero pulse", referencing takes place to the falling edge of the reference cam or to the zero pulse following the falling edge of the reference cam.

The reference cam must start just before or in line with the positive hardware limit switch and must project into the limit switch. This ensures that no contact is made with the hardware limit switch during reference travel.

Parameter 9657.1 *Hardware limit switch for velocity changeover* (page 72) is not relevant for this reference travel type.

- Fixed stop positive

Parameter 9657.1 *Hardware limit switch for velocity changeover* (page 72) is set to "Hardware limit switch".

1241045771

[1] 9731.3 Search velocity (page 72)
[2] 9731.2 Clear velocity (page 72)
[3] 9731.1 Start position velocity (page 72)
[4] 9730.1 Reference offset (page 72)
[5] 9730.2 Start position (page 72)
Parameter "9657.1 Hardware limit switch for velocity changeover" (page 72) is set to "Reference cam".

```
[1] 9731.3 Search velocity (page 72)
[2] 9731.2 Clear velocity (page 72)
[3] 9731.1 Start position velocity (page 72)
[4] 9730.1 Reference offset (page 72)
[5] 9730.2 Start position (page 72)
```

Parameter 9657.1 Hardware limit switch for velocity changeover (page 72) is set to "without".

```
[1] 9731.2 Clear velocity (page 72)
[2] 9731.1 Start position velocity (page 72)
[3] 9730.1 Reference offset (page 72)
[4] 9730.2 Start position (page 72)
```

The reference position is the positive fixed stop. The machine must be designed so that the fixed stop withstands impact at the corresponding speed without any damage.

Reference travel starts in positive direction. If parameter 9657.1 Hardware limit switch for velocity changeover (page 72) is set to "without", reference travel will start with clear velocity.

With the setting "Hardware limit switch" or "Reference cam", the reference travel starts with the search speed and reduces to the clear velocity when coming into contact with the hardware switch or reference cam.
Parameter 9655.1 *Reference dwell time* (page 73) can be used to set the duration for which the torque (parameter 9654.4 *Torque reference travel* (page 73)) is maintained on the fixed stop until referencing.

- **Fixed stop negative**

Parameter 9657.1 *Hardware limit switch for velocity changeover* (page 72) is set to "Hardware limit switch".

Parameter 9657.1 *Hardware limit switch for velocity changeover* (page 72) is set to "Reference cam".

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>9655.1</td>
<td>Reference dwell time</td>
<td>73</td>
</tr>
<tr>
<td>9654.4</td>
<td>Torque reference travel</td>
<td>73</td>
</tr>
<tr>
<td>9657.1</td>
<td>Hardware limit switch for velocity changeover</td>
<td>72</td>
</tr>
<tr>
<td>9730.1</td>
<td>Reference offset</td>
<td>72</td>
</tr>
<tr>
<td>9730.2</td>
<td>Start position</td>
<td>72</td>
</tr>
<tr>
<td>9731.1</td>
<td>Start position velocity</td>
<td>72</td>
</tr>
<tr>
<td>9731.2</td>
<td>Clear velocity</td>
<td>72</td>
</tr>
<tr>
<td>9731.3</td>
<td>Search velocity</td>
<td>72</td>
</tr>
</tbody>
</table>
Parameter 9657.1 *Hardware limit switch for velocity changeover* (page 72) is set to "without".

The reference position is the negative fixed stop. The machine must be designed in such a way that it is not damaged when the fixed stop is reached at the respective speed.

Reference travel starts in negative direction. If parameter 9657.1 *Hardware limit switch for velocity changeover* (page 72) is set to "without", reference travel will start with clear velocity.

With the setting "Hardware limit switch" or "Reference cam", the reference travel starts with the search speed and reduces to the clear velocity when coming into contact with the hardware switch or reference cam.

Parameter 9655.1 *Reference dwell time* (page 73) can be used to set the duration for which the torque (parameter 9654.4 *Torque reference travel* (page 73)) is maintained on the fixed stop until referencing.

9750.1 / 10442.2 / 10443.2 Referencing to zero pulse

<table>
<thead>
<tr>
<th>Value range:</th>
</tr>
</thead>
<tbody>
<tr>
<td>• No</td>
</tr>
<tr>
<td>• Yes</td>
</tr>
</tbody>
</table>

Reference to zero pulse, see reference travel type parameter 9658.2 (page 59).

9656.1 / 10442.3 / 10443.3 Travel to start position

<table>
<thead>
<tr>
<th>Value range:</th>
</tr>
</thead>
<tbody>
<tr>
<td>• No</td>
</tr>
<tr>
<td>• Yes</td>
</tr>
</tbody>
</table>

Here is set whether the function "Travel to start position" is basically required.
Parameter Description

Parameter description of drive data

<table>
<thead>
<tr>
<th>Parameter Code</th>
<th>Description</th>
<th>Value range</th>
</tr>
</thead>
</table>
| 9657.1 / 10442.4 | HW limit switch for velocity changeover | Value range:
 - 0 = Without
 - 1 = Hardware limit switches
 - 2 = Reference cam |
| 9730.1 / 10442.5 | Reference offset | Value range: -2147483648 – 0 – 2147483647, step 1. |
| 9730.2 / 10442.7 | Start position | Unit: U.
Resolution: 1/65536.
Value range: -2147483648 – 0 – 2147483647, step 1.
Start position in user-defined units, see reference travel type parameter 9658.2 (page 59). |
| 9730.3 / 10442.6 | Reference offset modulo | Value range: -2147483648 – 0 – 2147483647, step 1. |
| 9731.3 / 10442.8 | Search velocity reference speed 1 | Unit: 10⁻³/min.
Value range: 0 – 10000000, step 1.
Search velocity in user-defined units (reference velocity 1), see reference travel type parameter 9658.2 (page 59). |
| 9731.2 / 10442.9 | Clear velocity reference speed 2 | Unit: 10⁻³/min.
Value range: 0 – 10000000, step 1.
Clear velocity in user-defined units (reference velocity 2), see reference travel type parameter 9658.2 (page 59). |
| 9731.1 / 10442.10 | Start position reference speed 3 | Unit: 10⁻³/min.
Value range: 0 – 10000000, step 1.
Start position velocity in user-defined units (reference velocity 3), see reference travel type parameter 9658.2 (page 59). |
| 9654.1 / 10442.11 | Acceleration reference travel | Unit: 10⁻²/min×s.
Value range: 0 – 300000 – 2147483647, step 1.
Acceleration reference travel in user-defined units. |
MX Parameter Description
Communication parameter description

1.3 Communication parameter description

1.3.1 PDO Editor Process Data Object Editor

The PDO Editor is the central, graphical software tool for editing and configuring FCBs and the entire unit functionality.

The tool can be used to determine where and which data packages should be retrieved from buses or I/Os, how they should be interpreted (control/process data) and how they are used in the unit functions and, in the same way, to determine how this data is output (buses or I/O).

This feature makes for maximum flexibility when using the MOVIAXIS® functions without the user having to perform any programming. The graphical structure makes it easy for users to familiarize themselves with the tool using the intuitive interface.

1.3.2 Basic settings

9831.1 Stop process data

Value range:
- No
- Yes

Parameter changes that affect communication (all parameters described in the "Communication" section) will trigger error 66 and stop the process data. The parameter "Stop process data" = "YES" is also used to stop process data but no error message is generated.

The effect of parameter and error 66 is that the drive can only be enabled again when all parameters have been set and the drive does not rotate in a non-controlled manner at the upper speed limit.
Value range:

- 0 = No response
- 1 = Display only
- 5 = Output stage inhibit / waiting
- 6 = Emergency stop / waiting
- 8 = Stop at application limit / waiting
- 10 = Stop at system limit / waiting
- 17 = Stop at application limit / autoreset
- 18 = Emergency stop / autoreset
- 19 = Stop at system limit / autoreset
- 20 = Output stage inhibit / autoreset
- 21 = Stop at application limit / autoreset without fault memory
- 22 = Emergency stop / autoreset without fault memory
- 23 = Stop at system limit / autoreset without fault memory
- 24 = Output stage inhibit / autoreset without fault memory

The PDO timeout response sets the error response for the case that the IN buffer does not receive an expected process data. The process data was already received and is then absent before the error message is issued. The axis is in state C3 "Waiting for process data" after a reset. This is not an error but a state.

0 = No response:
Error is ignored

1 = Display only:
The 7-segment display shows the error but the axis does not respond (continues to operate).

5 = Output stage inhibit / waiting:
The axis changes to controller inhibit state and activates the mechanical brake, if installed. If no brake is installed, the motor will coast to a halt. After a reset, the axis performs a warm start. This means that the axis is immediately ready to operate again (without delay).

6 = Emergency stop / waiting:
The motor is stopped along the emergency stop ramp. After a reset, the axis performs a warm start. This means that the axis is immediately ready to operate again (without delay).

8 = Stop at application limit / waiting (default):
The motor is stopped at the application limit. After a reset, the axis performs a warm start. This means that the axis is immediately ready to operate again (without delay).

10 = Stop at system limit / waiting:
The motor is stopped at the system limit. After a reset, the axis performs a warm start. This means that the axis is immediately ready to operate again (without delay).
17 = Stop at application limit / autoreset
The motor is stopped at the application limit. The axis runs again without a reset when
the error is no longer present.

18 = Emergency stop / autoreset
The motor is stopped at the emergency stop limit. The axis runs again without a reset
when the error is no longer present.

19 = Stop at system limit / autoreset
The motor is stopped at the system limit. The axis runs again without a reset when the
error is no longer present.

20 = Output stage inhibit / auto reset
The motor is stopped by the output stage inhibit. The axis runs again without a reset
when the error is no longer present.

21 = Stop at application limit / autoreset without fault memory
The motor is stopped at the application limit. The axis runs again without a reset when
the error is no longer present. Furthermore, no entry is generated in the error memory.

22 = Emergency stop / autoreset without fault memory
The motor is stopped at the emergency stop limit. The axis runs again without a reset
when the error is no longer present. Furthermore, no entry is generated in the error
memory.

23 = Stop at system limit / autoreset without fault memory
The motor is stopped at the system limit. The axis runs again without a reset when the
error is no longer present. Furthermore, no entry is generated in the error memory.

20 = Output stage inhibit / auto reset without fault memory
The motor is stopped by the output stage inhibit. The axis runs again without a reset
when the error is no longer present. Furthermore, no entry is generated in the error
memory.

For more information, refer to the operating instructions section "Operation and
Service".

9729.16 Response to external error
Value range:
- No response
- Display only
- Output stage inhibit/waiting
- Stop at application limit/waiting
- Stop at system limit/waiting

Descriptive text see parameter 9603.1 PDO timeout response (page 74)

This parameter sets the corresponding response if a bit was set to "External error" in
control word 0 – 3.
Parameter Description MOVIAXIS® – MOVIAXIS® Multi-Axis Servo Inverters

Standard communication

8937.0 CAN1 protocol selection
- Value range:
 - 0=MOVILINK
 - CANopen

CAN1 protocol selection.

8938.0 CAN2 protocol selection
- Value range:
 - 0=MOVILINK
 - CANopen

CAN2 protocol selection.

8603.0 CAN1 baud rate
- Value range:
 - 0=125 kBaud
 - 1=250 kBaud
 - 2=500 kBaud
 - 3=1 MBaud

CAN1 baud rate. This is only a display value. It is set using the automatic addressing function of the supply module.

8939.0 CAN2 baud rate
- Value range:
 - 0=125 kBaud
 - 1=250 kBaud
 - 2=500 kBaud
 - 3=1 MBaud

CAN2 baud rate.

8600.0 CAN1 address
- Value range: 0 – 63, step 1

Present CAN1 address. This is only a display value. It is set using the automatic addressing function of the supply module.

8932.0 CAN2 address
- Value range: 0 – 99, step 1

CAN2 address.

9825.1 Scope ID CAN1
- Value range: 0 – 120 – 1073741823, step 1

This CAN message ID is used for all axis scope recordings (multi-axis scope).

9883.1 Synchronization ID CAN1
- Value range: 0 – 128 – 1073741823, step 1

This synchronization ID is used for CAN1 for sending and receiving.

9882.1 Synchronization ID CAN2
- Value range: 0 – 128 – 1073741823, step 1

This synchronization ID is used for CAN2 for sending and receiving.
9877.5 Setpoint cycle CAN1
You can handle poorer sync messages (with large jitter) by increasing the CAN setpoint cycle. This is especially needed for baud rates below 500 kBaud.

The maximum sync jitter can be ± (setpoint cycle CAN/4). Long-term deviation must not exceed an average of ± 0.4 % of the CAN setpoint cycle.

The CAN setpoint cycle can be increased if the controller cannot maintain the tolerance of the sync. The value must be a whole-number multiple of the sync cycle.

The default value of "1 ms" is the optimum setting for axis-axis communication within MOVIAXIS® and a minimum baud rate of 500 kBaud.

9878.5 Setpoint cycle CAN2
Descriptive text see parameter 9877.5 Setpoint cycle CAN1 (page 77).

10118.1 Sync mode CAN1
Value range:
- 0=Consumer
- 1=Producer

Is used to set whether the axis receives (consumes) or sends (produces) a synchronization protocol on CAN1.

Observe the parameter 9836.1 Synchronization source (page 80) when setting "Consumer".

Observe the parameters "9877.1 Sync period (page 77), 9877.2 Sync offset (page 78) and 9877.3 Sync start mode (page 78)" when setting "Producer".

10118.2 Sync mode CAN2
Value range:
- 0=Consumer
- 1=Producer

Is used to set whether the axis receives (consumes) or sends (produces) a synchronization protocol on CAN2.

Observe the parameter 9836.1 Synchronization source (page 80) when setting "Consumer".

Observe the parameters 9878.1 Sync period (page 77), 9878.2 Sync offset (page 78) and 9878.3 Sync start mode (page 79) when setting "Producer".

9877.1 Sync period CAN1
Unit: µs
Value range: 0 – 5000 – 100000000, step 1000
Sync period CAN1.
Only if 10118.1 Sync mode CAN1 (page 77) is set to "Producer".

9878.1 Sync period CAN2
Unit: µs
Value range: 0 – 5000 – 100000000, step 1000
Sync period CAN2.
Only if 10118.2 Sync mode CAN2 (page 77) is set to "Producer".
9877.2 Sync offset CAN1

Unit: µs
Value range: 0 – 5000 – 100000000, step 1000

Sync offset CAN1.

Only if 10118.1 Sync mode CAN1 (page 77) is set to "Producer".

The offset causes a start delay on the parameter 9877.3 Sync start mode CAN1 (page 78).

9878.2 Sync offset CAN2

Unit: µs
Value range: 0 – 5000 – 100000000, step 1000

Sync offset CAN2.

Only if 10118.2 Sync mode CAN2 (page 77) is set to "Producer".

9877.3 Sync start mode CAN1

Value range:
- 0 = Off
- 1 = when receiving PDO00
- 2 = PDO01
- 3 = PDO02
- 4 = PDO03
- 5 = PDO04
- 6 = PDO05
- 7 = PDO06
- 8 = PDO07
- 9 = PDO08
- 10 = PDO09
- 11 = PDO10
- 12 = PDO11
- 13 = PDO12
- 14 = PDO13
- 15 = PDO14
- 16 = PDO15
- 100 = Direct

The sync start mode CAN1 describes when the axis should start with the sync protocols.

OFF
No sync protocols are sent. The module is disabled.

PDO00 to PDO15
The synchronization protocols are started if the corresponding PDO00 to PDO15 was received once.

Direct
The synchronization protocols are started immediately after booting.
9878.3 Sync start mode CAN2

Sync start mode CAN2.
See parameter 9877.3 Sync start mode CAN1 (page 78).

9992.1 Sync jitter compensation CAN1

Value range:
- No
- Yes

The sync jitter compensation function informs the sync protocol how much later it can place the sync protocol on the CAN. There are always delays if another protocol is being processed during sync (approx. 200 µs).

The receiver will process this offset.
This is a SEW particularity and always has to be set when MOVIAXIS® units are sync master and sync slave in relation to one another. In this case, the sync jitter compensation for the two other units must be set to "YES".
With external sync master, the sync jitter compensation must be set to "NO".

9993.1 Sync jitter compensation CAN2

Value range:
- No
- Yes

CAN2 sync jitter compensation.
See parameter 9992.1 Sync jitter compensation CAN1 (page 79)

Communication option

8453.0 Fieldbus baud rate

Value range: 0 – 4294967295, step 1
The baud rate of the fieldbus is specified by the master depending on the fieldbus type. In some cases this is only a display value (e.g. PROFIBUS) or an input value.

8454.0 Fieldbus address

Value range: 0 – 4294967295, step 1
Current fieldbus address (e.g. for PROFIBUS this is a hardware setting on the option card). In some cases this is only a display value or an input value, just like the fieldbus baud rate.

8606.0 Timeout

Unit: ms
Value range: 0 – 500 – 650000, step 10
Fieldbus timeout interval.
An error will be triggered after this timeout interval when the fieldbus is interrupted.

9729.17 Fieldbus timeout response

Value range: See parameter 9729.16 Response external error (page 75).
Fieldbus timeout response.
For a description of the setting options, see parameter "9603.1 PDO timeout response" (page 74).
Gateway

9879.1 Sync period gateway
Unit: \(\mu s\)
Value range: 0 – 5000 – 100000000, step 1000
Sync period gateway.
This value is used for transferring the sync signal from the fieldbus to the system bus. This currently works only with the K-Net fieldbus. In case of questions please contact SEW-EURODRIVE.

9879.2 Sync offset gateway
Unit: \(\mu s\)
Value range: 0 – 5000 – 100000000, step 1000
Sync offset gateway.
This value is used for transferring the sync signal from the fieldbus to the system bus. This currently works only with the K-Net fieldbus. In case of questions please contact SEW-EURODRIVE.

9879.3 Sync start mode gateway
Value range: See parameter 9877.3 Sync start mode CAN1
Sync start mode gateway.
This value is used for transferring the sync signal from the fieldbus to the system bus. This currently works only with the K-Net fieldbus. In case of questions please contact SEW-EURODRIVE.

Synchronization

9836.1 Synchronization source
Value range:
- 0=No source
- 1=CAN2
- 2=CAN1
- 3=Communication option
If the CAN1 or CAN2 sync mode is set to consumer, then this parameter sets the source of the sync signal.

9835.1 Time interval between sync signals
Unit: \(\mu s\)
If the axis is the consumer of a sync signal, all incoming signals will be recorded with respect to time and displayed here.

9951.4 Time interval between base periods
Value range: -2147483648 – 0 – 2147483647, step 1
For in-house use only!
The time interval between base periods is a display value for internal error diagnostics purposes. All other tasks are derived from the base period.
1.3.3 IN buffer

IN buffer 0

Basic settings

9514.1 Data source

Value range:
- 0 = No source
- 1 = CAN2
- 2 = CAN1
- 3 = Communication option

The setting in the data source defines the bus system responsible for reading the data.

9514.3 Data block start

The data block start describes from which data block within a message the IN buffer is loaded. Whether a value unequal to 0 may be entered depends on the bus system (e.g. the data block start for CAN is always 0).

9514.4 Data block length

Value range: 0 – 4 – 16, step 1.

The data block length also depends on the bus system, e.g. for CAN = maximum 4.

9514.19 Timeout interval

Unit: µs

Value range: 0 – 100000000, step 1000.

Timeout interval IN buffer 0. The value 0 deactivates the timeout.

9514.5 Update

Value range:
- 1 = ON
- 0 = OFF

The update indicates whether the value in the IN buffer is updated with the values from the bus or not. This parameter can be used to separate the PDO from the bus.

9514.16 Configuration error

Value range: 0 – 4294967295, step 1
- 0 = No error

The config error indicates any error.
MX Parameter Description
Communication parameter description

Specific CAN parameters

9514.2 Message ID
Value range: 0 – 1073741823, step 1
The message ID is a CAN-specific parameter. It numbers or prioritizes the messages.

9514.14 Data acceptance with sync.
Value range:
- 1=No
- 0=Yes
Here you can set whether the data is transferred to the IN buffer after receiving the first sync message. This is a CAN-specific parameter.

<table>
<thead>
<tr>
<th>INFORMATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>The sync must be sent exactly as often as the process data when set to "Yes".</td>
</tr>
</tbody>
</table>

9514.20 Endianness IN buffer 0
Value range:
- 0=Big Endian
- 1=Little Endian
This parameter is used to set whether the first of the two bytes from the bus is interpreted as high or low byte.

- **Big Endian**
The first byte from the bus is interpreted as high byte.

- **Little Endian**
The first byte from the bus is interpreted as low byte.
This is a CAN-specific parameter.

Specific communication option parameters

9514.18 Address sender IN buffer 0
Value range: 0 – 255, step 1.
This parameter only applies to the K-Net bus system and sets the PDO address.
This parameter is usually set in the PDO Editor.

9514.17 PDO ID
Value range: 0 – 255, step 1.
K-Net IN buffer ID 0.
Data

9754.1 – 16 data word 0 – 15

Value range: 0 – 65535, step 1.

Data word 0 – 15 IN buffer 0.

Displays the current data in the IN buffer 0 – 15.

IN buffer 1 – 15

See IN buffer 0 (page 81) for a description of the parameter.

1.3.4 Control words 0 – 3

9510.1 Actual value source

Displays the actual value of control word 0.

Control word 0

The control word is the control center that activates or deactivates functions in the axis module via binary inputs or process data.

9512.1 Source control word 0

Value range:

- 0 = No source
- 8334 = Standard binary inputs
- 75339 = Local control word
- 730515 = Opt 1 DI
- 730521 = Opt 2 DI
- Or "IN 0-15" word 0 – 15

Several sources can be set for control word 0:

- **No source**
 The control word is inactive.

- **Standard binary inputs**
 The binary inputs on the basic unit are transferred to the control word. All FCBs 1 = active via bus communication (1 on FCB 13 triggers a stop at the application limits). To implement wire breakage protection via binary inputs, the following FCBs or functions are 0 = active:
 - FCB 01 Output stage inhibit
 - FCB 13 Stop at application limits
 - FCB 14 Emergency stop
 - FCB 15 Stop at system limits
Parameter Description MOVIAXIS® – MOVIAXIS® Multi-Axis Servo Inverters

Communication parameter description

- **External error (no FCB but message)**
- **Limit switch positive**
- **Limit switch offset (0 on FCB 13 negative triggers a stop at the application limits).**
 This only applies to the standard binary input source.

- **Local control word**
 Parameter 9803.1 *Local value* (page 84) specifies the control word.
 - **Opt 1 DI**
 If a digital terminal expansion XIO or XIA is plugged in option slot 1, then the control word is specified by the option.
 - **Opt 2 DI**
 If a digital terminal expansion XIO or XIA is plugged in option card slot 3, the control word is specified by the option.
 - **IN**
 If you want to specify the control word via bus, set IN 0 – 15 and word 0 – 15.
 This parameter is usually set in the PDO Editor.

9803.1 Local value

- **Value range:** 0 – 4294967295, step 1
- If the source control word 0 is set to "local control word", this parameter will be control word 0. This must only be used for test purposes, as the parameter is set to 0 after a reset.
 This parameter is usually set in the PDO Editor.

9513.1 Layout

- **Value range:**
 - 0 = No layout
 - 1 = Programmable layout
 - 2 = FCB/instance
 - 3 = Programmable layout / FCB / instance
- **Layout control word 0**
 - **No layout**
 The control word is inactive.
 - **Programmable layout**
 Each bit of the control word is freely configurable.
 - **FCB/instance**
 The control word has a fixed assignment. The 8 low bits (low byte) are used for selecting the FCB and the 8 high bits (high byte) for selecting the instance. See also parameter "9804.1 Select FCB with instance".
 - **Programmable layout / FCB / instance**
 Part of the control word has a fixed assignment. Bit 0 to 4 is freely configurable: Bits 5 to 9 selects the FCB. Bits 10 to Bit 15 select the instance.
 This parameter is usually set in the PDO Editor.
9513.10 Bit 0

Value range:
- 0 = No function
- 1 = FCB final stage lock
- 2 = FCB stop at system limits
- 3 = FCB emergency stop
- 4 = FCB stop at application limits
- 5 = FCB reference travel
- 7 = FCB jog mode
- 8 = FCB hold control
- 9 = FCB brake test
- 10 = FCB encoder adjustment
- 11 = FCB electronic gear unit
- 12 = FCB electronic cam
- 13 = FCB interpolated position control
- 14 = FCB positioning
- 15 = FCB interpolated speed control
- 16 = FCB speed control
- 17 = FCB interpolated torque control
- 18 = FCB torque control
- 20 = FCB rotor position identification
- 21 = FCB stop at user limits
- 31 = Limit switch 1 positive
- 32 = Limit switch 1 negative
- 33 = External error
- 34 = Fault reset
- 35 = Reference cam
- 36 = Parameter selection bit 0
- 37 = Parameter selection bit 1
- 38 = IEC input
- 39 = Jog negative
- 40 = Jog positive
- 41 = Feed enable
- 42 = Accept position
- 46 = Limit switch 2 positive
- 47 = Limit switch 2 negative
- 48 = Limit switch 3 positive
- 49 = Limit switch 3 negative
Parameter Description
Communication parameter description

- 50 = Start synchronous operation
- 51 = Event control FCB reset
- 52 = Jog velocity selection
- 53 = Release brake with inhibited output stage
- 54 = Control bit stop with position control

Programmable control word 0 layout bit 0.
Determines the function of bit 0 of control word 0.

- **No function**
The bit is inactive.

- **FCBs**
Activating the bit selects the corresponding FCB. The corresponding FCB is active if "1" is present. The only exception is if binary inputs are the source of the control word. The stop FCB 0 is then active for wire breakage protection. See also parameter "9512.1 Source control word 0" (page 83).

- **Limit switch**

 Via binary inputs:
 Signal 0 → Positive limit switch reached
 Signal 1 → Limit switch not approached

 Via IN buffer:
 Signal 0 → Limit switch not approached
 Signal 1 → Positive limit switch reached

- **External error**
Signal 0 → External error is present
Signal 1 → External error not present → enable

- **Error reset**
The axis is performing an error reset. A CPU reset, system restart or warm start is performed depending on the type of error. An error of the type display only (warning) will also be reset.

