Inhaltsverzeichnis

1 Einleitung .. 6
 1.1 Produktnamen und Warenzeichen .. 6
 1.2 Definition und Entwicklung der Servotechnik... 7
 1.3 Einsatzgebiete der Servotechnik ... 7
 1.4 Komponenten eines Servosystems ... 8

2 Servomotoren .. 10
 2.1 Übersicht gängiger Servomotoren .. 11
 2.2 Merkmale von Synchron- und Asynchron-Servomotoren .. 12
 2.3 Aufbau von Synchron-Servomotoren ... 13
 2.3.1 Aufbau CMP-Motor .. 14
 2.3.2 Aufbau CM-/DS-Motor ... 15
 2.3.3 Aufbau CMD-Motor .. 16
 2.3.4 Aufbau des Rotors .. 17
 2.4 Funktionsweise von Synchron-Servomotoren ... 18
 2.4.1 Optimaler Betriebspunkt .. 19
 2.4.2 Stromverhältnisse im Stator .. 19
 2.4.3 Sinusförmige Speisung ... 20
 2.4.4 Blockförmige Speisung .. 21
 2.4.5 Thermische und dynamische Grenzkennlinie .. 23
 2.5 Aufbau von Asynchron-Servomotoren ... 25
 2.5.1 Aufbau CT-/CV-Motor .. 25
 2.6 Funktionsweise von Asynchron-Servomotoren ... 26
 2.6.1 Motorkennlinie ... 31
 2.7 Syncherner Linearmotor .. 33
 2.7.1 Prinzipien der synchronen Linearmotoren ... 34
 2.7.2 Motorkennlinie ... 36
 2.7.3 Zubehör ... 39
 2.8 Bremsen für rotative Servomotoren ... 43
 2.8.1 Federdruckbremse als Haltebremse ... 43
 2.8.2 SEW-Bremse mit Arbeitsvermögen ... 44
 2.8.3 Permanent erregte Haltebremse .. 45
 2.9 Bremsen für Linearmotoren ... 46

3 Gebersysteme ... 48
 3.1 Inkrementalgeber .. 48
 3.1.1 Inkrementelle Drehgeber mit TTL- und HTL-Signalen .. 48
 3.1.2 Inkrementalgeber mit sin/cos-Spuren ... 51
 3.2 Absolutwertgeber .. 52
 3.2.1 Absolutwertgeber mit SSI-Schnittstelle und sin-/cos-Signalen ... 52
 3.2.2 Absolutwertgeber mit HIPERFACE®-Schnittstelle ... 53
 3.2.3 Resolver .. 56
 3.3 Gegenüberstellung / Auswahlhilfe für Resolver, sin-/cos-Geber, TTL-Geber .. 59
 3.3.1 Technische Daten der von SEW-EURODRIVE eingesetzten Geber .. 60
 3.4 Direkte Wegmess-Systeme für lineare Servomotoren .. 61
 3.4.1 Aufbau und Funktionsweise optischer Wegmess-Systemen .. 61
 3.4.2 Aufbau und Funktionsweise magnetischer Wegmess-Systeme ... 62
 3.4.3 Aufbau und Funktionsweise induktiver Wegmess-Systeme .. 63
 3.5 Begriffsdefinitionen .. 65
4 Servoverstärker .. 66
 4.1 Allgemeine Informationen zu Servoverstärkern .. 66
 4.1.1 Der Zwischenkreis ... 67
 4.1.2 Der Wechselrichter ... 68
 4.1.3 Überlastüberwachung .. 68
 4.1.4 EMV-Betrachtung .. 70
 4.1.5 Optionskarten .. 70
 4.2 Das modulare Mehrachs-Servoverstärkersystem ... 71
 4.2.1 Das Versorgungsmodul .. 71
 4.2.2 Netzrückspeisung .. 73
 4.2.3 Brems-Chopper und Bremswiderstand .. 73
 4.2.4 Vergleich zwischen Netzrückspeisung und Brems-Chopper-Betrieb 74
 4.2.5 Das Achsmodul .. 75
 4.2.6 24-V-Versorgung .. 76
 4.3 Der Einachsverstärker ... 77
 4.4 Gegenüberstellung modulares Mehrachssystem / Einachssystem 78
 4.5 Begriffsdefinitionen ... 78

5 Regelstruktur und Betriebsarten .. 79
 5.1 Übersicht .. 79
 5.2 Die Stromregelung ... 80
 5.3 Die Drehzahlregelung .. 82
 5.3.1 Struktur der Drehzahlregelung .. 82
 5.3.2 Lage- und Drehzahlerfassung ... 83
 5.3.3 Drehzahl-Istwertfilter ... 85
 5.3.4 Aufbereitung des Drehzahl-Sollwertes ... 85
 5.3.5 Drehzahlregler ... 86
 5.3.6 Beschleunigungs-Vorsteuerung .. 87
 5.3.7 Spielfreie Lastankopplung .. 87
 5.3.8 Spielfehlbehafte Lastankopplung ... 88
 5.4 Lageregelung .. 89
 5.5 Begriffsdefinitionen ... 89

6 Industrieller Einsatz ... 90
 6.1 Netzverhältnisse ... 90
 6.2 Umgebungsbedingungen ... 90
 6.3 Hinweise zum Motor ... 90
 6.3.1 Synchroner Motor ... 91
 6.3.2 Asynchroner Motor ... 91
 6.4 Leitungsverlegung .. 91
 6.5 Elektromagnetische Störung / Elektromagnetische Verträglichkeit 91
 6.6 Geräteschnittstellen .. 93
 6.6.1 Feldbussysteme: Anbindung an übergeordnete Steuerung 93
 6.6.2 Feldbussystem Profibus DP ... 94
 6.6.3 Feldbussystem INTERBUS-S .. 95
 6.6.4 Ethernet in Feldbus-Anwendungen ... 96
 6.6.5 Achs-zu-Achs-Kommunikation ... 97
 6.6.6 Diagnosebus .. 98
 6.7 Begriffsdefinitionen ... 98
Inhaltsverzeichnis