- **Reference cam**
Is required for reference travel.

- **Parameter selection bit 0**
Selecting another parameter set switches to a second or third connected motor. For this purpose, the motors have to be specified in the startup routine.
Bit 0 = 0 and bit 1 = 0 → No function
Bit 0 = 1 and bit 1 = 0 → motor 1
Bit 0 = 0 and bit 1 = 1 → motor 2
Bit 0 = 1 and bit 1 = 1 → motor 3

- **Parameter selection bit 1**
See parameter selection bit 0
Parameter Description MOVIAXIS® – MOVIAXIS® Multi-Axis Servo Inverters

Communication parameter description

- **IEC input**
 This bit can be used for a master MOVI-PLC®.

- **Jog negative**
 This bit is only active in conjunction with *FCB 20 Jog* (page 153) active and jogging occurs in the corresponding direction when a "1" is present at the input.

- **Jog positive**
 This bit is only active in conjunction with *FCB 20 Jog* (page 153) active and jogging occurs in the corresponding direction when a "1" is present at the input.

- **Jog velocity selection**
 Switching between jog speeds 1 and 2.

- **Feed enable**
 This bit is only active in conjunction with *FCB 09 positioning* (page 134). If you have selected feed enable, it must be set to "1" during the entire positioning procedure. Revoking feed enable will decelerate the axis using the maximum deceleration of *FCB 09 Positioning* (page 134). Another enable continues the positioning travel to the last target at the acceleration specified in *FCB 09 Positioning* (page 134). Feed enable must be activated in parameter 9885.1 *Use control bit "feed enable"* (page 135).

- **Accept position**
 This bit is only active in conjunction with *FCB 09 Positioning* (page 134) and is particularly useful for relative operating modes. This bit must have received a positive edge once in order to trigger the positioning process. This can be used to relatively synchronize forward without changing the target. This function is also effective in absolute operating modes. Accepting the position must be activated in parameter 9885.2 *Control bit "accept -position"* (page 135).

- **Event control FCB reset**
 This bit resets a FCB selection of event processing for the duration of the bit selection. For information about event control, refer to the MOVIAXIS® technology manual. This parameter is usually set in the PDO Editor.

- **Release brake with inhibited output stage**
 This bit releases the brake within the *FCB 01 Output stage inhibit*. This function is edge-triggered, i.e. the brake is only released with a positive edge while *FCB 01 Output stage inhibit* has already been selected.

9513.xx Bit 1 – 15

See description of parameter 9513.xx Bit 0.

9510.1 Actual value source

Displays the current control word 0.

Control word 1

See control word 0 (page 83) for a description of the parameter.

Control word 2

See control word 0 (page 83) for a description of the parameter.

Control word 3

See control word 0 (page 83) for a description of the parameter.
1.3.5 Error message words

Error message word can forward error states across different axes. For example, an error in the main drive can cause all auxiliary drives to go to error status. This is realized via lateral axis communication and for this reason only possible with the CAN system bus.

9979.1 Source error message word 0

Value range:
- 0=No source
- 8334=Standard binary inputs
- 75339=Local control word
- 730515=Option 1
- 730521=Option 2
- Or "IN buffer 0 – 15" word 0 – 15

This parameter is usually set in the PDO Editor.

9977.1 Response error message word 0

Value range:
- No response
- Display only
- Stop at application limit/waiting
- Emergency stop / waiting
- Stop at system limit/waiting
- Output stage inhibit/waiting
- System-internal/waiting (no function)

The error message word response defines the response upon receiving an error message.

This parameter is usually set in the PDO Editor.

9978.1 Response error message word 0

The error message word is triggered when the high byte of the current value is not equal to zero. This allows for direct transmission of a status word of another axes with the layout FCB Error code.

This parameter is usually set in the PDO Editor.
1.3.6 IN process data

Channel 0

9822.1 Source process data channel 0

Value range:
- 0=No source
- 8334=Standard binary inputs
- 75339=Local control word
- 730515=Option 1
- 730521=Option 2
- Or "IN buffer 0 – 15" word 0 – 15

Source of the IN process data channel 0

This parameter is usually set in the PDO Editor.

9530.1 Access channel 0 32-bit

Value range:
- 0=16-bit
- 1=32 Bit Big Endian
- 2=32 Bit Little Endian

IN process data channel 0 access 32 bit.

- 16 bit
 Access to the value set in parameter 9822.1 Source process data channel 0 (page 89) is transferred.

- 32 Bit Big Endian
 The access to the value set in parameter 9822.1 Source process data channel 0 (page 89) is accepted as high word (16 high bits) and and source +1 as low word.

For example: IN BUFFER 1 set as source.
MX Parameter Description

Communication parameter description

- **32 Bit Little Endian**

 The access to the value set in parameter 822.1 *Source process data channel 0* (page 89) is accepted as low word (16 high bits) and source +1 as high word.

 ![IN buffer 1 (16 bit) IN process data channel 0 (32 bit) High word | Low word IN buffer 2 (16 bit)]

 1242561547

 This parameter is usually set in the PDO Editor.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
</table>
| **9531.1 System unit channel 0** | Value range:
 - 0=Position
 - 1=Speed
 - 2=Acceleration
 - 3=Torque
 - 4=Not interpreted
 - 5=System position

 The system unit selection has to be set to specify the interpretation of channel 0 (what numerator / denominator factor should be used) so that the IN process data channels can be processed as user-defined units in the system.

 This parameter is usually set in the PDO Editor. |

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
</table>
| **9876.1 Actual value channel 0** | Value range: -2147483648 – 0 – 2147483648, step 1.

 The actual value of the IN process data channel 0 has a size of 32 bits in user-defined units.

 This parameter is usually set in the PDO Editor. |

Channel 1 – 15

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9822.2 – 16 Source process data channel 1</td>
<td>Value range: See parameter 9822.1 Source process data channel 0 (page 89).</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9530.2 – 16 Access channel 1 – 15 32-bit</td>
<td>Value range: See parameter 9530.1 Access channel 0 32-bit (page 89).</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9531.2 – 16 System variable channel 1 – 15</td>
<td>Value range: See parameter 9531.1 Channel 0 system variable (page 90).</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
</table>
| **9876.2 – 16 Actual value** | Value range: -2147483648 – 0 – 2147483647, step 1.

 The actual value of IN process data channel 1 has a size of 32 bits in user-defined units.

 This parameter is usually set in the PDO Editor. |
1.3.7 Status words 0 – 3

Status word 0

9511.1 Actual value

Value range: 0 – 4294967295, step 1.

Displays the current value of status word 0.

Basic settings

9851.1 Source

Value range:

- 0=No source
- 1=System
- 2=Local status word

Several sources can be set for status word 0:

- **No source**
 The status word is inactive.

- **System**
 The status word is composed of system variables that are based on the parameter *9856.1 Layout and function* (page 92).

- **Local control word**
 Parameter *9844.1 Local value* (page 91) specifies the status word.
 This parameter is usually set in the PDO Editor.

9844.1 Local value

Value range: 0 – 65535, step 1.

If the status word 0 source is set to "local control word", this parameter will be status word 0. This must only be used for test purposes, as the parameter is set to 0 after a reset.

This parameter is usually set in the PDO Editor.
9856.1 Layout

Value range:
- 0 = Programmable layout
- 1 = FCB/instance
- 2 = FCB/error code
- 3 = Programmable layout/error code

Layout status word 0
- **No layout**
 The status word is inactive
- **Programmable layout**
 Each bit of the status word is freely configurable.
- **FCB/instance**
 The status word has a fixed assignment. The 8 low bits (low byte) are used for displaying the currently active FCB and the 8 high bits (high byte) for displaying the currently active instance.
- **FCB/error code**
 The status word has a fixed assignment. The 8 low bits (low byte) are used for displaying the currently active FCB and the 8 high bits (high byte) for displaying the current error. If the axis is not in error status, a 0 will be displayed in the upper error byte.
- **Programmable layout/error code**
 The status word only has partial fixed assignment. The lower 8 bits (low byte) are freely configurable. The upper 8 bits (high byte) have fixed assignment with the error code in the event of an error.

This parameter is usually set in the PDO Editor.

Programmable layout

9559.1 Bit 0

Value range:
- 0 = No function
- 1 = Ready for operation
- 2 = Output stage ON
- 3 = Brake released
- 4 = Brake applied
- 5 = Motor standstill
- 6 = Negative limit switch
- 7 = Positive limit switch
- 8 = Drive 1 referenced
- 9 = Drive 2 referenced
- 10 = Drive 3 referenced
- 11 = Active drive referenced
• 12=In position
• 13=Parameter set bit 0
• 14=Parameter set bit 1
• 15=Setpoints active
• 16=Torque limit reached
• 17=Current limit reached
• 18=IEC control error
• 19=IEC output
• 20=Fault
• 21=Displayed fault signal
• 22=Error without immediate output stage inhibit
• 23=Error with immediate output stage inhibit
• 24=FCB speed control active
• 25=FCB interpolated speed control active
• 26=FCB torque control active
• 27=FCB interpolated torque control active
• 28=FCB positioning active
• 29=FCB interpolated positioning active
• 30=FCB electronic gear unit
• 31=FCB hold control active
• 32=FCB jog mode active
• 33=FCB brake test function active
• 34=Calibrate FCB encoder
• 36=FCB electronic cam active
• 37=FCB Output stage inhibit active
• 38=FCB system stop active
• 39=FCB emergency stop active
• 40=FCB application stop active
• 41=FCB standard (FCB13)
• 42=Safe stop 1
• 43=Safe stop 2
• 44=Prewarning motor temperature (KTY)
• 45=FCB dual drive active
• 46=External fault reset
• 47=Software limit switch positive
• 48=Software limit switch negative
MX Parameter Description
Communication parameter description

• 49 = Process data valid (no function)
• 51 = Brake tested OK
• 52 = Brake tested not OK
• 53 = DI-00 output stage enable
• 54 = FCB 25 Rotor position identification active
• 55 = FCB 26 Stop at user limits active
• 56 = FCB 26 Stop at user limits position controlled
• 57 = Motor commutated
• 58 = 24 V standby operation
• 59 = Process data not ready

Programmable status word 0 layout bit 0.

• **No function**
The bit is inactive.

• **Ready**
Signal 0 → The axis is currently not ready for operation. Reasons can be error states or operating states outside FCB processing (supply voltage off, supply module not ready).
Signal 1 → The axis is in FCB processing. If no FCB is selected, the default FCB 13 Stop at application limits will be active. The 7-segment display will show the number 13.

• **Output stage ON**
"Output stage enabled" is a subset of "Ready for operation" which is set to "1" in all FCBs except for FCB 01 Output stage inhibit.

• **Brake released**
Signal 0 → Brake output activated
Signal 1 → Brake output not activated

• **Brake applied**
Signal 0 → Brake output not activated
Signal 1 → Brake output activated

• **Motor standstill**
Signal 0 → Motor is turning
Signal 1 → Motor at standstill
The threshold from which motor standstill is indicated as such is set in parameters
- 10056.1 Velocity threshold motor at standstill - status bit (page 47)
- 10057.1 Filter time motor at standstill - status bit (page 47)

• **Limit switch negative**
Signal 0 → Limit switch not approached
Signal 1 → Limit switch approached
• **Limit switch positive**
 Signal 0 → Limit switch not approached
 Signal 1 → Limit switch approached

• **Axis 1 referenced**
 This bit indicates whether axis 1 (parameter set 1) is referenced. Incremental encoders, resolvers and single-turn Hiperface® encoders lose their reference with each power-off. Absolute encoders must be referenced only once before use, or after a reset to the delivery state (parameter 9727.3 Delivery state d1 (page 173)). An additional function is integrated in motors with Hiperface® encoders. In case of service a new motor is recognized and the referenced bit is reset.

• **Axis 2 referenced**
 This bit indicates whether axis 2 (parameter set 2) is referenced. Incremental encoders, resolvers and single-turn Hiperface® encoders lose their reference with each power-off. Absolute encoders must be referenced only once before use, or after a reset to the delivery state (parameter 9727.3 Delivery state d1 (page 173)). An additional function is integrated in motors with Hiperface® encoders. In case of service a new motor is recognized and the referenced bit is reset.

• **Axis 3 referenced**
 This bit indicates whether axis 3 (parameter set 3) is referenced. Incremental encoders, resolvers and single-turn Hiperface® encoders lose their reference with each power-off. Absolute encoders must be referenced only once before use, or after a reset to the delivery state (parameter 9727.3 Delivery state d1 (page 173)). An additional function is integrated in motors with Hiperface® encoders. In case of service a new motor is recognized and the referenced bit is reset.

• **Active drive referenced**
 This bit indicates whether the active axis is referenced. Incremental encoders, resolvers and single-turn Hiperface® encoders lose their reference with each power-off. Absolute encoders must be referenced only once before use, or after a reset to the delivery state (parameter 9727.3 Delivery state d1 (page 173)). An additional function is integrated in motors with Hiperface® encoders. In case of service a new motor is recognized and the referenced bit is reset.

• **In position**
 The "In position signal" must only be used in conjunction with FCB 09 Positioning (page 134).

 Signal from 0 to 1 → The axis is "In position" when it enters the range defined in -parameter 9885.3 Window width for in position message (page 136) relative to the specified target. If a travel command was aborted with an FCB changeover but the drive still arrives in the position window by chance, then no "In position "message will be generated.

 Signal 1 to 1 → The axis loses "In position" when it is outside parameter 9885.3 -"Window width for in position message (page 136) + parameter 9885.4 Hysteresis range (page 136) relative to the specified target. This avoids bouncing of the bit.

 The IN position message does not disappear when changing from FCB 09 Positioning (page 134) as long as you are in the position window + hysteresis. However, the IN position message is only set within FCB09 Positioning (page 134).
FCB change

When changing to another FCB (e.g. FCB 13 Stop at application limits to activate the brake), the "In position" message at standstill will **not get lost**. When re-entering **FCB 09 Positioning** (page 134), the bit has remained unchanged.

The message is only removed when the position window + hysteresis range is exceeded relative to the last target. This applies to all FCBs. This means the message can only be generated within **FCB 09 Positioning** (page 134). The message is only removed when the position window + hysteresis range is left regardless of the current FCB.

- **Parameter set bit 0**
 This bit is used for parameter set changeover (see also "Parameter set bit 1").
 - Bit 0 = 1 and bit 1 = 0 → Parameter set 1 active
 - Bit 0 = 0 and bit 1 = 1 → Parameter set 2 active
 - Bit 0 = 1 and bit 1 = 1 → Parameter set 3 active

MOVIAXIS® supports 3 physically connected motors with encoder feedback. An additional "XGK11A encoder card" option is required each for the second and third motor to connect the additional encoder feedback systems. The motor power cables must be distributed through a changeover switch (not included in the SEW scope of delivery) to the individual motors. The individual motors/parameter sets must first be entered in the startup routine.

- **Parameter set bit 1**
 See "Parameter set bit 0"

- **Setpoints active**
 This message is active in all setpoint processing FCBs when setpoints are being processed. These are **FCB 05 (page 122) – FCB 10 (page 142)**. The message is set to 0 in all stop FCBs and the default FCB. The message is still 0 during the brake release time.

- **Torque limit reached**
 This message indicates when the torque limit is reached: 9580.1 **System limit maximum torque** (page 51) 9740.4 **Application limit maximum torque** (page 53) or maximum torque of the respective FCB.

- **IEC control error**
 This message is in preparation.

- **IEC output**
 This message is in preparation.

- **Fault**
 This message is issued when the **MOVIAXIS®** unit is in error state. It is not relevant for the fault bit whether the output stage is inhibited immediately or not.

- **Message displayed fault**
 This signal is a subset of "Fault" and displays error responses that are configured to "Display fault". The drive continues to operate normally.
• **Fault without immediate output stage inhibit**
 This signal is a subset of "Fault" and indicates that the drive can be decelerated using a ramp (motor does not coast to a halt or mechanical brake is not applied). This bit is also set when "Signal displayed error".

• **Error with immediate output stage inhibit**
 This signal is a subset of "Fault" and indicates that the motor coasts to a halt or, if installed, the mechanical brake is applied.

• **FCBs**
 The relevant message is set to 1 if the corresponding FCB is active.

• **Brake tested OK**
 The FCB has successfully tested the brake and found it to be good according to the basic conditions set in FCB. Also see *FCB 21 brake test* (page 155).

• **Brake tested not OK**
 The FCB brake test has assessed the brake as faulty. The higher-level controller now decides on the measures to be initiated. Also see *FCB 21 brake test* (page 155).

• **Output stage enable DI-00**
 Displays the current status of the terminal DI00.
 This parameter is usually set in the PDO Editor.

• **Motor commutated**
 Shows whether the motor is commutated or not. In "Not commutated" status, the drive cannot be enabled.- This bit is only useful for synchronous motors with incremental encoders. For absolute encoders, the bit is always set to "TRUE".

• **24 V standby operation**
 Mirrors the bit of the same name in the unit status (*9702.1 Bit 8*)

• **Process data not ready**
 Mirrors the bit of the same name in the unit status (*9702.1 Bit 13*)

9559.2 – 16

Bit 1 – 15

Value range: See parameter "9559.1 Control word 0 bit 0" (page 92).

Programmable status word 0 layout bits 1 – 15.

Status word 1 – 3

Description of status words 1 – 3, see status word 0.
1.3.8 OUT process data

Channel 0
9560.1 System unit channel 0

Value range:
- 0=No unit
- 1=Actual speed
- 2=Position
- 3=Acceleration
- 4=Torque
- 5=Apparent current
- 6=Active current
- 7=Net torque
- 8=Virtual encoder position
- 9=System position

- No unit
 The channel is not assigned.
- Actual speed
 Shows the current actual speed in user-defined units.
- Position
 Shows the current actual position in user-defined units.
- Acceleration
 Shows the current actual acceleration in user-defined units.
- Torque
 Displays the currently applied torque in user-defined units.
- Apparent current
 Shows the currently flowing output current in A with 3 decimal places.
- Active current
 Shows the currently flowing torque current in A with 3 decimal places.
MX Parameter Description

Communication parameter description

- **System position**
 Position in increments.
 Resolution: 65536/motor revolution.

- **Modulo position**
 Displays the present modulo position.

- **System position encoder 1/2/3**
 Shows the current position of the encoder 1/2/3 in increments.
 Resolution: 65536/motor revolution.
 This parameter is usually set in the PDO Editor.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9561.1 Actual value high word channel 0</td>
<td>Value range: -32768 – 0 – 32767, step 1. OUT process data buffer (16 bit, high) 0 – 15.</td>
</tr>
<tr>
<td>9562.1 Actual value low word channel 0</td>
<td>Value range: -32768 – 0 – 32767, step 1. OUT process data buffer (16 bit, low) 0 – 15.</td>
</tr>
<tr>
<td>Channel 1 – 15</td>
<td></td>
</tr>
<tr>
<td>9560.2 – 9560.16 System variable channel 1 – 15</td>
<td>Value range: See parameter "9560.1 System unit channel 0" (page 98). System unit OUT process data buffer 1 – 15.</td>
</tr>
<tr>
<td>9561.2 – 9561.16 Actual value high word channel 1 – 15</td>
<td>Value range: -32768 – 0 – 32767, step 1. OUT process data buffer (16 bit, high) 0 – 15.</td>
</tr>
<tr>
<td>9562.2 – 9562.16 Actual value low word channel 1 – 15</td>
<td>Value range: -32768 – 0 – 32767, step 1. OUT process data buffer (16 bit, low) 0 – 15.</td>
</tr>
</tbody>
</table>
1.3.9 OUT buffer 0 – 7

OUT buffer 0

Basic settings

9563.3 Data sink

<table>
<thead>
<tr>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>No sink</td>
</tr>
<tr>
<td>1</td>
<td>CAN2</td>
</tr>
<tr>
<td>2</td>
<td>CAN1</td>
</tr>
<tr>
<td>3</td>
<td>Communication option</td>
</tr>
</tbody>
</table>

The data sink is used to set the bus system on which the data is to be written. This parameter is usually set in the PDO Editor.

9563.5 Data block start

The data block start describes beginning from which word data is to be written to the bus. Whether a value unequal to 0 may be entered depends on the bus system (e.g. the data block start for CAN is always 0). This parameter is usually set in the PDO Editor.

9563.6 Data block length

Value range: 0 – 4 – 16, step 1.

The data block length also depends on the bus system, e.g. for CAN = maximum 4. This parameter is usually set in the PDO Editor.

9563.16 Config error

Value range: 0 – 4294967295, step 1.

The config error indicates any error. This parameter is usually set in the PDO Editor.
Specific CAN parameters

9563.4 **Message ID**
- Value range: 0 – 1073741823, step 1.
- The message ID is a CAN-specific parameter. It numbers or prioritizes the messages.
- This parameter is usually set in the PDO Editor.

9563.1 **Send PDO after sync**
- Value range:
 - 0=No
 - 1=Yes
- This parameter allows for cyclical sending of PDOs that will be sent connected to the sync. For this purpose, parameter 9563.22 **Send PDO after n syncs** (page 101) needs to know after how many syncs a new PDO is to be sent.

9563.17 **Blocking time**
- Unit: μs
- Value range: 0 – 100000000, step 1000.
- This parameter applies in conjunction with parameter 9563.23 **Send PDO following change** (page 102); if the PDO changes permanently, the blocking time will still be maintained cyclically and the PDO will not be sent more often.
- This parameter is usually set in the PDO Editor.

9563.21 **Endianess**
- Value range: See parameter 9514.20 **Endianess IN buffer 0** (page 82).
- This parameter is used to set whether the first of the two bytes from the bus is interpreted as high or low byte.
 - **Big Endian**
 - The first byte is interpreted as high byte.
 - **Little Endian**
 - The first byte is interpreted as low byte. This is a CAN-specific parameter.
- This parameter is usually set in the PDO Editor.

9563.2 **Send PDO cyclically**
- Unit: μs
- Value range: 0 – 65535000, step 1000.
- This parameter sets the cycle time if the PDO is to be sent cyclically when parameter 9563.23 **Send PDO following change** (page 102) is set to "No".
- This parameter is usually set in the PDO Editor.

9563.22 **Send PDO after n syncs**
- Value range: 0 – 255, step 1.
- See parameter 9563.1 **Send PDO after sync** (page 101).
- This parameter is usually set in the PDO Editor.
Parameter Description

MX Parameter Description

Communication parameter description

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
</table>
| 9563.23 Send PDO following change | Value range:
- 0 = No
- 1 = Yes
The setting "Yes" means PDOs are only sent following a change, see also parameter 9563.17 Blocking time (page 101).
This parameter is usually set in the PDO Editor. |
| 9563.19 Send PDO following change of IN buffer | Value range:
- 0 = No RxPDO
- 1 = from IN PDO1
- 2 = from IN PDO1
- 3 = from IN PDO2
- 4 = from IN PDO3
- 5 = from IN PDO4
- 6 = from IN PDO5
- 7 = from IN PDO6
- 8 = from IN PDO7
- 9 = from IN PDO8
- 10 = from IN PDO9
- 11 = from IN PDO10
- 12 = from IN PDO11
- 13 = from IN PDO12
- 14 = from IN PDO13
- 15 = from IN PDO14
- 16 = from IN PDO15
The parameter allows for sending a PDO only if the IN PDO has changed. Parameter 9563.17 Blocking time (page 101) can be used to prevent that PDOs are sent permanently.
This parameter is usually set in the PDO Editor. |
| 9563.18 PDO ID | Value range: 0 – 255, step 1.
This parameter only applies to the K-Net bus system and sets the PDO address.
This parameter is usually set in the PDO Editor. |

Specific communication option parameters
Parameter Description
MOVIAXIS® – MOVIAXIS® Multi-Axis Servo Inverters

Communication parameter description

MX Parameter Description

9563.24 Transmission cycle

Value range:
- 0 = Bus cycle
- 1 = Gateway cycle

In preparation.
This parameter is usually set in the PDO Editor.

Data sources

9770.1 Data source word 0

This parameter is usually set in the PDO Editor because of the many setting options.

9864.1 – 9864.16 Actual value word 0 – 15

Value range: 0 – 65535, step 1.
Actual data word 0 – 15 OUT buffer 0.

9770.2 – 9770.16 Data source word 1 – 15

Value range: See parameter 9770.1 Data source word 0 (page 103).

OUT buffer 1 – 7

Description see OUT buffer 0
1.3.10 I/O basic unit

Value range: This parameter is usually set in the PDO Editor because of the many setting options.

Source binary outputs basic unit.

8334.0 Actual value digital inputs

8349.0 Actual value digital outputs

1.3.11 I/O option 1

Value range:
- 0 = Not connected
- 1 = Option 1
- 2 = Option 2
- 3 = Option 3

I/O PDO 1 slot

Value range: This parameter is usually set in the PDO Editor because of the many setting options.

I/O PDO 1 PDO 1 source
Analog inputs

9619.21 AI0 input voltage
Unit: mV
IO PDO 1 AI0 input voltage.

9619.31 AI1 input voltage
Unit: mV
IO PDO 1 AI1 input voltage.

9619.22 AI0 offset
Unit: mV
Value range: -10000 – 0 – 10000, step 1.
IO PDO 1 AI0 offset

9619.32 AI1 offset
Unit: mV
Value range: -10000 – 0 – 10000, step 1.
IO PDO 1 AI1 offset

9619.23 AI0 scaling numerator
Value range: 1 – 2097151, step 1.
IO PDO 1 AI0 scaling numerator.

9619.33 AI1 scaling numerator
Value range: 1 – 2097151, step 1.
IO PDO 1 AI1 scaling numerator.

9619.24 AI1 scaling denominator
Value range: 1 – 2097151, step 1.
IO PDO 1 AI1 scaling denominator.

9619.34 AI2 scaling denominator
Value range: 1 – 2097151, step 1.
IO PDO 1 AI2 scaling denominator.

9619.25 AI1 scaled value 32 bit
I/O PDO 1 AI1 scaled value 32 bit.

9619.35 AI1 scaled value 32 bit
I/O PDO 1 AI2 scaled value 32 bit.

9619.27 AI1 scaled value high word
I/O PDO 1 AI1 scaled value high word.

9619.37 AI2 scaled value high word
I/O PDO 1 AI2 scaled value high word.

9619.26 AI1 scaled value low word
I/O PDO 1 AI1 scaled value low word.

9619.36 AI2 scaled value low word
I/O PDO 1 AI2 scaled value low word.
Analog outputs

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9619.122 AO1 high word source</td>
<td>Value range: See parameter 9770.1 Data source word 0 (page 103). I/O PDO 1 AO1 high word source.</td>
</tr>
<tr>
<td>9619.132 AO2 high word source</td>
<td>Value range: See parameter 9770.1 Data source word 0 (page 103). I/O PDO 1 AO2 high word source.</td>
</tr>
<tr>
<td>9619.121 AO1 low word source</td>
<td>Value range: See parameter 9770.1 Data source word 0 (page 103). I/O PDO 1 AO1 low word source.</td>
</tr>
<tr>
<td>9619.131 AO2 low word source</td>
<td>Value range: See parameter 9770.1 Data source word 0 (page 103). I/O PDO 1 AO2 low word source.</td>
</tr>
<tr>
<td>9619.123 AO1 value source 32 bit</td>
<td>I/O PDO 1 AO1 actual value 32 bit.</td>
</tr>
<tr>
<td>9619.133 AO2 value source 32 bit</td>
<td>I/O PDO 1 AO2 actual value 32 bit.</td>
</tr>
<tr>
<td>9619.124 AO1 scaling to V numerator</td>
<td>Value range: 1 – 2097151, step 1. I/O PDO 1 AO1 scaling numerator.</td>
</tr>
<tr>
<td>9619.134 AO2 scaling to V numerator</td>
<td>Value range: 1 – 2097151, step 1. I/O PDO 1 AO2 scaling numerator.</td>
</tr>
<tr>
<td>9619.125 AO1 scaling to V denominator</td>
<td>Value range: 1 – 2097151, step 1. I/O PDO 1 AO1 scaling denominator.</td>
</tr>
<tr>
<td>9619.135 AO2 scaling to V denominator</td>
<td>Value range: 1 – 2097151, step 1. I/O PDO 1 AO2 scaling denominator.</td>
</tr>
<tr>
<td>9619.126 AO1 offset</td>
<td>Unit: mV Value range: -10000 – 0 – 10000, step 1. I/O PDO 1 AO1 offset</td>
</tr>
<tr>
<td>9619.136 AO2 offset</td>
<td>Unit: mV Value range: -10000 – 0 – 10000, step 1. I/O PDO 1 AO2 offset.</td>
</tr>
<tr>
<td>9619.127 AO1 output voltage</td>
<td>Unit: mV I/O PDO 1 AO1 output voltage.</td>
</tr>
</tbody>
</table>
1.3.12 I/O option 2

9619.137 AO2 output voltage
Unit: mV
I/O PDO 1 AO2 output voltage.

9625.1 I/O PDO 2 slot
Value range: See parameter "9585.1 Source I/O basic unit" (page 104).
I/O PDO 2 slot

9625.111 PDO source
Value range: This parameter is usually set in the PDO Editor because of the many setting options.
I/O PDO 2 PDO 2 source

Analog inputs

9625.21 AI1 input voltage
Unit: mV
I/O PDO 2 AI1 input voltage.

9625.31 AI2 input voltage
Unit: mV
I/O PDO 2 AI2 input voltage.

9625.22 AI1 offset
Unit: mV
Value range: -10000 – 0 – 10000, step 1.
I/O PDO 2 AI1 offset

9625.32 AI2 offset
Unit: mV
Value range: -10000 – 0 – 10000, step 1.
I/O PDO 2 AI2 offset

9625.23 AI1 scaling numerator
Value range: 1 – 2097151, step 1.
I/O PDO 2 AI1 scaling numerator.

9625.33 AI2 scaling numerator
Value range: 1 – 2097151, step 1.
I/O PDO 2 AI2 scaling numerator.

9625.24 AI1 scaling denominator
Value range: 1 – 2097151, step 1.
I/O PDO 2 AI1 scaling denominator.
MX Parameter Description

Communication parameter description

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
</table>
| 9625.34 A12 scaling denominator | Value range: 1 — 2097151, step 1.
I/O PDO 2 A12 scaling denominator. |
| 9625.25 A11 scaled value 32 bit | I/O PDO 2 A11 scaled value 32 bit. |
| 9625.35 A12 scaled value 32 bit | I/O PDO 2 A12 scaled value 32 bit. |
| 9625.27 A11 scaled value high word | I/O PDO 2 A11 scaled value high word. |
| 9625.37 A12 scaled value high word | I/O PDO 2 A12 scaled value high word. |
| 9625.26 A11 scaled value low word | I/O PDO 2 A11 scaled value low word. |
| 9625.36 A12 scaled value low word | I/O PDO 2 A12 scaled value low word. |

Analog outputs

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
</table>
| 9625.122 AO1 high word source | Value range: See parameter 9770.1 Data source word 0 (page 103).
I/O PDO 2 AO1 high word source. |
| 9625.132 AO2 high word source | Value range: See parameter 9770.1 Data source word 0 (page 103).
I/O PDO 2 AO2 high word source. |
| 9625.121 AO1 low word source | Value range: See parameter 9770.1 Data source word 0 (page 103).
I/O PDO 2 AO1 low word source. |
| 9625.131 AO2 low word source | Value range: See parameter 9770.1 Data source word 0 (page 103).
I/O PDO 2 AO2 low word source. |
| 9625.123 AO1 value source 32 bit | I/O PDO 2 AO1 actual value 32 bit. |
| 9625.133 AO2 value source 32 bit | I/O PDO 2 AO2 actual value 32 bit. |
| 9625.124 AO1 scaling to V numerator | Value range: 1 — 2097151, step 1.
I/O PDO 2 AO1 scaling numerator. |
| 9625.134 AO2 scaling to V numerator | Value range: 1 — 2097151, step 1.
I/O PDO 2 AO2 scaling numerator. |
<table>
<thead>
<tr>
<th>Parameter Code</th>
<th>Description</th>
<th>Value Range</th>
<th>Unit</th>
<th>Offset</th>
<th>Output Voltage</th>
</tr>
</thead>
<tbody>
<tr>
<td>9625.125 AO1</td>
<td>scaling to V denominator</td>
<td>1 – 2097151, step 1</td>
<td>mV</td>
<td>-10000 – 0 – 10000, step 1</td>
<td>mV</td>
</tr>
<tr>
<td>9625.135 AO2</td>
<td>scaling to V denominator</td>
<td>1 – 2097151, step 1</td>
<td>mV</td>
<td>-10000 – 0 – 10000, step 1</td>
<td>mV</td>
</tr>
<tr>
<td>9625.126 AO1</td>
<td>offset</td>
<td></td>
<td>mV</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9625.136 AO2</td>
<td>offset</td>
<td></td>
<td>mV</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9625.127 AO1</td>
<td>output voltage</td>
<td></td>
<td>mV</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9625.137 AO2</td>
<td>output voltage</td>
<td></td>
<td>mV</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
1.4 Encoder parameter description

The following encoders can be evaluated using the encoder evaluation function integrated in the MOVIAXIS® basic unit:

- HIPERFACE® encoder
- Sin/cos encoder
- TTL encoder
- Resolver (2 – 12 pole pairs)

With resolver, sin/cos and TTL encoders, MOVIAXIS® monitors the failure of track signals caused by faults or cable problems (amplitude monitoring).

If MOVIAXIS® detects an error, the output stage inhibit and brake are activated.

With the "Encoder calibration and adjustment" function, a fixed rotating field space vector is impressed in the motor. If the rotor aligns itself according to this space vector, the encoder angle is "0" with the SEW encoder setting.

If this is not the case, the encoder offset can be calibrated with MOVIAXIS® and/or

- Entered in encoder offset parameter,
- The encoder can be aligned accordingly (resolver),
- The encoder offset can be written to the encoder (Hiperface®).

1.4.1 Encoder input of basic unit

<table>
<thead>
<tr>
<th>Encoder part number/encoder name</th>
<th>Value range: $0 \rightarrow 2^{32}$ step 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>9818.34 / 9818.24 / 9818.20</td>
<td>Encoder part number; encoder 1 / encoder 2 / encoder 3</td>
</tr>
</tbody>
</table>

The part number of the selected encoder is displayed in parameter 9818.34. MotionStudio generates the encoder name from this. Encoders that are not from SEW are assigned a part number smaller than 8 digits.

<table>
<thead>
<tr>
<th>Encoder type</th>
<th>Value range:</th>
</tr>
</thead>
<tbody>
<tr>
<td>9733.1 / 9733.2 / 9733.3</td>
<td>$0 = \text{No encoder}$</td>
</tr>
<tr>
<td>Encoder type</td>
<td>$1 = \text{RS422}$</td>
</tr>
<tr>
<td>Encoder type</td>
<td>$3 = \text{Sin / cos XXXS}$</td>
</tr>
<tr>
<td>Encoder type</td>
<td>$4 = \text{Hiperface® XXXH}$</td>
</tr>
<tr>
<td>Encoder type</td>
<td>$5 = \text{Resolver RHXX}$</td>
</tr>
</tbody>
</table>

Type encoder 1 / encoder 2 / encoder 3.

With encoder 1 (encoder input X13 on the axis module), only settings $0 \rightarrow 5$ are possible.

The multi encoder card (MGK) can select all settings except for the Resolver (5) setting.
9719.1 / 9719.2 / 9719.3 Counting direction

Value range:
- 0 = Up
- 1 = Down

Counting direction encoder 1 / encoder 2 / encoder 3.

The parameter depends on the installation position of the encoder and is independent of the setting of parameter 8537.0 Direction of rotation reversal (page 23). Do not confuse the two parameters. The counting direction of the encoder is reversed which means also the actual values of position, speed and acceleration for this encoder are reversed.

This parameter can be used to support encoders that are installed other than the standard installation. Changing the counting direction generally causes de-referencing of the drive.

The encoder system is reinitialized when this parameter is changed.

- Setting the parameter
The following notes for setting the parameters apply provided that the parameter 8537.0 Direction of rotation reversal (page 23) is set to "OFF". If the parameter for changing the direction of rotation is set to "ON", the direction of rotation of the motor shaft is inverted.

- Setting for rotary motors
 - If the encoder provides a positive increasing position when the motor shaft turns in CW (right) direction (SEW definition as viewed onto the motor shaft), then the counting direction must be set to "UP" (default setting).
 - If the encoder provides a negative decreasing position when the motor shaft turns in CW (right) direction, then the counting direction must be set to "DOWN".
• Setting for linear motors
 – If the encoder provides a positive increasing position when the motor moves in positive direction (SEW definition: first movement for commutation travel following motor alignment), the counting direction must be set to "UP" (default setting).
 – If the encoder provides a negative increasing position when the motor moves in positive direction (SEW definition: first movement for commutation travel following motor alignment), the counting direction must be set to "DOWN" (default setting).

9749.11 / 9749.12 / 9749.13 Encoder monitoring

Value range:
• 0 = OFF
• 1 = ON

Monitoring encoder 1/2/3.

• SIN / COS signal:
The C track is not monitored for MOVIAXIS®.
Monitoring responds when the amplitude falls below 10 % of the measuring range. Wire breakage monitoring is not completely possible when the motor is at standstill. The error criterion is not fulfilled if the undamaged track has a high positive or negative value. Monitoring will always trigger if both tracks are damaged.

• TTL signal:
The track signals are monitored by measuring the differential voltages of the two tracks A and B.
When the motor is at standstill, wire breakage monitoring is not possible when only one wire pair of a track is damaged.

• Hiperface® signal:
During operation, a positioning request is sent to the Hiperface® encoder every second. The position value in the response message is compared with a TTL track signal. If the position deviates by more than 20 increments, an error ("error 15") will be issued. The encoder status is queried after every position request (see section "Encoder status" (page 115)).
A check is still made to assess whether an encoder is physically present when the encoder setting "0 = OFF".
9593.1 / 9593.2 / 9593.3 Numerator factor

Value range: 0 – 1024 – 2147483647, step 1.

Factor numerator encoder 1 encoder 2 / encoder 3.

Numerator / denominator factor

This factor determines the encoder resolution. Enter the value in parameter 9733.1 -Encoder type (page 110):

- Encoder (encoder type = 1, 3, 4)

\[
\begin{align*}
\text{Factor numerator encoder 1} & \rightarrow \text{Encoder resolution} \\
\text{Factor denominator encoder 1} & \rightarrow \text{Revolution}
\end{align*}
\]

Example: SinCos AS1H encoder

Factor numerator encoder 1 = 1024

Factor denominator encoder 1 = 1

- Resolver (encoder type = 5)

\[
\frac{\text{Factor numerator encoder 1}}{\text{Factor denominator encoder 1}} = \frac{\text{Pole pair number resolver}}{1}
\]

Example: Resolver, number of pole pairs = 1

Factor numerator encoder 1 = 1

Factor denominator encoder 1 = 1

- Linear motor (encoder type = 1, 3, 4)

\[
\frac{\text{Factor numerator encoder 1}}{\text{Factor denominator encoder 1}} = \frac{\text{Signal period [mm]}}{\text{Pole pair width [mm]}}
\]

Example: AL1H (Lincoder, signal period 5 mm), with SL2 motor (pole distance 32 mm)

Factor numerator encoder 1 = 32

Factor denominator encoder 1 = 5

9593.10 / 9593.11 / 9593.12 Denominator factor

Value range: 1 – 2147483647, step 1.

Factor denominator encoder 1 / encoder 2 / encoder 3.

See parameter 9593.1 Numerator factor (page 113).
1.4.2 Position mode settings

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value range</th>
</tr>
</thead>
<tbody>
<tr>
<td>9999.1 / 9998.2 / 9998.3 Position mode</td>
<td>0 = Without overflow counter, 1 = With overflow counter</td>
</tr>
</tbody>
</table>

The reset behavior of parameter 9998.1 Position mode in conjunction with absolute encoders depends on the following settings:

- If set to "without overflow counter", the unit will always be positioned in the absolute range of the encoder following a CPU reset and system restart, e.g. with Hiperface® 4096 motor revolutions. This means a position loss in the event of encoder overflow. If the position range of the absolute encoder is not exceeded, no reference travel is required when replacing MOVIAxis® because no overflows can be stored in the MOVIAxis®. Reference travel is only required when the motor is replaced. With this setting, the parameter 9999.11 Relative position of reference point (page 115) must be set.

- When set to "With overflow counter", the complete ±32768 motor revolutions are utilized despite overflow. MOVIAxis® stores absolute encoder overflows internally. This also functions when the axis is moved to overflow without electrical current. This is ensured by checking the travel range. Reference travel must always be performed when replacing MOVIAxis® or the motor.

The maximum target position must not exceed the total from the current target position ±16000 revolutions.
9999.11 / 9999.12 / 9999.13 Relative position of the reference point

Parameter Description

Value range: 0 – 50000 – 100000, step 1.
Relative position of reference point encoder 1/2/3.
The parameter is required if parameter 9998.1 Position mode (page 114) is set to “without overflow counter”.

With parameter Relative position of reference point, the position of the reference point (e.g. reference cam) should be specified in relation to the required total travel range in percent.
The valid travel range depends on the absolute encoder range and the relative position of the reference point.

Leaving the valid travel range is reported for MOVIAXIS® units supplied by 24 V.

- Required travel range < 50 % absolute encoder range:
 You can use the default setting (50 %) if the required travel range is less than half the absolute range of the encoder.

- Required travel range > 50 % absolute encoder range:
 If the reference point is located within the first quarter of the travel distance, then the value should be set to 25%. Never set the value to 0% or 100% even if the reference point is located at the start/end of the travel distance as this might result in travel range monitoring errors. In this case, the values should be set to 5% or 95%.

1.4.3 Actual values

9596.1 / 9596.2 / 9596.3 Referenced (encoder status bit 7)

Reference status encoder 1/2/3.
The encoder status bit 7 indicates whether an encoder is referenced or not. This value is read only and is set when reference travel is complete. The status bit is cleared when 24 V supply is off and no multi-turn encoder is used.
The status is also cleared in the event of write access to parameters that have an influence on the positions.
These are:
- Encoder type
- Direction of rotation of the motor
- Counting direction of the encoder
- Machine zero offset
- Position detection mode (encoder referencing only for multi-turn absolute encoder)
- Position offset (only if position detection mode 1 is active and the encoder is a multi-turn absolute encoder).
- Numerator factor (system unit) / denominator factor (system unit)
- Numerator factor (system unit) / denominator factor (system unit) for encoder emulation
- Numerator factor (user-defined unit) / denominator factor (user-defined unit)
- Modulo overflow / underflow value
- All SSI setting parameters and Endat setting parameters.
Parameter Description MOVIAXIS® – MOVIAXIS® Multi-Axis Servo Inverters

Encoder parameter description

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9595.1 / 9595.2 / 9595.3 Connected to drive no.</td>
<td>Value range: 0 – 1 – 7, step 1. Parameter set selection for encoder 1/2/3. This parameter is used to assign a parameter set number to encoder 1/2/3. This means the user-defined unit for this encoder information is also defined.</td>
</tr>
<tr>
<td>9782.1 / 9782.2 / 9782.3 Encoder identification</td>
<td>Value range: 0 – 4294967295, step 1. Encoder identification of encoder 1/2/3. With Hiperface® encoders, the encoder identification is read from the electronic nameplate. The number identifies the encoder type and is described in the Hiperface® documentation from SICK Stegmann.</td>
</tr>
<tr>
<td>9751.11 / 9751.12 / 9751.13 Machine zero offset</td>
<td>Value range: -2147483648 – 0 – 2147483647, step 1. Zero point correction encoder 1/2/3. When using multi-turn encoders, another offset value (machine zero offset) has to be calculated and stored non-volatile following referencing. This offset allows for recovering all positions after a power failure. No reference travel is necessary in this case. The controller sets this parameter by itself during referencing.</td>
</tr>
<tr>
<td>9704.1 Actual position</td>
<td>Displays the actual position in user defined units for the position controller. Is suited for output in the scope but is not consistent with the motor control parameters. Corresponds to parameters 9704.2/3 or 4 according to which one was switched with parameter 9744.1 Source actual position (page 117) for the position controller.</td>
</tr>
<tr>
<td>10444.1 / 10444.2 / 10444.3 Actual position</td>
<td>Displays actual position of encoder 1/2/3 in system units. Is suited for output in the scope but is not consistent with the motor control parameters.</td>
</tr>
</tbody>
</table>

INFORMATION

The parameters 9744.1/2/3 Actual position source (page 117) and 9597.1/2/3 Actual speed source (page 117) can only be switched to the encoder that was assigned to the parameter set here.
Encoder Parameter Description

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9704.2 / 9704.3 / 9704.4 Actual position</td>
<td>Display actual position of encoder 1/2/3 in user-defined units. Is suited for output in the scope but is not consistent with the motor control parameters.</td>
</tr>
<tr>
<td>9839.2 / 9839.3 / 9839.4 Actual position modulo</td>
<td>Value range: -2147483648 – 0 – 2147483647, step 1. Display of Modulo position encoder 1/2/3 in user-defined units. The display is filtered in MotionStudio.</td>
</tr>
</tbody>
</table>
| 9744.1 / 9744.2 / 9744.3 Actual position source | Value range:
- 0 = No encoder
- 1 = Encoder 1
- 2 = Encoder 2
- 3 = Encoder 3
Actual position source P1/P2/P3. The parameter is set in the parameter tree folder "Motor data". This parameter is used to select the encoder that provides the actual position information for the position controller of the motor control. The source of the actual position can also be switched to another source **during** controller enable. Only the encoder assigned to the parameter set number can be chosen as source. This is verified as long as the controller is enabled. See also parameter **9595.2 Connected to drive no.** (page 116). |
| 9597.1 / 9597.2 / 9597.3 Actual speed source | Value range:
- 0 = No encoder
- 1 = Encoder 1
- 2 = Encoder 2
- 3 = Encoder 3
Source actual speed P1/P2/P3. The parameter is set in the parameter tree folder "Motor data". This parameter is used to select the encoder that provides the information for the speed controller, current controller and commutation of the motor control. The source of the actual speed **cannot** be switched to another source during controller enable. |
Only the encoder assigned to the parameter set number can be chosen as source.
This is verified when activating controller enable.
See also parameter 9595.2 Connected to drive no. (page 116).
10068.1 Actual position

Displays the actual position of motor control for the position controller.

Is suited for output in the scope and is consistent with the motor control parameters.
1.5 Parameter description for FCB parameter setting

1.5.1 FCB Function Control Block

The term "FCB concept" describes the modular firmware design of MOVIAXIS®. This feature ensures that a wide range of functions can be selected or deselected quickly and easily using control words without having to perform any programming.

All primary functions, i.e. functions that move or control the motors, are designed as individual FCBs that only have to be selected, for example, to perform positioning tasks. The user can switch between FCBs at any time depending on the requested function.

1.5.2 Basic settings

9702.3 Current FCB

Currently active FCB number.

9702.6 Current FCB instance

Currently active FCB instance.

9804.1 Select FCB with instance

Low word definition (bits 0-15)

- 00 = FCB 00 Standard
- 01 = FCB 01 Output stage inhibited
- 05 = FCB 05 Speed control (page 122)
- 06 = FCB 06 Interpolated speed control (page 125)
- 07 = FCB 07 Torque control (page 131)
- 08 = FCB 08 Interpolated torque control (page 132)
- 09 = FCB 09 Position control instance 00 (page 134)
- 10 = FCB 10 Interpolated position control (page 142)
- 11 = Not assigned
- 12 = FCB 12 Reference travel (page 144)
- 13 = FCB 13 Stop
- 14 = FCB 14 Emergency stop
- 15 = FCB 15 Stop at system limits
- 16 = FCB 16 Electronic cam
- 17 = FCB 17 Electronic gear unit
- 18 = FCB 18 Encoder adjustment (page 145)
- 19 = FCB 19 Hold control
- 20 = FCB 20 Jog mode (page 153)
- 21 = FCB 21 Brake test function (page 155)
- 22 = FCB22 Multi-drive
- 25 = FCB25 Rotor position identification
- 26 = FCB26 Stop at user limits

High word definition (bits 16 – 31).
Instance 0 - 63 is selected in the high word.
Direct selection of FCB number and FCB instance.

This parameter is one of several ways to select an FCB or instance. If several FCBs are selected at the same time, the FCB with highest priority will be activated.

The FCBs have the following priorities (starting with the highest priority):

- FCB 01 Output stage inhibited
- FCB 15 Stop at system limits
- FCB 14 Emergency stop
- FCB 13 Stop at application limits
- FCB 18 Encoder adjustment (page 145)
- FCB 25 Rotor position identification
- FCB 12 Reference travel (page 144)
- FCB 11 Limit switch operation
- FCB 20 Jog mode (page 153)
- FCB 19 Hold control
- FCB 21 Brake test function (page 155)
- FCB 22 Multi-drive
- FCB 17 Electronic gear unit
- FCB 16 Electronic cam
- FCB 10 Interpolated position control (page 142)
- FCB 09 Position control (page 134)
- FCB 06 Interpolated speed control (page 125)
- FCB 05 Speed control (page 122)
- FCB 08 Interpolated torque control (page 132)
- FCB 07 Torque control (page 131)
- FCB 26 Stop at user limits
- FCB 00 Standard (→ FCB 13 Stop at application limits)

If two instances are selected at the same time, the higher instance will be activated.
The following FCBs can be assigned to an instance:

- FCB 09 Positioning (page 134)
- FCB 05 Speed control
- FCB 07 Torque control

This parameter is reset to FCB 00 Standard at a CPU reset or system restart, which is equivalent with FCB 13 Stop at application limits. At warm start, the set parameter is maintained.

9982.11 Stop FCB initialization

<table>
<thead>
<tr>
<th>Value range: 0 – 3</th>
</tr>
</thead>
</table>

This parameter influences the jerk limitation for a transition to one of the stop FCBs 13 / 14 / 15 / 26.

- Acceleration = 0

When switching over to a stop FCB from a speed higher than zero, the jerk limitation is set up anew, i.e. the current acceleration or deceleration becomes zero. Depending on the extent of the set jerk limit, the deceleration is set anew. This behavior results in a longer braking distance and can only be set for compatibility reasons. During an initial startup, select the setting "current acceleration".

- Current acceleration = 3

When switching over to a stop FCB from a speed higher than zero, the jerk limitation is not set up anew, i.e. the current deceleration is forwarded to the selected stop FCB. Deceleration ramps are not interrupted and braking distances are not extended. This setting must be selected for every initial startup.

1.5.3 FCB 05 Speed control

MOVIAXIS® can be run as a speed-controlled axis.

The user can specify limit values for acceleration, deceleration and jerk as the basic conditions for speed control. The actual speed setpoint for the drive controller is generated in the controller cycle by a ramp generator integrated in MOVIAXIS® using the specified limit values.

You can configure several data sets (instances - and therefore "speed controllers" with different settings) for the "Speed control" function. You can switch between the instances using process data or parameter access.

In this way, for example, a process, in which speed controllers with different settings are used, is simple to implement using the instance switchover function.
Setpoints

9598.1 / 10440.1
Velocity setpoint source

Value range:
- 0 = Local setpoint
- 1 = Process data buffer channel 0
- 2 = Process data buffer channel 1
- 3 = Process data buffer channel 2
- 4 = Process data buffer channel 3
- 5 = Process data buffer channel 4
- 6 = Process data buffer channel 5
- 7 = Process data buffer channel 6
- 8 = Process data buffer channel 7
- 9 = Process data buffer channel 8
- 10 = Process data buffer channel 9
- 11 = Process data buffer channel 10
- 12 = Process data buffer channel 11
- 13 = Process data buffer channel 12
- 14 = Process data buffer channel 13
- 15 = Process data buffer channel 14
- 16 = Process data buffer channel 15

This parameter sets the source for the setpoint speed of FCB speed control.

If the parameter is set to "Local setpoint", the setpoint source will be parameter 9598.2
Local velocity setpoint (page 123).

9598.2 / 10440.2
Local velocity setpoint

Unit: 10^{-3}/min.
Value range: -10000000 – 0 – 10000000, step 1.

If the parameter 9598.1 Velocity setpoint source (page 123) is set to "Local setpoint",
this parameter will be the setpoint speed for FCB 05 Speed control (page 122).

Limit values

9598.3 / 10440.3
Torque limit source

Value range: See parameter 9598.1 Setpoint source velocity (page 123).

This parameter sets the source for the torque limit of FCB speed control.

If the parameter is set to "Local setpoint", the torque limit will be parameter 9598.4 Local
torque limit (page 123).

9598.4 / 10440.4
Local setpoint torque limit

Unit: %.
Resolution: 10^{-3}.
Value range: 0 – 10000 – 1000000, step 1.

If parameter 9598.3 Torque limit source (page 123) is set to "local setpoint", this param-
eter will be the torque limit for FCB 05 Speed control (page 122).
Parameter Description

Parameter description for FCB parameter setting

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9598.5 / 10440.5</td>
<td>Acceleration source
Value range: See parameter 9598.1 Setpoint source velocity (page 123).
This parameter sets the source for the acceleration of FCB speed control.
If the parameter is set to "Local setpoint", the acceleration ramp will be parameter 9598.6 Acceleration local (page 124).</td>
</tr>
<tr>
<td>9598.6 / 10440.6</td>
<td>Local acceleration setpoint
Unit: $10^{-2}/\text{min}\times\text{s}$.
Value range: $0 – 300,000 – 2147483647$, step 1. If parameter 9598.5 Acceleration source (page 124) is set to "local setpoint", this parameter will be the acceleration ramp for FCB 05 Speed control (page 122).</td>
</tr>
<tr>
<td>9598.7 / 10440.7</td>
<td>Deceleration source
Value range: See parameter 9598.1 Setpoint source velocity (page 123).
This parameter sets the source for the deceleration of FCB speed control.
If the parameter is set to "Local setpoint", the deceleration ramp will be parameter 9598.8 Deceleration local (page 124).</td>
</tr>
<tr>
<td>9598.8 / 10440.8</td>
<td>Local deceleration setpoint
Unit: $10^{-2}/\text{min}\times\text{s}$.
Value range: $0 – 300,000 – 2147483647$, step 1. If parameter 9598.7 Deceleration source (page 124) is set to "local setpoint", this parameter will be the deceleration ramp for FCB 05 Speed control (page 122).</td>
</tr>
<tr>
<td>9598.9 / 10440.9</td>
<td>Jerk source
Value range: See parameter 9598.1 Setpoint source velocity (page 123).
This parameter sets the source for the maximum jerk of FCB speed control.
If the parameter is set to "Local setpoint", the maximum jerk will be parameter 9598.10 Local jerk (page 124).</td>
</tr>
<tr>
<td>9598.10 / 10440.10</td>
<td>Local jerk setpoint
Unit: $1/(\text{min}\times\text{s}^2)$.
Value range: $0 – 2147483647$, Step 1. If parameter 9598.9 Jerk source (page 124) is set to "local setpoint", this parameter will be the maximum jerk for FCB 05 Speed control (page 122).</td>
</tr>
</tbody>
</table>

Actual values

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9703.1 / 10120.1</td>
<td>Velocity
Unit: $10^{-3}/\text{min}$
Current actual velocity (in user-defined units, filtered for display).</td>
</tr>
</tbody>
</table>
1.5.4 FCB 06 Interpolated speed control

FCB 06 interpolated speed control is used for cyclic preselected speed setpoints of higher-level controllers. The higher-level controller is responsible for the following limits:

- Jerk,
- Acceleration,
- Speed.

Only the speed and torque system limits take effect in MOVIAXIS®.

Prerequisite is a synchronized bus system. This means that incoming process data has a fixed time reference for the control system of the axis.

The new process data is sent within a fixed cycle time. This time must be a multiple of the cycle time of the speed control loop (parameter 9821.1 Scanning frequency n/X-control (page 32); 250 µs, 500 µs or 1 ms).

MOVIAXIS® now has the task of forwarding the incoming speed setpoints with a rough time reference to the speed controller that operates with the shortest time reference. Intermediate values must be interpolated for this purpose. The setpoint flow is delayed by one communication cycle to carry out this interpolation.

The incoming position over two process data is interpreted in user-defined units.

General parameters

9963.1 Setpoint cycle control

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Range</th>
<th>Step</th>
</tr>
</thead>
<tbody>
<tr>
<td>9963.1</td>
<td>Setpoint cycle control</td>
<td>µs</td>
<td>-</td>
</tr>
</tbody>
</table>

The setpoint cycle of the controller indicates the time intervals used by the higher-level controller to send speed setpoints. The time intervals must be a multiple of the cycle time of the speed control loop (parameter 9821.1 Scanning frequency n/X-control (page 32)).

Setpoints

9965.1 Speed setpoint source

This parameter sets the source for the speed setpoint of FCB 06 Interpolated speed control (page 125).

If the parameter is set to "local setpoint", the source will be parameter 9965.2 Local speed setpoint (page 125).

9965.2 Local speed setpoint

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Range</th>
<th>Step</th>
</tr>
</thead>
<tbody>
<tr>
<td>9965.2</td>
<td>Local speed setpoint</td>
<td>10^-3/min</td>
<td>-</td>
</tr>
</tbody>
</table>

Value range: -10000000 – 0 – 10000000, step 1.

If parameter 9965.1 Speed setpoint source (page 125) is set to "local setpoint", this parameter will be the speed setpoint for FCB 06 Interpolated speed control (page 125).
Limit values

9965.5 Torque limit mode

Value range:

- **0** = Single channel
- **1** = Two channels
- **2** = Four channels

The following modes can be set for limiting the torque:

- **0 = Single channel**

 A limit value for all quadrants of the N-M diagram (parameter 9965.6 Torque limit Q1 absolute source (page 127)).

- **1 = Two channels**

 One value each for regenerative and motive range (parameter 9965.6 Torque limit Q1 abs. source (page 127) and parameter 9965.8 Torque limit Q2 abs. source (page 127)).
• 2 = Four channels

Every quadrant, whether regenerative, motor, positive or negative direction of rotation receives its own limit value.

9965.6 Abs. source torque limit Q1

Value range: see parameter 9598.1 Velocity setpoint source (page 123) FCB Speed control.

This parameter sets the source for the torque limit of the first quadrant (positive direction of rotation, motor mode) of FCB 06 Interpolated speed control (page 125).

If the parameter is set to "local setpoint", the source will be parameter 9965.7 Torque limit Q1 abs. local (page 127).

9965.7 Abs. local torque limit Q1

Unit: %
Resolution: 10⁻³.
Value range: 0 – 10000 – 1000000, step 1.

If the parameter 9965.6 Torque limit Q1 abs. source (page 127) is set to "Local setpoint", this parameter will be the torque limit for FCB 06 Interpolated speed control (page 125) in the relevant quadrant.

9965.8 Abs. source torque limit Q2

Value range: see parameter 9598.1 Velocity setpoint source (page 123) FCB Speed control.

This parameter sets the source for the torque limit of the second quadrant (negative direction of rotation, motor mode) of FCB 06 Interpolated speed control (page 125).

If the parameter is set to "local setpoint", the source will be parameter 9965.9 Torque limit Q2 abs. local (page 128).
Parameter Description

Parameter description for FCB parameter setting

9965.9 Abs. local torque limit Q2

- **Unit:** %
- **Resolution:** 10^{-3}.
- **Value range:** 0 – 10000 – 1000000, step 1.
- If the parameter 9965.8 *Torque limit Q2 abs. source* (page 127) is set to "Local setpoint", this parameter will be the torque limit for *FCB 06 Interpolated speed control* (page 125) in the relevant quadrant.

9965.10 Abs. source torque limit Q3

- **Value range:** see parameter 9598.1 *Velocity setpoint source* (page 123) *FCB Speed control*.
- This parameter sets the source for the torque limit of the third quadrant (negative direction of rotation, regenerative mode) of *FCB 06 Interpolated speed control* (page 125).
- If the parameter is set to "local setpoint", the source will be parameter 9965.11 *Torque limit Q3 abs. local* (page 128).

9965.11 Abs. local torque limit Q3

- **Unit:** %
- **Resolution:** 10^{-3}.
- **Value range:** 0 – 10000 – 1000000, step 1.
- If the parameter 9965.10 *Torque limit Q3 abs. source* (page 128) is set to "Local setpoint", this parameter will be the torque limit for *FCB 06 Interpolated speed control* (page 125) in the relevant quadrant.

9965.12 Abs. source torque limit Q4

- **Value range:** see parameter 9598.1 *Velocity setpoint source* (page 123) *FCB Speed control*.
- This parameter sets the source for the torque limit of the fourth quadrant (positive direction of rotation, regenerative) of *FCB 06 Interpolated speed control* (page 125).
- If the parameter is set to "local setpoint", the source will be parameter 9965.13 *Torque limit Q4 abs. local* (page 128).

9965.13 Abs. local torque limit Q4

- **Unit:** %
- **Resolution:** 10^{-3}.
- **Value range:** 0 – 10000 – 1000000, step 1.
- If the parameter 9965.12 *Torque limit Q4 abs. source* (page 128) is set to "Local setpoint", this parameter will be the torque limit for *FCB 06 Interpolated speed control* (page 125) in the relevant quadrant.
9965.16 Positive transition mode

- 0 = Center
- 1 = Motor mode
- 2 = Regenerative mode

The transition cannot take place suddenly between quadrants 1 and 2, or 3 and 4. For this reason, a linear transition is used with the slope of the P-component of the speed controller, see formula on the following page.

The transition will usually take place between quadrants 1 and 2, or 3 and 4 with speed 0. The effective limit torque for speed 0 is the average of the set limit torques of the adjacent quadrants (central transition mode and transition speed 0).

It may be required not to place the transition in the center with speed zero. In this case, the speeds can be set using parameters for which the limit torques merge. The parameter 9965.14 Transition speed positive (page 130) defines the transition speed for the positive torque limit, which means between quadrants 1 and 2. Parameter 9965.15 Transition speed negative (page 131) is used to set the transition speed for the negative torque limit between quadrants 3 and 4.

The specified transition speed can refer to the center of the transition area or to the motor or generative transition point of the transition area. The parameter 9965.16 Positive transition mode determines the mode for the transition of the positive torque limit between quadrants 1 and 2. 9965.17 Negative transition mode (page 130) refers to the transition between quadrants 3 and 4.

You can leave one of the two transition points at a specified speed by changing the amount of the torque limits and the resulting change of width of the transition area.
When increasing from M2 to M2a, the transition line moves up (Δn becomes larger), while the slope remains the same.

\[
\Delta n = \frac{(M_1 - M_2) \times Z \times M_{motor_nominal}}{N \times 200 \times \pi \times J_{total} \times P_{inverter}}
\]

When increasing from M2 to M2a, only the transition curve is extended (Δn also becomes larger) while the slope remains the same.

Calculating Δn:

$M_1 = \text{Parameter 9965.6 Torque limit Q1 abs. source (page 127) or parameter 9965.12 Torque limit Q4 abs. source (page 128) taking the decimal places into account.}$

$M_2 = \text{Parameter 9965.8 Torque limit Q2 abs. source (page 127) or parameter 9965.10 Torque limit Q3 abs. source (page 128) taking the decimal places into account.}$

$Z = \text{Parameter 9556.1 Torque numerator (page 57) (conversion of user-defined units to nominal motor torque)}$

$M_{motor_nominal} = \text{Parameter 9610.1 Nominal motor torque (page 37)}$

$N = \text{Parameter 9557.1 Torque denominator (page 58) (conversion of user-defined units to nominal motor torque)}$

$J_{total} = \text{Parameter 9817.1 Total moment of inertia (page 35)}$

$P_{gain} = \text{Parameter 9797.1 P-gain speed controller (page 32)}$

9965.14 Positive transition speed

Unit: 10^{-3}/min

Value range: -10000000 – 0 – 10000000, step 1.

Positive transition speed (quadrants 1 and 2).

9965.17 Negative transition mode

Value range: See parameter 9965.16 Positive transition mode (page 129).

Negative transition mode (quadrants 3 and 4).
Parameter Description
Parameter description for FCB parameter setting

9965.15 Negative transition speed
Unit: 10^{-3}/min
Value range: -10000000 – 0 – 10000000, step 1.
Negative transition speed (quadrants 3 and 4).

Actual values
9703.1 Velocity
Unit: 10^{-3}/min
Current actual velocity; in user-defined units, filtered for display.

1.5.5 FCB 07 Torque control

MOVIAXIS® can be run as a torque-controlled axis.
The user can specify limit values for speed, acceleration and jerk as the basic conditions for torque control. The actual torque setpoint for the drive controller is generated in the controller cycle by a ramp generator integrated in MOVIAXIS® using the specified limit values.
The maximum speed can be limited during torque control. The speed limit can be changed dynamically using process data.

Setpoints
9599.1 / 10441.1 Torque setpoint source
Value range: see parameter 9598.1 Velocity setpoint source (page 123) FCB Speed control.
This parameter sets the source for the setpoint torque of FCB torque control.
If the parameter is set to "local setpoint", the source will be parameter 9599.2 Local torque setpoint (page 131).

9599.2 / 10441.2 Local torque setpoint
Unit: %
Resolution: 10^{-3}.
Value range: -1000000 – 0 – 1000000, step 1.
If parameter 9599.1 Torque setpoint source (page 131) is set to "local setpoint", this parameter will be the torque setpoint for FCB 07 Torque control (page 131).

Limit values
9599.3 / 10441.3 Source velocity limit
Value range: see parameter 9598.1 Velocity setpoint source (page 123) FCB Speed control.
This parameter sets the source for the velocity limit of FCB 07 Torque control (page 131).
If the parameter is set to "local setpoint", the torque limit will be parameter 9599.4 Local velocity limit (page 132).
MX Parameter Description
Parameter description for FCB parameter setting

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
</table>
| 9599.4 / 10441.4 | **Local velocity limit**
Unit: 10^{-3}/min.
Value range: $0 - 1000000$, Step 1.
If parameter 9599.3 Velocity limit source (page 131) is set to "local setpoint", this parameter will be the velocity limit for FCB 07 Torque control (page 131). |
| 9599.5 / 10441.5 | **Jerk source**
Value range: see parameter 9598.1 Velocity setpoint source (page 123) FCB Speed control.
This parameter sets the source for the maximum jerk of the FCB 07 Torque control (page 131).
If the parameter is set to "local setpoint", the maximum jerk will be parameter 9599.6 Local jerk (page 132). |
| 9599.6 / 10441.6 | **Local jerk**
Unit: $1/(\text{min} \times \text{s}^2)$.
Value range: $0 - 2147483647$, step 1.
If parameter 9599.5 Jerk source (page 132) is set to "local setpoint", this parameter will be the maximum jerk for FCB 07 Torque control (page 131). |
| 9985.1 | **User-defined unit torque**
Unit: %
Resolution: 10^{-3}.
Value range: $-2147483648 - 2147483647$, step 1.
Current torque; in user-defined units, filtered for display. |

1.5.6 FCB 08 Interpolated torque control
For applications with a higher-level (motion control) controller, this controller usually calculates a track profile (x, y, z) for several drive axes. The axis is then assigned one setpoint (position, speed, torque) that it has to follow. MOVIAXIS® only limits the setpoints using the unit's internal system limits. The application limits for speed, acceleration and jerk must be taken from the track curve and are then controlled by the controller.

The cycle in which the controller sends the setpoints to the axes does not usually correspond with the setpoint processing cycle of MOVIAXIS® (500 µs). If MOVIAXIS® were to "see" the same controller setpoint for several cycles, a step-shaped actual torque value would result. To prevent this from happening, the axis can calculate intermediate values (interpolate) if it knows the controller cycle – interpolated speed control. MOVIAXIS® can be set to different cycles of higher-level controllers.

The FCB 08 interpolated torque control is used for cyclic preselected speed setpoints of higher-level controllers. The higher-level controller is responsible for the following limits:

- Jerk,
- Acceleration,
- Speed.
Only the speed and torque system limits take effect in MOVIAXIS®. Prerequisite is a synchronized bus system. This means that incoming process data has a fixed time reference for the control system of the axis.

The new process data is sent within a fixed cycle time. This time must be a multiple of the cycle time of the speed control loop (parameter 9821.1 Scanning frequency n/X control (page 32); 250 µs, 500 µs or 1 ms).

MOVIAXIS® now has the task of forwarding the incoming torque setpoints with a rough time reference to the speed controller that operates with the shortest time reference. Intermediate values must be interpolated for this purpose. The setpoint flow is delayed by one communication cycle to carry out this interpolation.

The incoming position over two process data is interpreted in user-defined units.

General parameters

9963.1 Setpoint cycle control

Unit: µs.

Value range: 500 – 20000, step 500.

The setpoint cycle of the controller indicates the time intervals used by the higher-level controller to send torque setpoints. The time intervals must be a multiple of the cycle time of the speed control loop (parameter 9821.1 Scanning frequency n/X control” (page 32)).

Setpoints

9964.1 Torque setpoint source

Value range: see parameter 9598.1 Velocity setpoint source (page 123) FCB Speed control.

This parameter sets the source for the torque setpoint of FCB 08 interpolated torque control (page 132).

If the parameter is set to "local setpoint", the source will be parameter 9964.2 Local torque setpoint (page 133).

9964.2 Local torque setpoint

Unit: %

Resolution: 10^-3.

Value range: -1000000 – 0 – 1000000, step 1.

If parameter 9964.1 Speed torque source (page 133) is set to "local setpoint", this parameter will be the speed setpoint for FCB 06 Interpolated speed control (page 125).

9964.3 Local velocity limit

Unit: rpm

Resolution:

Value range:

9964.4 Velocity limit source

Unit:

Resolution:

Value range:
1.5.7 FCB 09 Positioning

MOVIAXIS® has a number of positioning mode types. These types are described briefly in the following section. FCB "Positioning" can be instanced to a maximum of 64 times.

Absolute positioning

The position setpoint in user-defined units is interpreted as an absolute target and is converted and executed in system units.

The travel range in system units is ± (2^{31}.2). If this travel range is exceeded after the conversion, the FCB issues an error.

Relative positioning

The position setpoint in user units is interpreted as the offset for the last setpoint that was transferred. After it has been converted into system units, it is added to the last setpoint.

If the time calculated in system units is outside the travel range of ± (2^{32}.2), the FCB issues an error.

Modulo in positive direction with absolute position specification

The position setpoint in user-defined units is interpreted as the absolute position. It must be within the modulo range of the active drive:

- Lower limit = "Modulo underflow"
- Upper limit = "Modulo overflow"

If the position setpoint is outside this range, an error is issued. The drive always turns in a positive direction to reach the specified position.

Modulo in positive direction with relative position specification

The position setpoint in user units is interpreted as the offset to the last setpoint that was transferred. After it has been converted into system units, it is added to the last setpoint.

The position setpoint must be **positive**, otherwise an error is issued.

The drive always turns in a positive direction to reach the new position.

Modulo in negative direction with absolute position specification

The position setpoint in user-defined units is interpreted as the absolute position. It must be within the modulo range of the active drive:

- Lower limit = "Modulo underflow"
- Upper limit = "Modulo overflow"

If the position setpoint is outside this range, an error is issued. The drive always turns in a negative direction to reach the new position.

Modulo in negative direction with relative position specification

The position setpoint in user units is interpreted as the offset to the last setpoint that was transferred. After it has been converted into system units, it is added to the last setpoint.

The position setpoint must be **negative**, otherwise an error is issued.

The drive always turns in a negative direction to reach the new position.
Modulo with shortest distance with absolute position specification

The position setpoint in user-defined units is interpreted as the absolute position. It must be within the modulo range of the active drive:

- Lower limit = "Modulo underflow"
- Upper limit = "Modulo overflow"

If the position setpoint is outside this range, an error is issued.

The direction of the drive is determined using the last setpoint position (= current actual position after activation without an "In position" message) and the current setpoint position. This value is used to determine the shortest possible route and, therefore, the direction of rotation for positioning.

Modulo with relative position specification

The position setpoint in user units is interpreted as the offset to the last setpoint that was transferred. After it has been converted into system units, it is added to the last setpoint.

The sign of the position setpoint determines the direction of rotation of the drive.

9885.1 Use control bit "feed enable"

Value range:
- 0 = No
- 1 = Yes

This parameter specifies whether "Feed enable" is to be used in the control word or not. If this parameter is set to "Yes", a "Feed enable" bit must also be set in the layout of the control word. If the control word does not contain such a bit, this parameter must be set to "No", else the drive will not start.

The "Feed enable" bit in the control word must be set during the entire positioning distance. Deactivating feed enable results in standstill of the drive with the maximum deceleration of FCB 09 positioning (page 134) (parameters 9886.8 – 9949.8, depending on the instance). FCB 09 (page 134) is not exited. Positioning is continued by setting feed enable again.

9885.2 Control bit "Accept position"

Value range:
- 0 = No
- 1 = Yes

This parameter specifies whether the "Accept position" bit is to be used in the control word or not.

If this parameter is set to "Yes", an "Accept position" bit must also be set in the layout of the control word. If the control word does not contain such a bit, this parameter must be set to "No", else the drive will not start.
The "Accept position" bit must receive a positive edge for each new positioning procedure to accept the position. This is especially advantageous in the relative operating modes (index operating mode 9886.1 – 9949.1) → Relative cycles of the same position widths. The number of positive edges is saved and immediately processed. Example: Setpoint position relative to 100 revolutions. 220 revolutions are traveled by two quick successive changeovers (toggle) of the "Accept position" bit in the control word.

9885.3 In Position window

The window width for the "In position" message indicates when MOVIAXIS® sends back the information that the target position is reached to the PLC in the status word. The position window can now also be provided with a hysteresis using the parameter 9885.4 In position message hysteresis range (page 136). The actual position can dip into the hysteresis range when it has entered the position window without losing the "In position". This prevents the bit from "bouncing".

1243311243

The "In position" message operates in the FCB according to the following rules:

- It is only set by FCB 09 Positioning (page 134) or FCB 12 Referencing (page 144) when traveling to start position.
- It will not be lost if there is a change from FCB 09 (page 134) to any other FCB, e.g. have brake applied with FCB 13 Stop at application limit. The change must occur within the position window and the hysteresis range.
- Goes to "0" when:
 - Leaving the position window and the hysteresis range
 - There is a new travel instruction within FCB 09 (page 134)
 - There is a change to another FCB and it leaves the window

9885.4 In Position hysteresis

See parameter 9885.3 In Position window (page 136).
Parameter Description
Parameter description for FCB parameter setting

9885.5 Positioning lag error window
The positioning lag error specifies as of which lag distance (offset of setpoint position to actual position) an error should be triggered. The maximum lag distance is then divided by 2 in the positioning lag error window. The parameter only takes effect in FCB 09 -Positioning (page 134).

9729.18 Response to positioning lag error
Value range:
• 0 = No response
• 1 = Display only
• 5 = Output stage inhibit / waiting
• 6 = Stop at emergency stop limit / waiting
• 8 = Stop at application limit / waiting
• 10 = Stop at system limit / waiting

• No response
Error is ignored
• Display only
The 7-segment display shows the status but the axis does not respond.
• Output stage inhibit/waiting
The axis changes to the state output stage inhibited and applies a mechanical brake, if installed. If no brake is installed, the motor will coast to a halt. After a reset, the axis performs a warm start and is ready to operate again without delay.
• Stop at emergency stop limit / waiting
The motor is stopped along the emergency stop ramp. After a reset, the axis performs a warm start and is ready to operate again without delay.
• Stop at application limit/waiting
The motor is stopped at the application limit. After a reset, the axis performs a warm start and is ready to operate again without delay.
• Stop at system limit/waiting
The motor is stopped at the system limit. After a reset, the axis performs a warm start and is ready to operate again without delay.

The response is set to position lag error window exceeded.
Instance data

Instance data FCB Positioning (page 134) can be assigned to an instance 64 times, e.g. for table positioning. Each instance can be then selected in the control word. This means all subsequent parameters exist 64 times in ascending order sorted by index.

This means

- instance 0 has the basic index 9886,
- instance 63 has the basic index 9949.

9886.1 – 9949.1

Value range:

- 0 = Absolute
- 1 = Relative
- 2 = Modulo absolute positive direction
- 3 = Modulo relative positive direction
- 4 = Modulo absolute negative direction
- 5 = Modulo relative negative direction
- 6 = Modulo shortest distance absolute
- 7 = Modulo shortest distance relative

Absolute: In this operating mode, an incoming setpoint position is approached in an absolute manner. In this case, the maximum travel range is ± 32768 motor revolutions. If higher values are specified, MOVIAXIS® will issue error 18 (internal software error).

Relative: In this operating mode, an incoming setpoint position is traveled to in a relative manner. It is recommended to use the “Accept position” bit on the control word. In this way, the position is approached in a relative manner for each edge even when the relative setpoint position does not change.

In this case, the maximum travel range is ± 32768 motor revolutions. If higher values are specified, from an absolute perspective, MOVIAXIS® will issue error 18 (internal software error). The maximum relative setpoint position that can be specified in a travel command is 32768 motor revolutions.

Modulo operating modes: In the modulo operating modes, the travel range of 9594.1 Modulo underflow (page 54) to 9594.10 Modulo overflow (page 53) is mapped in parameter 9839.1 Modulo position (page 142).

Using the user-defined units (see motor startup), odd-numbered ratios can be represented infinitely, e.g. a turntable with infinite gear ratio that always moves in one direction. The modulo absolute position is always maintained between overflow and underflow independent of the drive revolutions. Reference travel must always be performed when replacing MOVIAXIS® or the motor.

- **Modulo absolute positive direction:** In this operating mode, an incoming setpoint position is approached in an absolute manner within the modulo travel range. The travel direction is always positive (looking onto the motor shaft: positive direction of rotation). The setpoint position is only valid within the modulo limits. If higher or lower values are specified, MOVIAXIS® will issue error 18 (internal software error). No more than one revolution per travel command can be moved in this operating mode. This is not a complete revolution but a revolution minus the resolution of the set user-defined unit.
• **Modulo relative positive direction:** In this operating mode, an incoming setpoint position is approached in a relative manner within the modulo travel range. The travel direction is always positive (looking onto the motor shaft: Positive direction of rotation for parameter 8537.0 *Direction of rotation reversal* (page 23) set to "OFF"). Several modulo travel ranges can be specified here (up to a maximum ± 32768 motor revolutions).

• **Modulo absolute negative direction:** Like the "Modulo absolute positive direction" operating mode but in negative direction.

• **Modulo relative negative direction:** Like the "Modulo relative positive direction" operating mode but in negative direction.

• **Modulo absolute shortest distance:** In this operating mode, the drive always travels the shortest distance within the modulo travel range. This can mean a positive or negative direction. The setpoint position is only valid within the modulo limits. If higher or lower values are specified, MOVIAxis® will issue error 18 (internal software error).

• **Modulo relative shortest distance.**

The following settings apply to all operating modes.

The reset behavior of parameter 9998.1 *Position mode* (page 114) in conjunction with absolute encoders depends on the following settings:

• If set to "Without overflow counter", the unit will always be positioned in the absolute range of the encoder following a CPU reset and system restart, e.g. with Hiperface® 4096 motor revolutions. This means a position loss in the event of encoder overflow. If the position range of the absolute encoder is not exceeded, no reference travel is required when replacing MOVIAxis® because no overflows can be stored in the MOVIAxis®. Reference travel is only required when the motor is replaced.

• When set to "With overflow counter", the complete ± 32768 motor revolutions are utilized despite overflow. MOVIAxis® internally stores absolute encoder overflows. This also functions when the axis is moved to overflow without electrical current. This is ensured by checking the travel range. Reference travel must always be performed when replacing MOVIAxis® or the motor.

9886.2 – 9949.2 **Positioning setpoint source**

Value range: see parameter 9598.1 *Velocity setpoint source* (page 123) FCB Speed control.

This parameter sets the source for the positioning setpoint of FCB 09 *Positioning* (page 134).

If set to "local setpoint", the source will be parameter 9886.3 – 9949.3 *Positioning setpoint local* (page 140).
<table>
<thead>
<tr>
<th>Parameter Description</th>
<th>MX Parameter Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9886.3 – 9949.3</td>
<td>Local positioning setpoint</td>
</tr>
<tr>
<td>Unit: U.</td>
<td>Unit: U.</td>
</tr>
<tr>
<td>If the parameter 9886.2 – 9949.2 Positioning setpoint source (page 139) is set to "Local setpoint", this parameter will be the positioning setpoint for FCB 09 Positioning (page 134).</td>
<td>If the parameter 9886.2 – 9949.2 Positioning setpoint source (page 139) is set to "Local setpoint", this parameter will be the positioning setpoint for FCB 09 Positioning (page 134).</td>
</tr>
</tbody>
</table>

9886.4 – 9949.4	**Max. positioning velocity positive source**
Value range: see parameter 9598.1 Velocity setpoint source (page 123) FCB Speed control.	Value range: see parameter 9598.1 Velocity setpoint source (page 123) FCB Speed control.
This parameter sets the source for the positive positioning velocity of FCB 09 -Positioning (page 134).	This parameter sets the source for the positive positioning velocity of FCB 09 -Positioning (page 134).
If set to "local setpoint", the source will be parameter 9886.5 – 9949.5 Local max. positioning velocity positive (page 140).	If set to "local setpoint", the source will be parameter 9886.5 – 9949.5 Local max. positioning velocity positive (page 140).

9886.5 – 9949.5	**Local max. positioning velocity positive**
Unit: 10⁻³/min.	Unit: 10⁻³/min.
Value range: 0 – 10000000, step 1.	Value range: 0 – 10000000, step 1.
If parameter 9886.4 – 9949.4 Positioning velocity positive source (page 140) is set to "local setpoint", this parameter will be the positive velocity for FCB 09 Positioning (page 134).	If parameter 9886.4 – 9949.4 Positioning velocity positive source (page 140) is set to "local setpoint", this parameter will be the positive velocity for FCB 09 Positioning (page 134).

9886.12 – 9949.12	**Max. positioning velocity negative source**
Value range: see parameter 9598.1 Velocity setpoint source (page 123) FCB Speed control.	Value range: see parameter 9598.1 Velocity setpoint source (page 123) FCB Speed control.
This parameter sets the source for the positioning velocity negative of FCB 09 -Positioning (page 134).	This parameter sets the source for the positioning velocity negative of FCB 09 -Positioning (page 134).
If set to "local setpoint", the source will be parameter 9886.13 – 9949.13 Positioning -velocity negative local (page 140).	If set to "local setpoint", the source will be parameter 9886.13 – 9949.13 Positioning -velocity negative local (page 140).

9886.13 – 9949.13	**Local max. positioning velocity negative**
Unit: 10⁻³/min.	Unit: 10⁻³/min.
Value range: 0 – 10000000, step 1.	Value range: 0 – 10000000, step 1.
If parameter 9886.12 – 9949.12 Positioning velocity negative source (page 140) is set to "local setpoint", this parameter will be the negative velocity for FCB 09 Positioning (page 134).	If parameter 9886.12 – 9949.12 Positioning velocity negative source (page 140) is set to "local setpoint", this parameter will be the negative velocity for FCB 09 Positioning (page 134).

9886.6 – 9949.6	**Max. acceleration source**
Value range: see parameter 9598.1 Velocity setpoint source (page 123) FCB Speed control.	Value range: see parameter 9598.1 Velocity setpoint source (page 123) FCB Speed control.
This parameter sets the source for the positive acceleration of FCB 09 positioning (page 134).	This parameter sets the source for the positive acceleration of FCB 09 positioning (page 134).
If set to "local setpoint", the source will be parameter 9886.7 – 9949.7 Acceleration -positive local (page 141).	If set to "local setpoint", the source will be parameter 9886.7 – 9949.7 Acceleration -positive local (page 141).
MX Parameter Description

Parameter description for FCB parameter setting

<table>
<thead>
<tr>
<th>Parameter ID</th>
<th>Description</th>
<th>Value Range</th>
<th>Unit</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>9886.7 – 9949.7</td>
<td>Local max. velocity</td>
<td>0 – 300000 .. 2147483647</td>
<td>10^{-2}/min×s.</td>
<td>If parameter 9886.6 – 9949.6 Max. acceleration source (page 140) is set to "local setpoint", this parameter will be the positive acceleration for FCB 09 Positioning (page 134).</td>
</tr>
<tr>
<td>9886.8 – 9949.8</td>
<td>Max. deceleration source</td>
<td>see parameter 9598.1 Velocity setpoint source (page 123) FCB Speed control.</td>
<td>Unit: 10^{-2}/min×s.</td>
<td>This parameter sets the source for the deceleration of FCB 09 positioning (page 134). If set to "local setpoint", the source will be parameter 9886.9 – 9949.9 Local max. deceleration (page 141).</td>
</tr>
<tr>
<td>9886.9 – 9949.9</td>
<td>Local max. deceleration</td>
<td>0 – 300000 .. 2147483647</td>
<td>10^{-2}/min×s.</td>
<td>If parameter 9886.8 – 9949.8 Deceleration source (page 141) is set to "local setpoint", this parameter will be the deceleration for FCB 09 Positioning (page 134).</td>
</tr>
<tr>
<td>9886.10 – 9949.10</td>
<td>Jerk source</td>
<td>see parameter 9598.1 Velocity setpoint source (page 123) FCB Speed control.</td>
<td>Value range: 1 – 2147483647, Step 1.</td>
<td>This parameter sets the source for the jerk of FCB 09 Positioning (page 134). If set to "local setpoint", the source will be parameter 9886.11 – 9949.11 Local jerk (page 141).</td>
</tr>
<tr>
<td>9886.11 – 9949.11</td>
<td>Local jerk</td>
<td>1/(min×s2).</td>
<td>Value range: 1 – 2147483647, Step 1.</td>
<td>If parameter 9886.10 – 9949.10 Jerk source (page 141) is set to "local setpoint", this parameter will be the jerk for FCB 09 Positioning (page 134).</td>
</tr>
<tr>
<td>9704.1</td>
<td>Position</td>
<td>-2147483648 – 0 – 2147483647, step 1.</td>
<td>U.</td>
<td>Current actual position in user-defined units, filtered for display.</td>
</tr>
</tbody>
</table>

Parameter Description MOVIAXIS® – MOVIAXIS® Multi-Axis Servo Inverters
Parameter description for FCB parameter setting

1.5.8 FCB 10 Interpolated positioning

The FCB 10 Interpolated positioning is used for cyclic preselected position setpoints of higher-level controllers, e.g. MotionControl.

The higher-level controller is responsible for the following limits:

- Jerk,
- Acceleration,
- Speed.

Only the speed and torque system limits take effect in MOVIAXIS®.

Prerequisite is a synchronized bus system. This means that incoming process data has a fixed time reference for the control system of the axis.

The new process data is sent within a fixed cycle time. This time must be a multiple of the cycle time of the speed control loop (parameter 9821.1 Scanning frequency n/X -control (page 32); 250µs, 500µs or 1ms).

MOVIAXIS® now has the task of forwarding the incoming positions with a rough time reference to the operating position controller with the shortest time reference. Intermediate values must be interpolated for this purpose. The setpoint flow is delayed by one communication cycle to carry out this interpolation.

The incoming position over two process data is interpreted in user-defined units.

9839.1 Modulo position

Unit: U.
Resolution: 1/65536.
Value range: -2147483648 – 0 – 2147483647, step 1.
Current actual modulo position in user-defined units, filtered for display.

10098.2 Lag error

Unit: U.
Resolution:
Value range:

9963.1 Setpoint cycle control

Unit: µs.
The setpoint cycle of the controller indicates the time intervals used by the higher-level controller to send position setpoints. This time must be a multiple of the cycle time of the position control loop (parameter 9821.1 Scanning frequency n/X control (page 32)).

9966.5 Setpoint position filter

Unit:
Value range:
Parameter Description
Parameter description for FCB parameter setting

9729.18 Response to positioning lag error

- 0 = No response
- 1 = Display only
- 2 = Output stage inhibit / locked
- 3 = Stop at emergency stop limit / locked
- 5 = Output stage inhibit / waiting
- 6 = Stop at emergency stop limit / waiting
- 8 = Stop at application limit / waiting
- 9 = Stop at application limit / locked
- 10 = Stop at system limit / waiting
- 11 = Stop at system limit / locked

The response is set to position lag error window exceeded.

9966.1 Setpoint position source

Value range: see parameter 9598.1 Velocity setpoint source (page 123) FCB Speed control.

This parameter sets the source for the positioning setpoint of FCB 10 Interpolated -positioning (page 142).

If the parameter is set to "local setpoint", the source will be parameter 9966.2 Local -position setpoint (page 143).

9966.2 Local position setpoint

Unit: U.
Resolution: 1/65536.
Value range: -2147483648 – 0 – 2147483647, step 1.
If the parameter "Setpoint position source" is set to "local setpoint", this parameter will be the position setpoint for FCB 10 Interpolated positioning (page 142).

9966.4 Positioning lag error window

Unit: U.
Resolution: 1/65536.
Value range: 0 – 65536 – 2147483647, step 1.
The lag error window for positioning specifies the allowed dynamic deviation of the setpoint from the actual value in user-defined units until an error is triggered. The error response is set in parameter 9729.18 Response lag error positioning (page 143).

9704.1 Position

Unit: U.
Resolution: 1/65536.
Value range: -2147483648 – 0 – 2147483647, step 1.
Current actual position in user-defined units, filtered for display.
MX Parameter Description
Parameter description for FCB parameter setting

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
</table>
| 9839.1 Modulo position | Unit: U.
Resolution: 1/65536.
Value range: -2147483648 – 0 – 2147483647, step 1.
Current actual modulo position in user-defined units, filtered for display. |
| 10098.2 Lag error | Unit: U.
Resolution: |
| 1.5.9 **FCB 12 Reference travel** | |
| 9857.1 Reference travel status | Indicates the state that the reference travel is currently in. |
| 9703.1 Velocity | Unit: 10^-3/min.
Current actual velocity in user-defined units, filtered for display. |
| 9704.1 Position | Unit: U.
Resolution: 1/65536.
Value range: -2147483648 – 0 – 2147483647, step 1.
Current actual position in user-defined units, filtered for display. |
| 9839.1 Modulo position | Current actual modulo position in user-defined units, filtered for display.
Unit: U.
Resolution: 1/65536.
Value range: -2147483648 – 0 – 2147483647, step 1. |
FCB 18 Encoder adjustment is used for commutation detection for synchronous AC motors (linear and rotary). The drive must be disconnected from the load and from the gear unit. If this is not possible, or only with considerable effort, see FCB25 Rotor position identification. The motor must first be started up electrically.

When changing to FCB 18 encoder adjustment, calibration (exception: "Automatically write preset offset angle to parameter" mode) is immediately started and runs through the following states:

1. **Inactive**: FCB is not selected.
2. **Current build-up**: Adjustment is started by selecting the FCB. Parameter 10054.1 Write control encoder alignment (page 152) is set to "inactive".
3. **Wait 1**: The motor waits until the mechanical transient process at the motor shafts is finished.
4. **Turn forward**: The drive now rotates forward one revolution (as viewed from the motor shaft, positive direction of rotation). The revolution in the positive direction of rotation is very important, else the wiring may be incorrect and parameter 10054.3 Encoder adjustment status (page 152) changes to status 10 error. The parameter 8537.0 Change direction of rotation (page 23) reverses the direction of rotation (first negative then positive direction of rotation).
5. **Wait 2**: The motor waits until the mechanical transient process at the motor shaft is finished.
6. **Turn backward**: The motor shaft turns back to the old position.
7. **Wait 3**: The motor waits until the mechanical transient process at the motor shaft is finished.
8. **Finished**: In this condition, MOVIAXIS® now waits for a response from the user or higher-level controller depending on the connected motor. In the meantime, -parameter 10054.1 Measured encoder offset (page 152) is permanently compared with the position of the motor shaft. Parameter 10054.2 Write position encoder offset (page 152) contains the result of the measurement. There are several ways to adjust the encoder:

<table>
<thead>
<tr>
<th>Mode</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adjust encoder manually</td>
<td>→ SEW synchronous motor with resolver</td>
</tr>
<tr>
<td></td>
<td>This mode is for manual adjustment of the encoder on the motor shaft.</td>
</tr>
<tr>
<td>Write encoder offset to Hiperface® encoder</td>
<td>→ SEW synchronous motor with Hiperface® encoder</td>
</tr>
<tr>
<td></td>
<td>After executing this mode, the data is written to the Hiperface® encoder. It is not necessary to open the motor.</td>
</tr>
<tr>
<td>Write encoder offset to parameter</td>
<td>→ Non-SEW synchronous motor</td>
</tr>
<tr>
<td></td>
<td>After executing this mode, the measured offset is written to a parameter in MOVIAXIS®.</td>
</tr>
<tr>
<td></td>
<td>This mode is independent of the encoder, as non-SEW motors are not to be changed. This ensures that it is not necessary to measure the motor again in case of service is required for the motor.</td>
</tr>
</tbody>
</table>

FCB18 should be selected directly from controller inhibit (FCB01) because all other stop FCBS (including the default FCB13) set the speed to 0. Without proper commutation, this might result in a non-controlled movement of the axis.
MX Parameter Description
Parameter description for FCB parameter setting

<table>
<thead>
<tr>
<th>Mode</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Write encoder offset to parameter automatically</td>
<td>Synchronous motor without absolute information (rotary and linear)</td>
</tr>
<tr>
<td></td>
<td>This mode is for synchronous motors that do not have any single-turn absolute information in the encoder (e.g. Sin/Cos encoders or incremental encoders). The higher-level controller must select the FCB18 Encoder adjustment and perform a calibration run each time the unit is switched on. A prerequisite for the application is that the motor can move freely ‘direct drive (rotary and linear).</td>
</tr>
<tr>
<td>Automatically write preset offset angle to parameter</td>
<td>See mode Determine preset offset angle.</td>
</tr>
<tr>
<td>Determine preset offset angle</td>
<td>Synchronous motor without absolute information (rotary and linear) with mechanically secured / always the same wake-up position (e.g. locked in place).</td>
</tr>
<tr>
<td></td>
<td>This mode is for synchronous motors that do not have any single-turn absolute information in the encoder (e.g. Sin/Cos encoders or incremental encoders) and are always switched off/on in the same positions. Application examples are locking bolts upon switch-on, or hoists at the lower buffer position.</td>
</tr>
<tr>
<td></td>
<td>During initial startup, the offset must be determined using the mode "Determine preset offset angle" and the subsequent calibration run.</td>
</tr>
<tr>
<td></td>
<td>During each switch-on sequence, the higher-level controller must then call FCB18 Encoder adjustment with the mode Automatically write preset offset angle to parameter.</td>
</tr>
<tr>
<td></td>
<td>This does not start calibration travel, but only copies a parameter.</td>
</tr>
</tbody>
</table>
Mode description

10054.6 Mode

Mode 1: Adjust encoder manually

1. Set measuring current.
 SEW-EURODRIVE recommends nominal motor torque as starting value (100% for basic user-defined unit torque).
 Important! During the measurement, the measuring current is continuously supplied to the motor.
2. Select "Adjust encoder manually" mode
3. Select *FCB 18 Encoder adjustment* (directly from controller inhibit)
4. The encoder adjustment status runs through the states described above.
5. After the encoder adjustment status "Completed" is displayed, you can set the resolver manually to "0" using the shown clock.
6. Checking the setting by calling *FCB 18 Encoder adjustment* again.
Mode 2: Write encoder offset to Hiperface® encoder

1. Set measuring current.
SEW-EURODRIVE recommends nominal motor torque as starting value (100% for basic user-defined unit torque).
Important! During the measurement, the measuring current is continuously supplied to the motor.
2. Select "Write encoder offset to Hiperface®" mode
3. Select FCB 18 Encoder adjustment (directly from controller inhibit)
4. The encoder adjustment status runs through the states described above.
5. After the encoder adjustment status "Completed" is displayed, the parameter write status changes to "Ready to write".
6. Now, the parameter Encoder adjustment write control must be set to "Write". MOVIAxis® now writes the value displayed in parameter Encoder write position to the Hiperface® encoder. The value is not exactly zero. The difference is the friction caused by turning forwards and backwards.
7. MOVIAXIS® starts the calibration process again to check the settings.
Mode 3: Write encoder offset to parameter

1. Set measuring current.
 SEW-EURODRIVE recommends nominal motor torque as starting value (100% for basic user-defined unit torque).
 Important! During the measurement, the measuring current is continuously supplied to the motor.
2. Select "Write encoder offset to parameter" mode
3. Select FCB 18 Encoder adjustment (directly from controller inhibit)
4. The encoder adjustment status runs through the states described above.
5. After the encoder adjustment status "Completed" is displayed, the parameter write status changes to "Ready to write".
6. Now, the parameter Encoder adjustment write control must be set to "Write". MOVIAxis® now writes data to the parameter Encoder offset P1 – P3 (depending on the parameter set).
7. MOVIAxis® starts the calibration process again to check the settings.
Mode 4: Write encoder offset to parameter automatically

The mode *Write encoder offset to parameter automatically* has the same function as the mode *Write encoder offset to parameter*.

The difference is point 6. Data is not written to the parameter *Encoder offset P1 – P3* by *Encoder adjustment write control*, but automatically after the calibration has been completed.

Mode 5: Write preset offset to parameter automatically

A prerequisite for this mode is that the *preset offset* has been determined once with the mode *Determine preset offset angle*. After that, *FCB 18 Encoder adjustment* must be selected once after each switch-on sequence with this mode.

See mode "Determine preset offset angle".
Mode 6: Determine preset offset angle

1. Move drive to wake-up position (the wake-up position should be always the same to use this mode)
2. Switch the unit on (apply 24 V)
3. Set measuring current
 SEW-EURODRIVE recommends nominal motor torque as starting value (100% for basic user-defined unit torque).
 Important! During the measurement, the measuring current is continuously supplied to the motor.
4. Select Determine preset offset angle mode
5. You can now move the drive away from the wake-up position to an area in which it can move freely for commutation travel. It is important that the axis remains switched on (distance measuring by encoder must be ensured). The commutation travel can be executed at any point.
6. Select FCB 18 Encoder adjustment (directly from controller inhibit)
7. The encoder adjustment status runs through the states described above.
8. The measured encoder offset is copied to the parameter Preset offset before the encoder adjustment status "Completed" is displayed.

It must be ensured before each switch-on that the drive is in the defined wake-up position. Then, a higher-level controller must select FCB18 Encoder adjustment with mode "Write preset offset angle to parameter automatically". Now, the axis is ready for operation.

The status bit Motor commutated can deliver feedback.
Parameter Description

Parameter description for FCB parameter setting

10054.3 Encoder adjustment status

Value range:

- 0 = Inactive
- 1 = Current generation
- 2 = Waiting 1
- 3 = Rotate forward
- 4 = Waiting 2
- 5 = Rotate backwards
- 6 = Waiting 3
- 7 = Copy
- 8 = Do not copy
- 9 = Finished
- 10 = Error

10054.4 Write control encoder adjustment

Value range:

- 0 = Inactive
- 1 = Do not copy
- 2 = Write

Inactive: The FCB basically starts with this setting. If the parameter is set to another setting, it will be reset to "inactive".

No copy: This setting is only used for special purposes to write an arbitrary encoder offset to the Hiperface® encoder.

Write: With this setting, the parameter 10054.1 Measured encoder offset (page 152) will be written to the Hiperface® encoder.

10054.7 Write status

Value range:

- Not ready to write
- Ready to write
- Writing in progress
- Write process finished

10054.1 Measured encoder offset

Unit: U.

Resolution: $1/2^{32}$.

Currently measured encoder offset for which the encoder shaft has an incorrect setpoint setting. (360° corresponds to one mechanical revolution).
10054.2 Encoder write position

- Unit: U.
- Resolution: 1/65536.
- Value range: 0 – 4294967295, step 1.
- This value is written for "Encoder adjustment write control = Write" to a Hiperface® encoder. The inaccuracy of "0" is determined by the friction compensation.

10054.11 / 12 / 13 Preset offset P1 – P3

See table above on the Determine preset offset angle mode.

9834.1 / 2 / 3 Encoder offset P1 – P3

See table above on the Write encoder offset to parameter mode.

10054.5 Measuring current

- Unit: %.
- Resolution: 10^-3.
- Value range: 0 – 100000 – 1000000, step 1.
- The measuring current must be set in the user-defined units of the torque. It must not exceed the nominal motor torque.

1.5.11 FCB 20 Jog mode

MOVIAXIS® has a position-controlled jog mode function; this means it is possible to move an axis in positive or negative direction, for example, for alignment purposes in position-controlled mode using two adjustable speeds for each. The advantage of this function is that it can be used with hoist applications for which the position is not permitted to change when a change in load occurs when the drive is at a standstill.

Setpoints

9604.10 Select set of jog velocities

- Resolution:
- Value range:

9604.12 Velocity 1 positive source

- Resolution:
- Value range:

9604.1 Velocity 1 positive local

- Unit: rpm
- Resolution: 10^-3.
- Value range: 0 – 1000000, step 1.
- Positive speed setpoint in user-defined units (as seen onto the motor shaft, positive direction of rotation).

9604.13 Velocity 1 negative source

- Resolution:
- Value range:
MX Parameter Description

Parameter description for FCB parameter setting

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
</table>
| **9604.2 Velocity 1**
negative local | Unit: rpm
Resolution: 10^{-3}.
Value range: $0 - 1000000$, step 1.
Negative speed setpoint in user-defined units (as seen onto the motor shaft, negative direction of rotation). |
| **9604.8 Velocity 2**
positive | Unit: rpm
Resolution: 10^{-3}.
Value range: $0 - 1000000$, step 1.
Positive speed setpoint in user-defined units (as seen onto the motor shaft, positive direction of rotation). |
| **9604.9 Velocity 2**
negative | Unit: rpm
Resolution: 10^{-3}.
Value range: $0 - 1000000$, step 1.
Negative speed setpoint in user-defined units (as seen onto the motor shaft, negative direction of rotation). |
| **Limit values** | |
| **9604.14 Acceleration source** | Resolution:
Value range: |
| **9604.5 Acceleration** | Resolution: $10^{-2}/(\text{min}\times\text{s})$.
Value range: $0 - 300000 - 2147483647$, step 1.
Jog acceleration in user-defined unit. |
| **9604.15 Deceleration source** | Resolution:
Value range: |
| **9604.6 Deceleration** | Resolution: $10^{-2}/(\text{min}\times\text{s})$.
Value range: $0 - 300000 - 2147483647$, step 1.
Jog acceleration in user-defined unit. |
| **9604.16 Jerk source** | Resolution:
Value range: |
| **9604.7 Jerk** | Resolution: $10^{-2}/(\text{min}\times\text{s}^2)$.
Value range: $1 - 2147483647$, Step 1.
Jerk in user-defined unit for jog mode. |
9604.17 Lag error window
The Jog lag error window specifies as of which lag distance (offset of setpoint position to actual position) an error will be triggered. The maximum lag distance is then lag error window divided by 2. The parameter is only effective in FCB20 Jog.

9604.18 Jog lag error response
Value range: 0 – 1 – 5
- 0 = No response
- 1 = Display only
- 5 = Output stage inhibit / waiting

Actual values
10120.1.1 Velocity Unit: 10^{-3}/min
Current actual velocity in user-defined units, filtered for display.

9704.1 Position
Unit: U.
Resolution: 1/65536.
Current actual position in user-defined units, filtered for display.

9839.1 Modulo position
Unit: U.
Resolution: 1/65536.
Value range: -2147483648 – 0 – 2147483647, step 1.
Current actual modulo position in user-defined units, filtered for display.

1.5.12 FCB 21 Brake test
This function is used to check the braking capability of a brake connected to MOVIAxis®. A test torque is applied electrically via the motor when the brake is applied.
Even when the brake has passed the brake test, it does not take on any safety functions as far as machine safety is concerned in combination with MOVIAxis®.
The brake is only tested in accordance with the set brake test torque. The actual "brake breakaway torque" is not measured.
MOVIAxis® supports four test modes:
1. A higher-level controller provides the setpoints and monitoring function for the test.
2. MOVIAxis® performs a check in both directions compared to the set limit torques.
3. MOVIAxis® performs a check in positive direction compared to the set limit torques.
4. MOVIAxis® performs a check in negative direction compared to the set limit torques.
The test torque, test time and the direction of rotation of the test can be set. If a test is not passed, the breakaway torque is documented.
The brake is considered to be "ok" when the motor shaft does not move more than 10°. This is a fixed value.

IMPORTANT: The function does not check whether a brake is actually installed. If the brake test is activated when a brake is not installed, the drive will move depending on the brake test mode.
The braking torque is limited by the set Torque system limit. Note: The application torque must be considered for calculating the test torque, e.g. hoist test "downward".

INFORMATION

When the brake has passed the brake test, it does not take on any safety functions as far as machine safety is concerned in combination with MOVIAXIS®.

A check is not made to determine whether a brake is physically present. This means that the brake test would also be performed without a brake.

This allows for the testing of external brakes.

9600.1 Test

Value range:
- **1** = External setpoint selection
- **2** = Bipolar torque
- **3** = Positive torque
- **4** = Negative torque

External setpoint selection

In this mode, the brake test is completely evaluated by a higher-level controller / PLC. The brake test is running as long as the FCB is active. Possible travel movements are not monitored.

Only the parameters for the speed setpoint "9600.4 (page 157) and 9600.5 (page 157)" and test torque "9600.2 (page 157) and 9600.3 (page 157)" are used. All other parameters are used in test modes 2 to 4 only.

Bipolar, positive and negative torque mode

In this mode, the brake test is completely evaluated and reported back by MOVIAXIS®.

Brake slipping, even when minimal, generates axis movement in the test direction. When this movement exceeds one motor revolution, the brake is output as an error type in parameter 9600.8 Status (page 157). Only the system limits are effective for the FCB brake test (page 155).

Use the test mode "bipolar", "positive" or "negative" depending on the application.

The duration of the set test torque can be set using parameter 9600.6 Test duration (page 158). The test result is stored in parameter 9600.8 Status (page 157) after successful completion of the test.

Parameter 9600.4 Setpoint speed (page 157) is not effective.

If a brake test is interrupted, an error message will be issued. Speed monitoring is deactivated for the duration of the brake test.

- **Bipolar**: Positive and negative test torque (brake test is performed twice)
- **Positive**: Operated only with a positive test torque
- **Negative**: Operated only with a negative test torque
Parameter Description for FCB Parameter Setting

Parameter Description

9600.7 Error response
Value range: See parameter 9729.16 Response external error (page 75). This parameter is used to set the error response for the axis after a faulty brake test.

9600.8 Status
Value range: 0 – 4294967295, step 1.
The following states can be displayed:
- No calibration.
- Calibration in progress.
- Calibration was aborted.
- Brake OK.
- Brake faulty.
Brake "ok" or "faulty" can also be read in the status word.

Setpoints

9600.4 Speed setpoint source
Only mode 1.
Value range: see parameter 9598.1 Velocity setpoint source (page 123) FCB Speed control.
This parameter sets the source for the speed setpoint of FCB 21 brake test (page 155). If the parameter is set to "local setpoint", the source will be parameter 9600.4 Local speed setpoint.

9600.5 Local speed setpoint
Only mode 1.
Resolution: 10^{-3}.
Value range: -1000000 – 0 – 1000000, step 1.
If parameter 9600.4 Speed setpoint source (page 157) is set to "local setpoint", this parameter will be the speed setpoint for the FCB 21 Brake test (page 155).

Limit values

9600.2 Test torque source
Value range: see parameter 9598.1 Velocity setpoint source (page 123) FCB Speed control.
This parameter sets the source for the test torque of FCB 21 Brake test (page 155). If the parameter is set to "local setpoint", the source will be parameter 9600.3 Local test torque (page 157).
The test torque cannot be changed during the test run. The test torque should be based on the brake torque in conjunction with the static load torque.

9600.3 Local test torque
Unit: %.
Resolution: 10^{-3}.
Value range: 0 – 100000 – 1000000, step 1.
If parameter 9600.2 Test torque source (page 157) is set to "local setpoint", this parameter will be the test torque for FCB 21 Brake test (page 155) in user-defined units.
Parameter Description
Parameter description for FCB parameter setting

9600.6 Test duration
Only modes 2 – 4.
Unit: ms.
Value range: 0 – 1000 – 5000, step 1.
The test time is indicated in mode 2 – 4 for the duration of the test. Afterwards "ok" or "faulty" is displayed in brake status.
SEW-EURODRIVE recommends a test time of 1 second.

9600.9 Protocol torque
Only modes 2 – 4.
Unit: %.
Resolution: 10⁻³.
Value range: 0 – 1000000, step 1.
If the brake is faulty, the protocol torque shows the slip torque in user-defined units in mode 2 – 4.

Actual values
9985.1 User-defined unit torque
Unit: %.
Resolution: 10⁻³.
Value range: -2147483648 – 2147483647, step 1.
Current torque in user-defined units, filtered for the display.
1.5.13 FCB 22 Multi-drive

FCB Multi-drive is used to operate 2, 3 or 4 motors on a load in the mode "interpolated speed control" (like FCB 6). The drives can be mechanically coupled or not. The mechanical coupling can also be temporary. Working against each other like rigidly coupled synchronized drives is not possible due to the functional principle.

The *FCB Multi-drive* does not work according to the master-slave principle, but all drives are equal. They receive the same speed setpoint from a higher-level controller and the balance their position via lateral axis-to-axis communication. This position balancing is given priority, even in case an axis (due to an error) or several axes (due to the torque control limit) can no longer follow the preset speed setpoint. This can mean, for example, that 3 axes coast to a halt along the one axis that is in error status.

Process data exchange for two motors (dual drive)

The process data exchange is configured via the PDO Editor. Each axis sends its data synchronously via the system bus. In the same cycle, each axis receives the data of the respective remote axis.
Triple or quadruple injection

The process data exchange of triple or quadruple injection is similar to that of the dual drive. The speed setpoint is addressed to 3 or 4 axes accordingly. In contrast to double injection, the lateral communication is designed in such a way that each of the 4 axes sends and receives the "actual position", "balancing controller nMin" and "balancing controller nMax". This means that the balancing controller data of each axis is cyclically available to all 3 other axes. For balancing control, the average is determined from this data.

Position balancing controller

A position balancing controller is implemented to ensure position synchronicity. A prerequisite for useful operation is that all axes are referenced correctly. Each axis determines the differences between its own position and the positions of each of the other axes. The positions of the two axes can be offset from each other by a defined value via an offset parameter (10052.7). The leading axis must receive the offset as a negative value, the lagging axis as a positive value.

The parameters on both axes must receive the same amount, but a different sign. If this is not the case, the actual speed can deviate from the speed setpoint.

If more than two axes are used as multi-drive, the sum of the offset parameters (10052.7) across all axes must be zero.

Speed setpoint limit

The position balancing controller can only work properly as long as the drive are not at the control limit. If the setpoint speed deviates from the actual speed, the control variable of the position balancing controller is no longer fully effective, or not at all. Position balancing is no longer fully realized. To prevent this, the speed setpoint is limited before the control value of the position balancing controller is activated.

The speed setpoints are limited in such a way that the drive with the higher torque demand is operating exactly at the torque control limit. For this purpose, all axes determine the minima (maxima) of nmax (nmin) of the local values and the remote values.

Initialization phase of FCB 22 Multi-drive

After activating FCB22 in the control word, this FCB is in Position balancing mode. Here, it checks whether the position is outside the Lag error window dual drive adjustment phase (10052.26). If this is true, the following error is reported:

E21.1: "Lag error during adjustment phase".

If this is not true, the position deviation is corrected. The required maximum travel speed can be set in parameter Maximum synchronization speed (10052.27). The synchronization speed is superimposed on the specified speed setpoint.
If the lag error falls below the value of the Lag error window parameter (10052.9), the unit changes to Standard mode. As of this moment, the Lag error window dual drive adjustment phase (10052.26) becomes inactive, and the Lag error window (10052.9) becomes effective.

If the position deviation exceeds this value, the following error is triggered:
E21.2: "Lag error in standard operation".

The response of the axis to this error can be parameterized via Lag error response (10052.8).

The parameters for defining the lag error windows are checked for plausibility. The following errors can occur:
E 16.1034: Lag error window position adjustment (10052.26) must be larger than Lag error window dual drive (10052.9).
E 16.1035: Lag error window dual drive (10052.9) must be larger than Position adjustment threshold (10052.25).

Parameter description

9963.1 Setpoint cycle control

- Unit: ms
- Resolution:
- Value range: 0.5 – 20
- Cycle of speed setpoints from the higher-level controller.

10052.1 Setpoint cycle lateral communication for position balancing

- Unit: ms
- Resolution:
- Value range: 1 ms is fixed, cannot be selected

10052.2 P-gain position balancing controller

- Unit: 1/s
- Resolution: 0.001 1/s
- Value range: 0 – 20 – 10000

10052.27 Maximum synchronizing speed

- Unit: User-defined unit velocity
- Resolution:
- Value range: 0

10052.25 Threshold position adjustment

- Unit: User-defined unit position
- Resolution:
- Value range: 0.5 motor revolutions

10052.26 Lag error window dual drive adjustment phase

- Unit: User-defined unit position
- Resolution:
- Value range: 2 motor revolutions
<table>
<thead>
<tr>
<th>Parameter Description</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>10052.3 Velocity source</td>
<td>Unit:</td>
</tr>
<tr>
<td></td>
<td>Resolution:</td>
</tr>
<tr>
<td></td>
<td>Value range:</td>
</tr>
<tr>
<td></td>
<td>• Local setpoint</td>
</tr>
<tr>
<td></td>
<td>• IN process data channel 00 – 15</td>
</tr>
<tr>
<td></td>
<td>• Application limit torque</td>
</tr>
<tr>
<td>10052.4 Local velocity setpoint</td>
<td>Unit: User-defined unit velocity</td>
</tr>
<tr>
<td></td>
<td>Resolution:</td>
</tr>
<tr>
<td></td>
<td>Value range: 0</td>
</tr>
<tr>
<td>10052.7 Position difference</td>
<td>Unit: User-defined unit position</td>
</tr>
<tr>
<td></td>
<td>Resolution:</td>
</tr>
<tr>
<td></td>
<td>Value range: 0</td>
</tr>
<tr>
<td>10052.28 FCB 22 Mode</td>
<td>Unit:</td>
</tr>
<tr>
<td></td>
<td>Resolution:</td>
</tr>
<tr>
<td></td>
<td>Value range:</td>
</tr>
<tr>
<td></td>
<td>• Deactivated</td>
</tr>
<tr>
<td></td>
<td>• 2-axis mode</td>
</tr>
<tr>
<td></td>
<td>• 3-axis mode</td>
</tr>
<tr>
<td></td>
<td>• 4-axis mode</td>
</tr>
<tr>
<td>10060.1 / 2 / 3 Source of minimum speed balancing controller remote axis 1/2/3</td>
<td>Unit:</td>
</tr>
<tr>
<td></td>
<td>Resolution:</td>
</tr>
<tr>
<td></td>
<td>Value range:</td>
</tr>
<tr>
<td></td>
<td>• Local setpoint</td>
</tr>
<tr>
<td></td>
<td>• IN process data channel 00 – 15</td>
</tr>
<tr>
<td></td>
<td>• Application limit torque</td>
</tr>
<tr>
<td>10059.1 / 2 / 3 Source of maximum speed balancing controller remote axis 1/2/3</td>
<td>Unit:</td>
</tr>
<tr>
<td></td>
<td>Resolution:</td>
</tr>
<tr>
<td></td>
<td>Value range:</td>
</tr>
<tr>
<td></td>
<td>• Local setpoint</td>
</tr>
<tr>
<td></td>
<td>• IN process data channel 00 – 15</td>
</tr>
<tr>
<td></td>
<td>• Application limit torque</td>
</tr>
</tbody>
</table>
10052.5 Position balancing setpoint source

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Unit:</th>
<th>Resolution:</th>
<th>Value range:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Local setpoint</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>IN process data channel 00 – 15</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Application limit torque</td>
</tr>
</tbody>
</table>

10052.30 / 32 FCB Position balancing source

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Unit:</th>
<th>Resolution:</th>
<th>Value range:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Local setpoint</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>IN process data channel 00 – 15</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Application limit torque</td>
</tr>
</tbody>
</table>

10052.8 Lag error response

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Unit:</th>
<th>Resolution:</th>
<th>Value range:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>No response</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Display only</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Stop at application limit/waiting</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Emergency stop/waiting</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Stop at system limit/waiting</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Output stage inhibit/waiting</td>
</tr>
</tbody>
</table>

10052.9 Lag error

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Unit:</th>
<th>Resolution:</th>
<th>Value range:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>User unit</td>
<td></td>
<td>1 motor revolution</td>
</tr>
</tbody>
</table>

10052.10 Current lag error dual drive

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Unit:</th>
<th>Resolution:</th>
<th>Value range:</th>
</tr>
</thead>
</table>

10052.11 Torque limitation mode

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Unit:</th>
<th>Resolution:</th>
<th>Value range:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Single channel</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Dual channel</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Quadruple channel</td>
</tr>
</tbody>
</table>
Parameter description for FCB parameter setting

10052.12 / 14 / 16 / 18 Torque limit 1 / 2 / 3 / 4 source

- **Unit:**
- **Resolution:**
- **Value range:**
 - Local setpoint
 - IN process data channel 00 – 15
 - Application limit torque

10052.13 / 15 / 17 / 19 Torque limit 1 / 2 / 3 / 4 local

- **Unit:** User-defined unit torque
- **Resolution:**
- **Value range:**

10052.22 Positive transition mode

- **Unit:**
- **Resolution:**
- **Value range:**
 - Center
 - Motor
 - Regenerative

10052.20 Positive transition speed

- **Unit:** User-defined unit velocity
- **Resolution:**
- **Value range:**

10052.23 Negative transition mode

- **Unit:**
- **Resolution:**
- **Value range:**
 - Center
 - Motor
 - Regenerative

10052.21 Negative transition speed

- **Unit:** User-defined unit velocity
- **Resolution:**
- **Value range:**

10120.1 Velocity

- **Unit:** Current actual velocity in user-defined units
- **Resolution:**
- **Value range:**
1.5.14 FCB 25 Rotor position identification

FCB25 Rotor position identification is used for commutation detection for synchronous AC motors (linear and rotary). In contrast to **FCB18 Encoder adjustment**, it is not necessary to separate the drive from the load or the gear unit. **FCB25 Rotor position identification** is a commutation at standstill that can be performed even when the brake is applied.

FCB25 can only be used with certain types of SEW-EURODRIVE motors:

- CMP71, CMP80, and CMP100
- CFM motors
- DS motors

Another requirement for using this function is that you have to determine correction factors for the individual motors which are written to MOVIAXIS® during motor startup. The complete list of correction factors was not available when this publication went to press. Please contact SEW-EURODRIVE for a copy. However, without this information, you can simply select FCB25 for any motor.

If no correction factors are available in MOVIAXIS®, the axis will change to error status. There is no risk of an operating error.

The motor must first be started up electrically.

When switching to **FCB25 Rotor position identification**, the calibration process is started immediately!

INFORMATION

FCB25 should be selected directly from controller inhibit (FCB01) because all other stop FCBs (including the default FCB13) set the speed to 0. Without proper commutation, this might result in a non-controlled movement of the axis.

<table>
<thead>
<tr>
<th>Mode</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adjust encoder manually</td>
<td>→ SEW synchronous motor with resolver</td>
</tr>
<tr>
<td></td>
<td>This mode is for manual adjustment of the encoder on the motor shaft</td>
</tr>
<tr>
<td>Write encoder offset to writeable encoder</td>
<td>→ SEW synchronous motor with Hiperface®</td>
</tr>
<tr>
<td></td>
<td>After executing this mode, the data is written to the Hiperface® encoder. It is not necessary to open the motor.</td>
</tr>
<tr>
<td>Write encoder offset to parameter</td>
<td>→ Non-SEW synchronous motor</td>
</tr>
<tr>
<td></td>
<td>After executing this mode, the measured offset is written to a parameter in MOVIAXIS®.</td>
</tr>
<tr>
<td></td>
<td>This mode is independent of the encoder, as non-SEW motors are not to be changed. This ensures that it is not necessary to measure the motor again in case of service is required for the motor.</td>
</tr>
<tr>
<td>Write encoder offset to parameter automatically</td>
<td>→ Synchronous motor without absolute information (rotary and linear)</td>
</tr>
<tr>
<td></td>
<td>This mode is for synchronous motors that do not have any single-turn absolute information in the encoder (e.g. Sin/Cos encoders or incremental encoders). The higher-level controller must select the FCB18 Encoder adjustment and perform a calibration run each time the unit is switched on. The application must allow the motor to move freely → direct drive (rotary and linear).</td>
</tr>
</tbody>
</table>
Mode description

10438.3 Mode

Mode 1: Adjust encoder manually

1. Select *Adjust encoder manually* mode
2. Select *FCB25 Rotor position identification* (directly from controller inhibit)
3. After the status *Encoder adjustment completed* is displayed, you can set the resolver manually to "0" using the shown clock.
4. Checking the setting by calling *FCB25 Rotor position identification* again.
Mode 2: Write encoder offset to writeable encoder

1. Select **Write encoder offset to writeable encoder** mode
2. Select **Adjust encoder manually** mode
3. Select **FCB25 Rotor position identification** (directly from controller inhibit)
4. After the status **Encoder adjustment completed** is displayed, you can set the resolver manually to "0" using the shown clock.
5. Checking the setting by calling **FCB25 Rotor position identification** again.
Mode 3: Write encoder offset to parameter

- Select **Write encoder offset to parameter** mode
- Select **Adjust encoder manually** mode
- Select **FCB25 Rotor position identification** (directly from controller inhibit)
- After the status **Encoder adjustment completed** is displayed, you can set the resolver manually to "0" using the shown clock.
- Checking the setting by calling **FCB25 Rotor position identification** again.
Mode 4: Write encoder offset to parameter automatically

The mode *Write encoder offset to parameter automatically* has the same function as the mode *Write encoder offset to parameter*.

The difference is that data is not written to the parameter *Encoder offset P1 – P3* by *Encoder adjustment write control*, but automatically after the calibration has been completed.

Parameter description

10438.4 Write control

Unit:

Resolution:

Value range:

- 0 = Inactive

 The FCB always starts with this setting. If the parameter is set to another setting, it will be reset to "inactive".

- 1 = Do not copy

 This setting is only used for special purposes to write an arbitrary encoder offset to the writeable encoder.

- 2 = Write

 With this setting, the parameter "10438.1 Measured encoder offset" will be written to the writeable encoder.
10438.10 Write status

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>10438.10 Write status</td>
<td>Unit:</td>
</tr>
<tr>
<td></td>
<td>Resolution:</td>
</tr>
<tr>
<td></td>
<td>Value range:</td>
</tr>
<tr>
<td></td>
<td>• Not ready to write</td>
</tr>
<tr>
<td></td>
<td>• Ready to write</td>
</tr>
<tr>
<td></td>
<td>• Writing in progress</td>
</tr>
<tr>
<td></td>
<td>• Write process finished</td>
</tr>
</tbody>
</table>

10438.3 Wait time to write operation

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>10438.3 Write time to write operation</td>
<td>Unit: s</td>
</tr>
<tr>
<td></td>
<td>Resolution:</td>
</tr>
<tr>
<td></td>
<td>Value range:</td>
</tr>
</tbody>
</table>

10438.1 Measured encoder offset

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>10438.1 Measured encoder offset</td>
<td>Unit: °</td>
</tr>
<tr>
<td></td>
<td>Resolution:</td>
</tr>
<tr>
<td></td>
<td>Value range:</td>
</tr>
</tbody>
</table>

Currently measured encoder offset for which the encoder shaft has an incorrect setpoint setting (360° corresponds to one mechanical turn).

9834.1 / 2 / 3 Encoder offset P1 – P3

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9834.1 / 2 / 3 Encoder offset P1 – P3</td>
<td>Unit:</td>
</tr>
<tr>
<td></td>
<td>Resolution:</td>
</tr>
<tr>
<td></td>
<td>Value range:</td>
</tr>
</tbody>
</table>

See Write encoder offset to parameter mode.

1.5.15 FCB 26 Stop at user limits

FCB26 Stop at user limits is used for stops at user limits that initiate the deceleration ramp, either as a local setpoint or set via fieldbus.

You can choose between a speed-controlled ramp and a position-controlled ramp. In contrast to other stop FCBs, this FCB26 Stop at user limits has a very low priority.

This allows you to select FCB26 as standard (e.g. bit in the control word that selects this FCB is always TRUE). If all other FCBs are deactivated, FCB26 always becomes active. This makes it possible to always stop with position control.
Parameter description

10445.5 Stop with position control
Unit:
Resolution:
Value range:
- Yes
 The drive decelerates with position control and then stops in hold control mode
- No
 The drive decelerates with position control and then stops at zero speed.

10445.1 Deceleration source
Unit:
Resolution:
Value range:
This parameter sets the source for the deceleration of FCB Stop at user limits.
If the parameter is set to "Local setpoint", the deceleration ramp will be parameter 10445.2 Deceleration local.

10445.2 Deceleration local
Unit: 1/min×s
Resolution:
Value range:
Maximum deceleration in user-defined units.

10445.3 Jerk source
Unit:
Resolution:
Value range:
This parameter sets the source for the jerk of FCB 26 Stop at user limits.
If set to "local setpoint", the source will be parameter 10445.4 Local jerk.

10445.4 Local jerk
Unit: 1/min×s×s
Resolution:
Value range:
Maximum jerk.

10445.6 Bit 0 stop with position control active
Unit:
Resolution:
Value range:
Status information about parameter 10445.5 Stop with position control (mirror).
Parameter description for unit functions

1.6 Parameter description for unit functions

1.6.1 Setup

9702.4 Active parameter set

Value range:

- 0 = None
- 1 = Parameter set 1
- 2 = Parameter set 2
- 3 = Parameter set 3

Displays current parameter set.

1.6.2 Select parameter set

Value range:

- 0 = No action
- 1 = Data set 1
- 2 = Data set 2
- 3 = Data set 3

Select parameter set.

9982.1 Software activation

Value range:

- 0 = Standard
- 1 = Special function

Software activation.

This parameter is currently without function. Preparations are being made to differentiate between different software functions in the future.

The aim is to switch functions, which require a lot of computer processor power, on and off.

Parameter Description MOVIAXIS® – MOVIAXIS® Multi-Axis Servo Inverters
Reset unit parameters

9873.1 Active factory setting

Value range:

• 0 = None
• 1 = Basic initialization
• 2 = Delivery state
• 3 = Factory setting
• 4 = Customer set 1
• 5 = Customer set 2

Active factory setting.
This parameter shows the currently processed reset setting.

9727.3 Delivery state "d1"

Value range:

• 0 = No
• 1 = Yes

Delivery state
Activating this function will restore the delivery state of all parameters.

9727.4 Factory setting "d2"

Value range:

• 0 = No
• 1 = Yes

Factory setting.
Same as parameter "9727.3 Delivery state d1" (page 173) however, the parameters set at motor startup are not set to default values.
The factory setting does not include:
• Motor data (for example, inductances)
• Both lists of the customer-specific factory setting, see parameter "9727.2 Customer-specific factory setting d3/d4" (page 173).
The setting can be used to not having to start up the motor again.

8596.0 Reset statistics data

Value range: 0 – 3

• 0 = No action
• 3 = Operating hours

The parameter Reset statistics data resets the two parameters 8328.0 ON hours and 8329.0 Enable hours back to zero.
MOVIAXIS® offers a range of access levels for access to the unit parameters. These levels include write and read authorization or, for example, read only authorization. The different levels can be protected by passwords.

The passwords can be changed, for example, to allow end customers access to specific parameters only.

At present, the following access levels are available:

1. Observer
 - The parameters can only be read and displayed.

2. Planning engineer
 - A PLANNING ENGINEER is a specialist who has complete access to all unit functions.

3. OEM
 - The authorization level OEM-SERVICE can be used, for example, to reset internal counters, program serial numbers, or import new firmware.

Passwords

Value range: 0 – 4294967295, step 1.
- 20 = Lowest (observer)
 - Is activated if the "planning engineer" password is active, see parameter 9591.20 Change planning engineer password (page 174).
- 40 = Medium level (operator = planning engineer)
 - If the "planning engineer" password is not activated or the "planning engineer" password was entered after a reset.
- 60 = Highest (OEM service)
 - Is reached by entering the OEM password. The OEM password can also be used to change a forgotten "planning engineer" password, see parameter 9591.20 Change planning engineer password (page 174).

Current password level.

This level is used to influence the write capability of parameters. When the product leaves the plant, the "planning engineer" password is deactivated. This means that the password level is automatically set to "40" = "planning engineer".

9591.50 Current password level

Password level selection.

Once you have entered the password, the current password level is set according to the password. After a reset, the system always selects the highest level which is not password protected.

9591.40 - 43 Enter password to set current level

The "planning engineer" password can only be written when the current password level of parameter 9591.50 (page 174) is ≥ 40. This means that the "planning engineer" password can only be set if parameter 9591.50 Password level (page 174) is at least set to "planning engineer" using the password selection parameter 9591.40 (page 174).

The "planning engineer" password is deactivated by entering an empty field.
1.6.2 Output stage error response

Axis module

9729.1 Overtemperature response

Value range:

- 2 = Output stage inhibit / locked
- 3 = Stop at emergency stop limit / locked
- 5 = Output stage inhibit / waiting
- 6 = Stop at emergency stop limit / waiting
- 8 = Stop at application limit / waiting
- 9 = Stop at application limit / locked
- 10 = Stop at system limit / waiting
- 11 = Stop at system limit / locked

The overtemperature error of the axis will be triggered if parameter 9811.5 Total -utilization (page 9) exceeds 100%.

Overtemperature response of the axis module.

- **Output stage inhibit / locked**
 The axis changes to controller inhibit state and activates the mechanical brake, if installed. If no brake is installed, the motor will coast to a halt. After a reset, the axis performs a system restart.

- **Stop at emergency stop limit / locked**
 The motor is stopped along the emergency stop ramp. After a reset, the axis performs a system restart.

- **Output stage inhibit/waiting**
 The axis changes to controller inhibit state and activates the mechanical brake, if installed. If no brake is installed, the motor will coast to a halt. After a restart, the axis performs a warm start. This means that the axis is immediately ready to operate again (without delay).

- **Stop at emergency stop limit / waiting**
 The motor is stopped along the emergency stop ramp. After a restart, the axis performs a warm start. This means that the axis is immediately ready to operate again (without delay).

- **Stop at application limit/waiting**
 The motor is stopped at the application limit. After a restart, the axis performs a warm start. This means that the axis is immediately ready to operate again (without delay).

- **Stop at system limit/waiting**
 The motor is stopped at the system limit. After a reset, the axis performs a system restart.

- **Stop at system limit/locked**
 The motor is stopped at the system limit. After a restart, the axis performs a warm start. This means that the axis is immediately ready to operate again (without delay).
MX Parameter Description
Parameter description for unit functions

- **Stop at system limit / locked**
The motor is stopped at the system limit. After a reset, the axis performs a system restart.

For more information, refer to the operating instructions section "Operation and service".

Supply module

9729.2
Temperature prewarning response

Value range:
- 0 = No response
- 1 = Display only
- 2 = Output stage inhibit / locked
- 3 = Stop at emergency stop limit / locked
- 5 = Output stage inhibit / waiting
- 6 = Stop at emergency stop limit / waiting
- 8 = Stop at application limit / waiting
- 9 = Stop at application limit / locked
- 10 = Stop at system limit / waiting
- 11 = Stop at system limit / locked

Response temperature prewarning supply module.
The temperature prewarning error is triggered when the temperature of the supply module exceeds 85 °C.
The cut-off threshold is reached at 95 °C.

- **No response**
 Error is ignored

- **Display only**
The 7-segment display shows the error but the axis does not respond (continues to operate).

- **Output stage inhibit / locked**
The axis changes to controller inhibit state and activates the mechanical brake, if installed. If no brake is installed, the motor will coast to a halt. After a reset, the axis performs a system restart.

- **Stop at emergency stop limit / locked**
The motor is stopped along the emergency stop ramp. After a reset, the axis performs a system restart.

- **Output stage inhibit/waiting**
The axis changes to controller inhibit state and activates the mechanical brake, if installed. If no brake is installed, the motor will coast to a halt. After a restart, the axis performs a warm start. This means that the axis is immediately ready to operate again (without delay).
MX Parameter Description
Parameter description for unit functions

- **Stop at emergency stop limit / waiting**
The motor is stopped along the emergency stop ramp. After a restart, the axis performs a warm start. This means that the axis is immediately ready to operate again (without delay).

- **Stop at application limit/waiting**
The motor is stopped at the application limit. After a restart, the axis performs a warm start. This means that the axis is immediately ready to operate again (without delay).

- **Stop at application limit / locked**
The motor is stopped at the application limit. After a reset, the axis performs a system restart.

- **Stop at system limit/waiting**
The motor is stopped at the system limit. After a restart, the axis performs a warm start. This means that the axis is immediately ready to operate again (without delay).

- **Stop at system limit / locked**
The motor is stopped at the system limit. After a reset, the axis performs a system restart.

For more information, refer to the operating instructions section "Operation and service".

9729.5 Response I×t prewarning
Value range: See parameter 9729.2 Temperature prewarning response (page 176)
Response I×t prewarning supply module.
The prewarning level is reached when the "current DC link current" ×"time" equals 80% of the product "nominal DC link current" ×"time".

INFORMATION
The error threshold is reached when the "current DC link current" ×"time" equals 110% of the product "nominal DC link current" ×"time".

9729.12 Response I×t prewarning internal braking resistor
Value range: See parameter 9729.9 Response TF / TH / KTY message (page 50).
Response to I×t prewarning of the integrated braking resistor (with 10 kW supply module).

9729.4 Response mains phase failure
Value range: See parameter 9729.9 Response TF / TH / KTY message (page 50)
Response to mains phase failure.
Parameter Description

MX Parameter Description

Parameter description for unit functions

<table>
<thead>
<tr>
<th>Parameter Code</th>
<th>Description</th>
</tr>
</thead>
</table>
| 9746.1 Response mains OFF | Value range:
- 0 = DC link evaluation
- 1 = Mains control with controller inhibit
- 2 = Mains control and stop
- 3 = Mains control and application stop
- 4 = Mains control and system stop
- 5 = Mains control and emergency stop
- 6 = DC link control and no response
- 7 = Rapid mains control with output stage inhibit
- 8 = Rapid mains control with stop
- 9 = Rapid mains control with application stop
- 10 = Rapid mains control and system stop
- 11 = Rapid mains control and emergency stop
- 12 = Rapid mains control and internal response |

Mains OFF response.

General definition of terms:

DC link control (ignore supply system failures):

See error response "0 = DC link evaluation" and "6 = DC link control and no response".

'Normal' mains control:

The 9702.1 Bit 30 "Power on" signal of the supply module is set when the DC link voltage is 240 V for the duration of 200 ms.

The 9702.1 Bit 30 "Power on" signal of the supply module is deleted when 2 half waves of the mains supply are absent. This will cause a delay of > 10 ms.

Rapid mains control:

As the DC link will loose nearly the entire load within milliseconds in the event of supply system disconnection and full motor load, you have the option to use rapid mains control.

Rapid mains control directly refers to the threshold parameter "9973.1 Mains off limit value" (page 180). The set response will be triggered immediately if the value falls below this limit. The response will take effect within 0.5 ms. The status bit 9702.1 Bit 30 "Power on" is set to "FALSE" within 0.5 ms.

This function enables power-off responses that are gentle on the mechanical components. This is realized by switching motors to regenerative operation very quickly. The energy generated by the motors then backs up the DC link, which causes an electrical deceleration ramp.

The brake is only applied when the actual speed is close to zero (bit "Motor at standstill"). It is also monitored whether the drive truly decelerates. If not, the brake is applied immediately.
• **0 = DC link evaluation**

If the DC link voltage drops below the limit value 80 V and the unit is in "Power_on" state, the DC link voltage will be averaged during 100 ms.

If the averaged DC link voltage reaches the limit value of 240 V after expiry of 100 ms, the status will revert to 9702.1 Bit 30 "Power on". A system failure is compensated in this way.

If the averaged DC link voltage drops below the limit value of 240 V after expiry of 100 ms, the state will change to "Power_off".

The ready signal changes to "not ready" when the 9702.1 Bit 30 "Power on" signal of the supply module is not present any longer and the "Power_off" state is detected.

The output stage is also inhibited as response to Power_off.

• **1 = Mains control with controller inhibit**

Once the 9702.1 Bit 30 "Power on" signal of the supply module disappears, the brake is applied and the output stage is inhibited immediately. The ready signal changes to "not ready".

• **2 = Mains control and stop**

When the 9702.1 Bit 30 "Power on" signal disappears, the drive is stopped immediately at the set normal limits for torque and deceleration of the active FCB. The ready signal is removed when the drive has come to a stop.

If the 9702.1 Bit 30 "Power on" signal appears again while the drive decelerates to a stop, the stopping process will not be continued. The drive remains in "READY" state and the current FCB will be active again.

• **3 = Mains control and application stop**

When the 9702.1 Bit 30 "Power on" signal disappears, the drive is stopped immediately at the set application limits for torque and deceleration. The ready signal is removed when the drive has come to a stop.

If the 9702.1 Bit 30 "Power on" signal appears again while the drive decelerates to a stop, the stopping process will not be continued. The drive remains in "READY" state and the current FCB will be active again.

• **4 = Mains control and system stop**

When the 9702.1 Bit 30 "Power on" signal disappears, the drive is stopped immediately at the set system limits for torque and deceleration. The ready signal is removed when the drive has come to a stop.

If the 9702.1 Bit 30 "Power on" signal appears again while the drive decelerates to a stop, the stopping process will not be continued. The drive remains in "READY" state and the current FCB will be active again.

• **5 = Mains control and emergency stop**

When the 9702.1 Bit 30 "Power on" signal disappears, the drive is stopped immediately with the set emergency stop ramp for torque and deceleration. The ready signal is removed when the drive has come to a stop.

If the 9702.1 Bit 30 "Power on" signal appears again while the drive decelerates to a stop, the stopping process will not be continued. The drive remains in "READY" state and the current FCB will be active again.
• **6 = DC link control and no response**
 The DC link voltage is monitored as described under "0 = DC link evaluation". However, the level 80 V is not used for mains off detection but a level of 20 V. The monitoring type can be used when the mains off detection is to occur for a DC link that is almost empty.

• **7 = Rapid mains control with output stage inhibit**
 The output stage is inhibited immediately if the DC link voltage falls below the value set in parameter 9973.1 *Adjustable power off limit value* (page 180).

• **8 = Rapid mains control and stop**
 If the DC link voltage falls below the value set in parameter "9973.1 Adjustable power off limit value" (page 180), the drive will be stopped immediately using the limit set for torque and deceleration of the active FCB. The ready signal is removed when the drive has come to a stop.

• **9 = Rapid mains control and application stop**
 If the DC link voltage falls below the value set in parameter "9973.1 Adjustable power off limit value" (page 180), the drive will be stopped immediately using the set application limit. The ready signal is removed when the drive has come to a stop.

• **10 = Rapid mains control and system stop**
 If the DC link voltage falls below the value set in parameter 9973.1 *Adjustable power off limit value* (page 180), the drive will be stopped immediately using the set system limit. The ready signal is removed when the drive has come to a stop.

• **11 = Rapid mains control and emergency stop**
 If the DC link voltage falls below the value set in parameter 9973.1 *Adjustable power off limit value* (page 180), the drive will be stopped immediately using the deceleration set for emergency stop. The ready signal is removed when the drive has come to a stop.

• **12 = Rapid mains control and internal response**
 If the DC link voltage falls below the parameter 9973.1 *Adjustable power off limit value* (page 180), there will be no direct response. The status bit 9702.1 Bit 30 "Power on" must be evaluated by a higher-level controller (note bus run times).

9973.1 Power off limit value "Uz threshold for rapid mains control"

Resolution: 10^{-3}.
Value range: 0 – 450 – 2048.
Rapid mains control is triggered at the set value.
See response parameter 9746.1 *Power off* (page 178).
1.6.3 Reset behavior

8617.0 Manual reset

Value range:
- 0 = No
- 1 = Yes

The current error is acknowledged when manual reset is set to Yes.

The error response of this current error defines the response to be triggered after a reset.

The error response can be "warm start", "system restart" and "CPU reset". For a detailed description of these responses, refer to the operating instructions.

Automatically reset to "No" after performing reset (by setting to "Yes").
2 MXR Parameter Description

2.1 Parameter description for display values

2.1.1 Process values output stage

- **8325.0 DC link voltage**
 - Unit: V
 - Current value of the DC link voltage V_{DC}

- **9786.1 Output current**
 - Unit: %
 - Current value of the output current of MXR in relation to the rated device current.

- **8326.0 Filtered output current**
 - Unit: A
 - Current filtered value of the output current.

- **10467.40 Effective power**
 - Unit: kW
 - Current active power of the MXR supply and regenerative module; negative values specify the regenerative power that is fed back into the supply system. Positive values specify the active power input from the supply system.

- **10467.42 Filtered effective power**
 - Unit: kW
 - Current filtered power of the MXR supply and regenerative module; negative values specify the regenerative power that is fed back into the supply system. Positive values specify the active power input from the supply system.

- **10467.41 Regenerated energy**
 - Unit: kWh
 - Displays the amount of energy regenerated since the last reset. The last parameter value will be stored in a non-volatile memory. The parameter can be reset by writing the value "0" to it.
 - In the parameter tree of MotionStudio, the value is displayed with the resolution [kWh]. If the value is read directly from the unit, e.g. via fieldbus, the resolution is [Wh].

- **10467.14 U_d setpoint**
 - Unit: V
 - Active voltage setpoint
Parameter Description

MXR Parameter Description
Parameter description for display values

2.1.2 Unit status
In the "Unit status" parameter group, you can read out all information about the current unit state.

2.1.3 Unit data
In the "Unit data" parameter group, you can read out all information about the unit variant and option cards. The unit status and the version number of the firmware are displayed here.

2.1.4 Unit nameplate
In the "Unit nameplate" parameter group, you can read out information such as the serial number and status information of the hardware and software of MXR and the option subassembly.

Parameter Description for Display Values

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Unit</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>10467.15 Uq setpoint</td>
<td>V</td>
<td>Reactive voltage setpoint</td>
</tr>
<tr>
<td>10467.8 Id setpoint</td>
<td>A</td>
<td>Active current setpoint</td>
</tr>
<tr>
<td>10467.9 Iq setpoint</td>
<td>A</td>
<td>Reactive current setpoint</td>
</tr>
<tr>
<td>9859.1 Thermal current limit</td>
<td>%</td>
<td>Displays the actual thermal current limit in % of the MXR supply and regenerative module. The MXR module has a brief overload capacity up to this maximum limit (maximum operating point). The thermal current limit is dynamically adjusted according to the utilization of MXR. It starts at 250% and becomes smaller depending on utilization.</td>
</tr>
<tr>
<td>9811.5 Total utilization</td>
<td>%</td>
<td>Current unit utilization in % of the rated unit power.</td>
</tr>
<tr>
<td>9811.1 Dynamic utilization chip rise</td>
<td>%</td>
<td>Dynamic utilization of the chip hub in percent (Ixt utilization). The parameter is unfiltered.</td>
</tr>
<tr>
<td>9811.4 Heat sink utilization</td>
<td>%</td>
<td>Current heat sink utilization.</td>
</tr>
<tr>
<td>9795.1 Heat sink temperature</td>
<td>°C</td>
<td>Current heat sink temperature.</td>
</tr>
<tr>
<td>9811.3 Electromechanical utilization</td>
<td>%</td>
<td>Current electromechanical utilization.</td>
</tr>
</tbody>
</table>
2.1.5 Error history

The error history consists of 6 error ring memories, in which the most recent errors are stored. In addition, each error ring memory saves process values and the states of the binary inputs and outputs at the time of the error.

2.1.6 Line process values

10467.16 U_{α} Unit: V
Real part of voltage phasor.

10467.17 U_{β} Unit: V
Imaginary part of voltage phasor.

10467.3 I_{α} Unit: A
Real part of current phasor.

10467.4 I_{β} Unit: A
Imaginary part of current phasor.

10467.12 U_d Unit: V
Active voltage

10467.13 U_q Unit: V
Reactive voltage

10467.50 I_d Unit: A
Active current

10467.51 I_q Unit: A
Reactive current

2.2 Parameter description of system data

2.2.1 Startup

10470.10 Line
frequency Unit: Hz
Value range: 50 Hz, 60 Hz
This parameter can be used to set the line frequency of the supply system.

10470.14 Line
voltage Unit: V
Value range: 380 – 400 – 480
This parameter can be used to set the line voltage of the supply system.
10470.2 PWM frequency

Unit: kHz
Value range: 50 kW: 8 kHz, 75 kW: 4 kHz

The parameter sets the PWM frequency [kHz] for the MXR supply and regenerative module. The parameter must be set depending on the projected unit power of 50 or 75 kW:
- 50 kW: 8 kHz
- 75 kW: 4 kHz

Due to the upstream choke and the line filter, the PWM frequency cannot be selected freely, but is determined by the design.

See also page 41 and subsequent pages.

To change the PWM frequency, it is necessary to replace these upstream units and in some cases to adapt the installed cable cross sections, the fuses and the line contactor.

10469.4 Mains OFF tolerance

Unit: ms
Value range: 0 – 20000

The mains off tolerance can be used to set the time after which an error is triggered in the event of a line voltage failure.

Note that during regenerative operation an error can be triggered before the set mains off tolerance time has elapsed if the DC link capacitors are fully charged, no more regenerative power can be absorbed, and no optional braking resistor is connected.

10472.11 Timeout when opening the line contactor

Unit: ms
Value range: 0 – 1000

Monitors the time after the enable signal is revoked until the "Line contactor feedback" signal is no longer pending. When the monitoring time set here is exceeded, an error is triggered.

10472.1 Timeout monitoring of charging process

Unit: ms
Value range: On/off

After the enable signal is issued, this function monitors whether the DC link voltage reaches 300 V within the timeout interval of 10 s. The function also monitors whether the DC link voltage reaches the setpoint value within a timeout interval of 5 s after the controller has been enabled.

2.2.2 Controller parameters

9813.1 Activate I×t current reduction

Unit: On/off
Value range: On/off

A current limit is set using the parameter setting "On/off" to ensure reliable operation of the axes even in the case of an overload.

The switch is only implemented in "Controller inhibit active" status.
10467.2 $V_{DC\,\text{link}}$

setpoint

Unit: V

This parameter shows the setpoint for the controlled DC link voltage.

2.2.3 Basic settings

See "MOVIAXIS® Multi-Axis Servo Inverter" system manual, chapter "Description of communication parameters".

2.3 Communication parameter description

2.3.1 Control word CAN1 / CAN2 / communication options

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value range</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9514.1 CAN1</td>
<td>None/CAN1</td>
<td>Value range: None/CAN1</td>
</tr>
<tr>
<td>9515.3 CAN2</td>
<td></td>
<td>Here, you can set the source of the control word information.</td>
</tr>
<tr>
<td>9515.1 CAN1</td>
<td></td>
<td>See "MOVIAXIS® Multi-Axis Servo Inverter" system manual, parameter 9514.3</td>
</tr>
</tbody>
</table>

9514.3 CAN1

9515.3 CAN2

9516.3

Communication option data block start

9514.4 CAN1

9515.4 CAN2

9516.4

Communication option data block length

9514.5 CAN1

9515.5 CAN2

9516.5

Communication option update

9514.6 CAN1

9515.6 CAN2

9516.6

Communication option configuration error

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Unit</th>
<th>Value range</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9514.19 CAN1</td>
<td>ms</td>
<td>0 – 20000</td>
<td>Here, you can set the monitoring time after which an error is triggered if no telegrams are received any longer. The setting 0 deactivates the monitoring function.</td>
</tr>
<tr>
<td>9515.19 CAN2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9516.19</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

9514.2 CAN1

9515.2 CAN2

message ID

Here, you can set the ID of the received CAN message.
Here, you can set whether the data is accepted with a sync message.

Value range: **Big endian** (Motorola format) / little endian (Intel format)

Indicates the data format set for the CAN messages.

2.3.2 Status word CAN1 / CAN2 / communication options

Value range: **None**/CAN1 system bus

This parameter determines the communication channel used for transmitting status information.

See "MOVIAXIS® Multi-Axis Servo Inverter" system manual, parameter 9563.5

Unit: Number of words

Value range: 0 – 4 – 16

This parameter can be used to set the length of the data block.

Indicates a configuration error.

Shows the ID of the sent CAN message.

Indicates whether messages with status information are sent after the sync message.

See "MOVIAXIS® Multi-Axis Servo Inverter" system manual, parameter 9563.17

Indicates the data format set for the CAN messages: **Big endian** (Motorola format) / little endian (Intel format).
MXR Parameter Description
Communication parameter description

9563.2 CAN1 / 9564.2 CAN2
Send PDO cyclically
Unit: ms
Indicates the intervals for sending the process data objects (PDOs).

9563.22 CAN1 / 9564.22 CAN2
Send PDO after n sync
Indicates the number of sync messages after which PDOs are sent.

9563.23 CAN1 / 9564.23 CAN2
Send PDO following change
Indicates whether PDOs are only sent after the data to be sent has been changed.

9563.19 CAN1 / 9564.19 CAN2
Send PDO following receipt of IN-PDO
Indicates whether Out-PDOs are sent after PDOs have been received.

9856.2 CAN1 / 9856.3 CAN2
layout
Determines the layout to be used for the status word:

Programmable layout:
The assignment of the individual status bits is determined by the user.

Progr. layout/error code:
- Bits 0 – 7 are determined by the user
- Bits 8 – 15 transmit the error code

8334.0 / 8334.1 / 8349.0 / 8349.1 / 9559.3 / 9559.4 I/O basic unit
The assignments and states of the binary inputs/outputs are displayed. The function of the binary outputs DO-2 and DO-3 can also be set. The assignment of the following inputs/outputs is fixed:

- DI-0: Output stage enable DI-1: Enable (Index 8334.0,0)
- DI-3: Line contactor feedback (Index 8334.0,1)

- DO-0: Ready for operation (Index 8349.0,0)
- DO-1: Ready for power on (Index 8349.0,1)

- DO-2: N. fct. (default) / function can be set by the user (Index 9559.3)
- DO-3: N. fct. (default) / function can be set by the user (Index 9559.4)
2.4 Parameter description for unit functions

2.4.1 Setup

See “MOVIAXIS® Multi-Axis Servo Inverter” system manual, chapter “Description of unit parameters”.

2.4.2 Reset behavior

See “MOVIAXIS® Multi-Axis Servo Inverter” system manual, chapter “Description of unit parameters”.
Parameter Description MOVIAXIS® – MOVIAXIS® Multi-Axis Servo Inverters

Index

0 ... 9
10046.11 / 10046.12 / 10046.13 Temperature sensor type ..41
10052.1 Setpoint cycle lateral communication for position balancing161
10052.10 Current lag error dual drive ..163
10052.11 Torque limitation mode ...163
10052.12 Torque limit 1 / 2 / 3 / 4 source ...164
10052.13 Torque limit 1 local ...164
10052.2 P-gain position balancing controller ...161
10052.20 Positive transition speed ..164
10052.21 Negative transition speed ...164
10052.22 Positive transition mode ...164
10052.23 Negative transition mode ..164
10052.25 Threshold position adjustment ...161
10052.26 Lag error window dual drive adjustment phase ...161
10052.27 Maximum synchronizing speed ...161
10052.28 FCB 22 Mode ...162
10052.3 Velocity setpoint source ...162
10052.30 FCB Position balancing source ..163
10052.4 Local velocity setpoint ...162
10052.5 Position balancing setpoint source ...163
10052.7 Position difference ..162
10052.8 Lag error response ..163
10052.9 Lag error ..163
10054.1 Measured encoder offset ...152
10054.11 Preset offset ...153
10054.2 Encoder adjustment write position ...153
10054.3 Encoder adjustment status ...152
10054.4 Write control encoder adjustment ..152
10054.5 Measuring current ...153
10054.6 Mode ..147
10054.7 Write status ...152
10056.1 / 10056.2 / 10056.3 Velocity threshold "Motor at standstill" - status bit47
10057.1 / 10057.2 / 10057.3 Filter time "Motor at standstill" - status bit47
10058.1 / 10058.2 / 10058.3 Switched integrator ...33
10059.1 NMax source ...36
10059.3 Source of maximum speed balancing controller remote axis 3162
10060.1 NMin source ..36
10060.1 Source of minimum speed balancing controller remote axis 1162
10061.1 NMax local ...36
10062.1 NMin local ...36
10063.1 / 10063.2 / 10063.3 (not in parameter tree) ...48
10064.1 / 10064.2 / 10064.3 Software limit switch positive ..46
10065.1 Select parameter set ..172
10068.1 Actual position ...119
10068.1 Position ...5
10069.1 Model ..19
10070.1 Model ..20
10071.1 Suberror code ..13
10072.1 Suberror ..20
10118.1 Sync mode CAN1 ..77
10118.2 Sync mode CAN2 ..77
10120.1 Velocity ..171
10201.1 / 10201.2 / 10201.3 Setpoint limit position controller ...35
10438.1 Measured encoder offset ...170
10438.10 Write status ..170
10438.3 Mode ...166
10438.3 Wait time to write operation ..170
10438.4 Write control ..169
10444.1 / 10444.2 / 10444.3 Actual position ..116
10445.1 Deceleration source ...171
10445.2 Deceleration local ...171
10445.3 Jerk source ...171
10445.4 Local jerk ...171
10445.5 Stop with position control ...171
10445.6 Bit 0 stop with position control active ...171
10467.12 Ud ..184
10467.13 Uq ..184
10467.14 Ud setpoint ...182
10467.15 Uq setpoint ...183
10467.16 Ualpha ..184
10467.17 Ubeta ...184
10467.2 DCl Kent setpoint ..186
10467.3 Ialpha ..184
10467.4 Ibetsa ..184
10467.40 Effective power ...182
10467.41 Regenerated energy ..182
10467.42 Filtered effective power ..182
10467.50 Id ..184
10467.51 Iq ..184
10467.8 Id setpoint ...183
10467.9 Iq setpoint ...183
10469.4 Mains OFF tolerance ..185
10470.14 Line voltage ..184
10470.10 Line frequency ...184
Parameter Description MOVIAXIS® – MOVIAXIS® Multi-Axis Servo Inverters

10470.2 PWM frequency .. 185
10472.1 Timeout monitoring of charging process 185
10472.11 Timeout when opening the line contactor 185
8325.0 DC link voltage .. 8, 182
8326.0 Filtered output current 182
8326.0 Output current ... 8
8334.0 Actual value digital inputs 104
8334.0 / 8334.1 / 8349.0 / 8349.1 / 9559.3 / 9559.4 I/O basic unit .. 188
8349.0 Actual value digital outputs 104
8453.0 Fieldbus baud rate 79
8454.0 Fieldbus address .. 79
8537.0 Direction of rotation reversal 23
8557.0 Speed monitoring ... 41
8558.0 / 8560.0 / 9722.3 Speed monitoring delay time 42
8584.0 / 8586.0 / 8587.0 Brake function 43
8585.0 / 8586.0 / 8587.0 Brake application time 41
8596.0 Reset statistics data 173
8600.0 CAN1 address .. 76
8603.0 CAN1 baud rate .. 76
8606.0 Timeout .. 79
8617.0 Manual reset ... 13, 181
8749.0 / 8750.0 / 9745.3 Brake release time 40
8904.0 / 8905.0 / 10046.1 (not in parameter tree) 48
8932.0 CAN2 address .. 76
8937.0 CAN1 protocol selection 76
8938.0 CAN2 protocol selection 76
8939.0 CAN2 baud rate .. 76
9500.6 Actual speed .. 20
9501.50 Velocity .. 19
9501.51 Velocity .. 19
9501.52 Velocity .. 19
9501.53 Velocity .. 19
9502.1 Resolution .. 18
9503.1 Numerator ... 19
9503.10 Denominator ... 19
9504.1 Frequency .. 22
9505.1 Output voltage .. 20
9506.6 Actual position ... 21
9507.50 Position .. 18
9508.1 Resolution .. 18
9509.1 Numerator ... 18
9509.10 Denominator .. 18
9510.1 Actual value source 83, 87
9511.1 Actual value ... 91
9512.1 Source control word 0 83
9513.1 Layout ... 84
9513.10 Bit 0 .. 85
9513.11 Bit 1 .. 87
9514.1 CAN1 / 9515.1 CAN2 / 9516.1 Communication option .. 186
9514.1 Data source .. 81
9514.14 CAN1 / 9515.14 CAN2 data acceptance with sync. .. 187
9514.14 CAN1 / 9515.14 CAN2 nEndianness 187
9514.14 Data acceptance with sync 82
9514.16 CAN1 / 9515.16 CAN2 / 9516.16 Communication option .. 186
9514.16 Configuration error 81
9514.17 PDO ID .. 82
9514.18 Address sender IN buffer 0 82
9514.19 IX1 CAN1 / 9515.19 IX2 CAN2 / 9516.19 Communications option 186
9514.19 Timeout interval 81
9514.2 CAN1 / 9515.2 CAN2 message ID 186
9514.2 Message ID .. 82
9514.20 Endianness IN buffer 0 82
9514.3 CAN1 / 9515.3 CAN2 / 9516.3 Communication option .. 186
9514.3 Data block start .. 81
9514.4 CAN1 / 9515.4 CAN2 / 9516.4 Communication option .. 186
9514.4 data block length 81
9514.5 CAN1 / 9515.5 CAN2 / 9516.5 Communication option .. 186
9514.5 Update .. 81
9530.1 Access channel 0 32-bit 89
9530.2 - 16 Access channel 1 - 15 32-bit 90
9531.1 System unit channel 0 90
9531.2 - 16 System variable channel 1 - 15 90
9532.1 - 9532.4 Velocity unit text 55
9535.1 Velocity resolution 55
9536.1 Velocity numerator 56
9537.1 Velocity denominator 56
9538.1 KTY ... 19
9539.1 - 9539.4 Position unit text 54
9542.1 Position resolution 55
9543.1 Position numerator 55
9544.1 Position denominator 55
9545.1 KTY ... 20
9546.1 - 9546.4 Acceleration unit text 56
9549.1 Acceleration resolution 56
9550.1 Acceleration numerator 56
9551.1 Acceleration denominator 56
9552.1 - 9552.4 Torque unit text 57
<table>
<thead>
<tr>
<th>Parameter Description</th>
<th>MOVIAXIS® – MOVIAXIS® Multi-Axis Servo Inverters</th>
</tr>
</thead>
<tbody>
<tr>
<td>9563.1 CAN1 / 9564.1 CAN2 Send PDO after sync</td>
<td>187</td>
</tr>
<tr>
<td>9563.1 CAN1 / 9564.1 CAN2 Send PDO cyclically</td>
<td>188</td>
</tr>
<tr>
<td>9563.2 CAN1 / 9564.2 CAN2 Send PDO after n syncs</td>
<td>188</td>
</tr>
<tr>
<td>9563.2 Send PDO following change</td>
<td>188</td>
</tr>
<tr>
<td>9563.2 CAN1 / 9564.2 CAN2 Send PDO following change</td>
<td>188</td>
</tr>
<tr>
<td>9563.3 CAN1 / 9564.3 CAN2 / 9565.3 Communication option data sink</td>
<td>187</td>
</tr>
<tr>
<td>9563.3 Data sink OUT buffer 0</td>
<td>100</td>
</tr>
<tr>
<td>9563.4 CAN1 / 9564.4 CAN2 message ID</td>
<td>187</td>
</tr>
<tr>
<td>9563.4 Message ID</td>
<td>101</td>
</tr>
<tr>
<td>9563.5 CAN1 / 9564.5 CAN2 / 9565.5 Communication option data block start</td>
<td>187</td>
</tr>
<tr>
<td>9563.5 Data block start</td>
<td>100</td>
</tr>
<tr>
<td>9563.6 CAN1 / 9564.6 CAN2 / 9565.6 Communication option data block length</td>
<td>187</td>
</tr>
<tr>
<td>9563.6 data block length</td>
<td>100</td>
</tr>
<tr>
<td>9563.6 CAN1 / 9564.6 CAN2 / 9565.6</td>
<td>187</td>
</tr>
<tr>
<td>9563.6 CAN1 / 9564.6 CAN2 / 9565.6</td>
<td>100</td>
</tr>
<tr>
<td>9563.5 CAN1 / 9564.5 CAN2 / 9565.5 Communication option data block start</td>
<td>187</td>
</tr>
<tr>
<td>9563.5 Data block start</td>
<td>100</td>
</tr>
<tr>
<td>9563.6 CAN1 / 9564.6 CAN2 / 9565.6 Communication option data block length</td>
<td>187</td>
</tr>
<tr>
<td>9563.6 data block length</td>
<td>100</td>
</tr>
<tr>
<td>9563.1 CAN1 / 9564.1 CAN2 Send PDO after sync</td>
<td>187</td>
</tr>
<tr>
<td>9563.1 Send PDO after sync</td>
<td>101</td>
</tr>
<tr>
<td>9563.16 CAN1 / 9564.16 CAN2 / 9565.16 Communication option configuration error</td>
<td>187</td>
</tr>
<tr>
<td>9563.16 Config error</td>
<td>100</td>
</tr>
<tr>
<td>9563.17 Blocking time</td>
<td>101</td>
</tr>
<tr>
<td>9563.17 CAN1 / 9564.17 CAN2 Blocking time</td>
<td>187</td>
</tr>
<tr>
<td>9563.18 PDO ID</td>
<td>102</td>
</tr>
<tr>
<td>9563.19 CAN1 / 9564.19 CAN2 Send PDO following receipt of IN-PDO</td>
<td>188</td>
</tr>
<tr>
<td>9563.19 Send PDO following change of IN buffer</td>
<td>102</td>
</tr>
<tr>
<td>9563.2 CAN1 / 9564.2 CAN2 Send PDO cyclically</td>
<td>188</td>
</tr>
<tr>
<td>9563.2 Send PDO after n syncs</td>
<td>101</td>
</tr>
<tr>
<td>9563.23 CAN1 / 9564.23 CAN2 Send PDO following change</td>
<td>188</td>
</tr>
<tr>
<td>9563.24 Transmission cycle</td>
<td>103</td>
</tr>
<tr>
<td>9563.3 CAN1 / 9564.3 CAN2 / 9565.3 Communication option data sink</td>
<td>187</td>
</tr>
<tr>
<td>9563.3 Data sink OUT buffer 0</td>
<td>100</td>
</tr>
<tr>
<td>9563.4 CAN1 / 9564.4 CAN2 message ID</td>
<td>187</td>
</tr>
<tr>
<td>9563.4 Message ID</td>
<td>101</td>
</tr>
<tr>
<td>9563.5 CAN1 / 9564.5 CAN2 / 9565.5 Communication option data block start</td>
<td>187</td>
</tr>
<tr>
<td>9563.5 Data block start</td>
<td>100</td>
</tr>
<tr>
<td>9563.6 CAN1 / 9564.6 CAN2 / 9565.6 Communication option data block length</td>
<td>187</td>
</tr>
<tr>
<td>9563.6 data block length</td>
<td>100</td>
</tr>
<tr>
<td>9563.1 CAN1 / 9564.1 CAN2 Send PDO after sync</td>
<td>187</td>
</tr>
<tr>
<td>9563.1 Send PDO after sync</td>
<td>101</td>
</tr>
<tr>
<td>9563.16 CAN1 / 9564.16 CAN2 / 9565.16 Communication option configuration error</td>
<td>187</td>
</tr>
<tr>
<td>9563.16 Config error</td>
<td>100</td>
</tr>
<tr>
<td>9563.17 Blocking time</td>
<td>101</td>
</tr>
<tr>
<td>9563.17 CAN1 / 9564.17 CAN2 Blocking time</td>
<td>187</td>
</tr>
<tr>
<td>9563.18 PDO ID</td>
<td>102</td>
</tr>
<tr>
<td>9563.19 CAN1 / 9564.19 CAN2 Send PDO following receipt of IN-PDO</td>
<td>188</td>
</tr>
<tr>
<td>9563.19 Send PDO following change of IN buffer</td>
<td>102</td>
</tr>
<tr>
<td>9563.2 CAN1 / 9564.2 CAN2 Send PDO cyclically</td>
<td>188</td>
</tr>
<tr>
<td>9563.2 Send PDO after n syncs</td>
<td>101</td>
</tr>
<tr>
<td>9563.23 CAN1 / 9564.23 CAN2 Send PDO following change</td>
<td>188</td>
</tr>
<tr>
<td>9563.24 Transmission cycle</td>
<td>103</td>
</tr>
<tr>
<td>9563.3 CAN1 / 9564.3 CAN2 / 9565.3 Communication option data sink</td>
<td>187</td>
</tr>
<tr>
<td>9563.3 Data sink OUT buffer 0</td>
<td>100</td>
</tr>
<tr>
<td>9563.4 CAN1 / 9564.4 CAN2 message ID</td>
<td>187</td>
</tr>
<tr>
<td>9563.4 Message ID</td>
<td>101</td>
</tr>
<tr>
<td>9563.5 CAN1 / 9564.5 CAN2 / 9565.5 Communication option data block start</td>
<td>187</td>
</tr>
<tr>
<td>9563.5 Data block start</td>
<td>100</td>
</tr>
<tr>
<td>9563.6 CAN1 / 9564.6 CAN2 / 9565.6 Communication option data block length</td>
<td>187</td>
</tr>
<tr>
<td>9563.6 data block length</td>
<td>100</td>
</tr>
<tr>
<td>9563.6 CAN1 / 9564.6 CAN2 / 9565.6</td>
<td>187</td>
</tr>
<tr>
<td>9563.6 CAN1 / 9564.6 CAN2 / 9565.6</td>
<td>100</td>
</tr>
<tr>
<td>9563.5 CAN1 / 9564.5 CAN2 / 9565.5 Communication option data block start</td>
<td>187</td>
</tr>
<tr>
<td>9563.5 Data block start</td>
<td>100</td>
</tr>
<tr>
<td>9563.6 CAN1 / 9564.6 CAN2 / 9565.6 Communication option data block length</td>
<td>187</td>
</tr>
<tr>
<td>9563.6 data block length</td>
<td>100</td>
</tr>
<tr>
<td>Parameter Description</td>
<td>MOVIAXIS® – MOVIAXIS® Multi-Axis Servo Inverters</td>
</tr>
<tr>
<td>-----------------------</td>
<td>---</td>
</tr>
<tr>
<td>9701.1 - 5 Axis type</td>
<td>14</td>
</tr>
<tr>
<td>9701.10 Unit series</td>
<td>14</td>
</tr>
<tr>
<td>9701.11 Unit variant</td>
<td>14</td>
</tr>
<tr>
<td>9701.110 Status 1</td>
<td>17</td>
</tr>
<tr>
<td>9701.111 Status 2</td>
<td>17</td>
</tr>
<tr>
<td>9701.113 Status 4</td>
<td>17</td>
</tr>
<tr>
<td>9701.114 Status 5</td>
<td>17</td>
</tr>
<tr>
<td>9701.115 Status 6</td>
<td>17</td>
</tr>
<tr>
<td>9701.116 Status 7</td>
<td>17</td>
</tr>
<tr>
<td>9701.117 Status 8</td>
<td>17</td>
</tr>
<tr>
<td>9701.118 Status 9</td>
<td>17</td>
</tr>
<tr>
<td>9701.125 Option 1</td>
<td>17</td>
</tr>
<tr>
<td>9701.126 Option 1</td>
<td>17</td>
</tr>
<tr>
<td>9701.13 Nominal unit voltage</td>
<td>14</td>
</tr>
<tr>
<td>9701.135 Option 2</td>
<td>17</td>
</tr>
<tr>
<td>9701.136 Option 2</td>
<td>17</td>
</tr>
<tr>
<td>9701.14 Number of input phases</td>
<td>14</td>
</tr>
<tr>
<td>9701.145 Option 3</td>
<td>17</td>
</tr>
<tr>
<td>9701.146 Option 3</td>
<td>17</td>
</tr>
<tr>
<td>9701.15 Radio interference suppression on mains end</td>
<td>14</td>
</tr>
<tr>
<td>9701.155 Option 4</td>
<td>17</td>
</tr>
<tr>
<td>9701.165 Option 5</td>
<td>17</td>
</tr>
<tr>
<td>9701.166 Option 5</td>
<td>17</td>
</tr>
<tr>
<td>9701.17 Standard encoder system</td>
<td>14</td>
</tr>
<tr>
<td>9701.18 Device serial number</td>
<td>14</td>
</tr>
<tr>
<td>9701.193 Firmware part number basic unit</td>
<td>15</td>
</tr>
<tr>
<td>9701.31 Firmware status basic unit</td>
<td>15</td>
</tr>
<tr>
<td>9701.32 Firmware version number basic unit</td>
<td>15</td>
</tr>
<tr>
<td>9701.33 DSP firmware part number</td>
<td>15</td>
</tr>
<tr>
<td>9701.34 DSP firmware status</td>
<td>15</td>
</tr>
<tr>
<td>9701.35 DSP firmware version number</td>
<td>15</td>
</tr>
<tr>
<td>9701.37 FPGA status</td>
<td>15</td>
</tr>
<tr>
<td>9701.41 Signal electronics</td>
<td>16</td>
</tr>
<tr>
<td>9701.50 Option in slot 1</td>
<td>16</td>
</tr>
<tr>
<td>9701.53 Option in slot 1, firmware part number</td>
<td>16</td>
</tr>
<tr>
<td>9701.54 Option in slot 1, firmware status</td>
<td>16</td>
</tr>
<tr>
<td>9701.60 Option in slot 2</td>
<td>16</td>
</tr>
<tr>
<td>9701.63 Option in slot 2, firmware part number</td>
<td>16</td>
</tr>
<tr>
<td>9701.64 Option in slot 2, firmware status</td>
<td>16</td>
</tr>
<tr>
<td>9701.70 Option in slot 3</td>
<td>16</td>
</tr>
<tr>
<td>9701.73 Option in slot 3, firmware part number</td>
<td>16</td>
</tr>
<tr>
<td>9701.74 Option in slot 3, firmware status</td>
<td>16</td>
</tr>
<tr>
<td>9702.1 Status display</td>
<td>11</td>
</tr>
<tr>
<td>9702.2 Axis status</td>
<td>11</td>
</tr>
<tr>
<td>9702.3 Current FCB</td>
<td>11, 120</td>
</tr>
<tr>
<td>9702.4 Active parameter set</td>
<td>11, 120</td>
</tr>
</tbody>
</table>
Parameter Description MOVIAXIS® – MOVIAXIS® Multi-Axis Servo Inverters

9754.1 - 16 data word 0 - 15 ..83
9770.1 Data source word 0 ...103
9770.2 - 9770.16 Data source word 1 - 15.............................103
9782.1 / 9782.2 / 9782.3 Encoder identification116
9784.1 Torque ...6
9786.1 Output current ...7, 182
9787.1 Torque current ..7
9788.1 Magnetization current ...7
9791.1 Torque voltage ..8
9792.1 Magnetization voltage ...8
9793.1 Output frequency ...7
9795.1 Heat sink temperature ..9, 183
9797.1 / 9797.2 / 9797.3 P-gain ...32
9798.1 / 9798.2 / 9798.3 Monitor software
limit switch negative ..46
9800.1 Thermal motor model temperature49
9801.1 / 9801.2 / 9801.3 Monitor software
limit switch positive ..46
9803.1 Local value ..84
9804.1 Select FCB with instance ..120
9806.1 / 9806.2 / 9806.3 Acceleration
precontrol gain ..33
9811.1 Dynamic utilization chip rise9, 183
9811.2 Dynamic utilization chip absolute9
9811.3 Electromechanical utilization10, 183
9811.4 Heat sink utilization ...9, 183
9811.5 Total utilization ...9, 183
9812.1 Rel ...19
9813.1 Activate I×t current reduction24
9813.1 Activate I×t current reduction185
9816.1 / 9816.2 / 9816.3 Rotor time constant38
9817.1 Total mass moment of inertia35
9818.34 / 9818.24 / 9818.20 Encoder
part number/encoder number ..110
9819.1 / 9819.2 / 9819.3 Nominal current Id37
9820.1 / 9820.2 / 9820.3 Motor type ..36
9821.1 / 9821.2 / 9821.3 Scanning frequency32
9822.1 Source process data channel 089
9822.2 - 16 Source process data channel 190
9823.1 - 5 Unit signature ..15
9824.1 / 9824.2 / 9824.3 Software limit switch
monitoring source ...46
9825.1 Scope ID CAN1 ...76
9826.1 / 9826.2 / 9826.3 Voltage limit31
9828.2 / 9828.3 Numerator emulation114
9829.2 / 9829.3 Denominator emulation114
9831.1 Stop process data ..73
9833.1 / 9833.2 / 9833.3 Brake type40
9834 Encoder offset P1 - P3 ..153
9834.1 / 2 / 3 Encoder offset P1 - P3170
9835.1 Time interval between sync signals80
9836.1 Synchronization source ...80
9838.1 Acceleration precontrol filter33
9839.1 Modulo position ..5, 142, 144, 155
9839.1 Position modulo ..142, 144
9839.2 / 9839.3 / 9839.4 Actual position
modulo ...117
9841.1 / 9841.2 / 9841.3 Speed setpoint filter33
9842.1 Actual speed value filter ...33
9843.1 / 9843.2 / 9843.3 P-gain ..35
9844.1 Local value ..91
9851.1 Source ...91
9852.1 Phase failure detection ...21
9853.1 Torque current ...8
9855.1 Magnetization current ...8
9856.1 Layout ...92
9856.2 CAN1 / 9856.3 CAN2 Layout188
9857.1 Reference travel status ..144
9859.1 Thermal current limit ...8, 183
9861.1 / 9861.2 / 9861.3 Maximum torque37
9864.1 - 9864.16 Actual value word 0 - 15103
9872.1 / 9872.2 / 9872.3 Temperature
KTY sensor ...48
9872.255 KTY temperature motor6
9873.1 Active factory setting ...11, 173
9874.1 Thermal motor model motor utilization49
9874.255 Motor utilization, maximum
KTY model ...7
9876.1 Actual value channel 0 ...90
9876.2 - 16 Actual value ..90
9877.1 Sync period CAN1 ..77
9877.2 Sync offset CAN1 ...78
9877.3 Sync start mode CAN1 ...78
9877.5 Setpoint cycle CAN1 ...77
9878.1 Sync period CAN2 ...77
9878.2 Sync offset CAN2 ..78
9878.3 Sync start mode CAN2 ...79
9878.5 Setpoint cycle CAN2 ...77
9879.1 Sync period gateway ...80
9879.2 Sync offset gateway ...80
9879.3 Sync start mode gateway80
9880.3 Initial boot loader part number15
9880.5 Initial boot loader status ..15
9881.3 Boot loader part number15
9881.5 Boot loader status ...15
9882.1 Synchronization ID CAN276
9883.1 Synchronization ID CAN176
<table>
<thead>
<tr>
<th>Parameter Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>MOVIAXIS® – MOVIAXIS® Multi-Axis Servo Inverters</td>
<td>Index</td>
</tr>
<tr>
<td>9885.1 Use control bit "feed enable"</td>
<td>135</td>
</tr>
<tr>
<td>9885.2 Control bit "Accept position"</td>
<td>135</td>
</tr>
<tr>
<td>9885.3 In Position window</td>
<td>136</td>
</tr>
<tr>
<td>9885.4 In Position hysteresis</td>
<td>136</td>
</tr>
<tr>
<td>9885.5 Positioning lag error window</td>
<td>137</td>
</tr>
<tr>
<td>9886.1 - 9949.1 Operating mode</td>
<td>138</td>
</tr>
<tr>
<td>9886.10 - 9949.10 Jerk source</td>
<td>141</td>
</tr>
<tr>
<td>9886.11 - 9949.11 Local jerk</td>
<td>141</td>
</tr>
<tr>
<td>9886.12 - 9949.12 Max. positioning velocity negative source</td>
<td>140</td>
</tr>
<tr>
<td>9886.13 - 9949.13 Max. positioning velocity negative</td>
<td>140</td>
</tr>
<tr>
<td>9886.2 - 9949.2 Positioning setpoint source</td>
<td>139</td>
</tr>
<tr>
<td>9886.3 - 9949.3 Local positioning setpoint</td>
<td>140</td>
</tr>
<tr>
<td>9886.4 - 9949.4 Max. positioning velocity positive source</td>
<td>140</td>
</tr>
<tr>
<td>9886.5 - 9949.5 Local max. positioning velocity positive</td>
<td>140</td>
</tr>
<tr>
<td>9886.6 - 9949.6 Max. acceleration source</td>
<td>140</td>
</tr>
<tr>
<td>9886.7 - 9949.7 Local max. velocity</td>
<td>141</td>
</tr>
<tr>
<td>9886.8 - 9949.8 Max. deceleration source</td>
<td>141</td>
</tr>
<tr>
<td>9886.9 - 9949.9 Local max. deceleration</td>
<td>141</td>
</tr>
<tr>
<td>9950.1 Error end status</td>
<td>13</td>
</tr>
<tr>
<td>9951.1 Effective minimum torque</td>
<td>6</td>
</tr>
<tr>
<td>9951.2 Effective maximum torque</td>
<td>6</td>
</tr>
<tr>
<td>9951.4 Time interval between base periods</td>
<td>80</td>
</tr>
<tr>
<td>9961.1 / 9961.2 / 9961.3 Software limit switch negative</td>
<td>46</td>
</tr>
<tr>
<td>9962.1 / 9962.2 / 9962.3 Motor utilization prewarning threshold</td>
<td>49</td>
</tr>
<tr>
<td>9963.1 Setpoint cycle control</td>
<td>125, 133, 142, 161</td>
</tr>
<tr>
<td>9964.1 Torque setpoint source</td>
<td>133</td>
</tr>
<tr>
<td>9964.2 Local torque setpoint</td>
<td>133</td>
</tr>
<tr>
<td>9965.1 Speed setpoint source</td>
<td>125</td>
</tr>
<tr>
<td>9965.10 Abs. source torque limit Q3</td>
<td>128</td>
</tr>
<tr>
<td>9965.11 Abs. local torque limit Q3</td>
<td>128</td>
</tr>
<tr>
<td>9965.12 Abs. source torque limit Q4</td>
<td>128</td>
</tr>
<tr>
<td>9965.13 Abs. local torque limit Q4</td>
<td>128</td>
</tr>
<tr>
<td>9965.14 Positive transition speed</td>
<td>130</td>
</tr>
<tr>
<td>9965.15 Negative transition speed</td>
<td>131</td>
</tr>
<tr>
<td>9965.16 Positive transition mode</td>
<td>129</td>
</tr>
<tr>
<td>9965.17 Negative transition mode</td>
<td>130</td>
</tr>
<tr>
<td>9965.2 Local speed setpoint</td>
<td>125</td>
</tr>
<tr>
<td>9965.5 Torque limit mode</td>
<td>126</td>
</tr>
<tr>
<td>9965.6 Abs. source torque limit Q1</td>
<td>127</td>
</tr>
<tr>
<td>9965.7 Abs. local torque limit Q1</td>
<td>127</td>
</tr>
<tr>
<td>9965.8 Abs. source torque limit Q2</td>
<td>127</td>
</tr>
<tr>
<td>9965.9 Abs. local torque limit Q2</td>
<td>128</td>
</tr>
<tr>
<td>9966.1 Setpoint position source</td>
<td>143</td>
</tr>
<tr>
<td>9966.2 Local position setpoint</td>
<td>143</td>
</tr>
<tr>
<td>9966.4 Positioning lag error window</td>
<td>143</td>
</tr>
<tr>
<td>9970.1 / 9970.2 / 9970.3 Speed precontrol gain</td>
<td>32</td>
</tr>
<tr>
<td>9973.1 Power off limit value "Uz threshold for rapid mains control"</td>
<td>180</td>
</tr>
<tr>
<td>9977.1 Response error message word 0</td>
<td>88</td>
</tr>
<tr>
<td>9978.1 Response error message word 0</td>
<td>88</td>
</tr>
<tr>
<td>9979.1 Source error message word</td>
<td>88</td>
</tr>
<tr>
<td>9980.1 Speed</td>
<td>5</td>
</tr>
<tr>
<td>9982.1 Software activation</td>
<td>172</td>
</tr>
<tr>
<td>9985.1 Torque</td>
<td>5</td>
</tr>
<tr>
<td>9985.1 User-defined unit torque</td>
<td>123, 134, 158</td>
</tr>
<tr>
<td>9987.1 / 9987.2 / 9987.3 Maximum current</td>
<td>37</td>
</tr>
<tr>
<td>9992.1 Sync jitter compensation CAN1</td>
<td>79</td>
</tr>
<tr>
<td>9993.1 Sync jitter compensation CAN2</td>
<td>79</td>
</tr>
<tr>
<td>9994.1 / 9994.2 / 9994.3 Integrator mode</td>
<td>34</td>
</tr>
<tr>
<td>9995.1 / 9995.2 / 9995.3 Integrator initialization</td>
<td>35</td>
</tr>
<tr>
<td>9996.1 / 9996.2 / 9996.3 Local integrator</td>
<td>35</td>
</tr>
<tr>
<td>9998.1 Position mode</td>
<td>114</td>
</tr>
<tr>
<td>9999.11 / 9999.12 / 9999.13 Relative position of the reference point</td>
<td>115</td>
</tr>
</tbody>
</table>