7 Servogetriebe .. 99
 7.1 Anforderungen an ein Servogetriebe .. 99
 7.2 Allgemeine Getriebeübersicht ... 100
 7.2.1 Servo-Planetengetriebe .. 100
 7.2.2 Servo-Kegelradgetriebe ... 102
 7.2.3 Stirnradgetriebe ... 103
 7.2.4 Kegelradgetriebe .. 104

8 Projektierung .. 105
 8.1 Allgemeine Hinweise .. 105
 8.2 Daten zur Antriebs- und Getriebeauslegung .. 106
 8.3 Projektierungsablauf eines Servo-Getriebemotors .. 109
 8.4 Projektierungsbeispiel eines Servo-Getriebemotors ... 114
 8.5 Projektierungsablauf eines linearen Servoantriebs ... 128
 8.6 Projektierungsbeispiel eines linearen Servoantriebs SL2 129

9 Index ... 140
1 Einleitung

Die weltweite Präsenz, das umfangreiche Produktprogramm und das breite Dienstleistungsspektrum machen SEW-EURODRIVE zum idealen Partner für anspruchsvolle Automatisierungslösungen.

Der vorliegende Band aus der Reihe "Praxis der Antriebstechnik" wendet sich an technische Fachkräfte, die Servoapplikationen bearbeiten, und vermittelt in anschaulicher Weise Kenntnisse über den Aufbau und die Funktionsweise von gängigen Komponenten der Servotechnik sowie deren Einsatzgebiete und Projektierung.

SEW-EURODRIVE - Driving the world.

Bruchsal, September 2006

1.1 Produktnamen und Warenzeichen

Die in diesem Band genannten Marken und Produktnamen sind Warenzeichen oder eingetragene Warenzeichen der jeweiligen Titelhalter.
1.2 *Definition und Entwicklung der Servotechnik*

Der Ausdruck Servo leitet sich vom lateinischen "servus" ab, was soviel wie Sklave, Diener oder Helfer bedeutet. Zutreffend war dieser Ausdruck in den Zeiten, als Servoantriebe nur als Hilfsantriebe für untergeordnete Aufgaben eingesetzt wurden, z. B. als Stellantriebe in Werkzeugmaschinen. Dieser beschränkte Einsatz lag begründet in den schlechten Wirkungsgraden der so genannten Linearverstärker mit Leistungstransistoren und der begrenzten Lamellenspannung der Kommutatoren an Gleichstrommaschinen von ca. 200 V. Die Regelung der Antriebe erfolgte analog, wodurch der Funktionsumfang stark eingeschränkt war und jede Funktionserweiterung einen sehr großen Aufwand bedeutete.

Aufgrund dieser Entwicklung werden moderne Servosysteme heute immer häufiger als Hauptantriebe eingesetzt und immer weniger für untergeordnete Hilfsaufgaben.

1.3 *Einsatzgebiete der Servotechnik*

Die zunehmende Automatisierung in allen Bereichen des Maschinen- und Anlagenbaus erfordert immer kürzere Taktzeiten und eine höhere Flexibilität bei einem Produktwechsel. Diese Forderungen lassen sich mit konventioneller Asynchrontechnik oder mit hydraulischen bzw. mit pneumatischen Komponenten immer weniger realisieren. Diese Entwicklung hat zu einer starken Veränderung in der Antriebstechnik geführt, nämlich hin zu den heute eingesetzten Servoantrieben:

- Synchrone Servomotoren,
- Asynchrone Servomotoren,
- Synchrone Linearmotoren.

In diesem Band werden Antriebssysteme mit den oben angeführten Servomotoren behandelt.

Diese Antriebe werden vor allem in folgenden Branchen eingesetzt:

- Verpackungstechnik,
- Robotertechnik,
- Werkzeugmaschinen,
- Handling-Systeme,
- Blechverarbeitung,
- Papierverarbeitung,
- Fördertechnik.
1.4 **Komponenten eines Servosystems**

Wegen den immer größer werdenden Anforderungen des Maschinen- und Anlagenbaus bezüglich Takt- und Umrüstzeiten bestehen moderne Servosysteme aus weitaus mehr als nur einem Servomotor und einem zugehörigen Servoverstärker. Diese Tatsache stellt ganz besonders in der Antriebstechnik höhere Anforderungen an die Funktionalität und die Schnittstellen der übergeordneten Steuerungen.

Komponenten am Beispiel der SEW-Servosysteme MOVIDRIVE® und MOVIAXIS®

![Bild 1: Komponenten eines Servosystems](image-url)
Einleitung

Komponenten eines Servosystems

Komponenten eines Servosystems
(siehe Bild 1)

2. Einachsverstärker MOVIDRIVE®,
3. Mehrachs-Servoverstärker MOVIAXIS®,
4. Synchrone motor Servomotor Typ CMP,
5. Synchrone motor Servomotor Typ CM mit Planetengetriebe,
6. Asynchroner Servomotor Typ CT/CV,

Weitere Komponenten eines Servosystems

- Konfektionierte Motor- und Geberkabel,
- Netzdrossel / Netzfilter; abhängig vom Servoverstärker und der EMV-Grenzwertklasse,
- Bremswiderstände,
- Netzrückspesemodule,
- Feldbus-Schnittstelle; optional, da abhängig von der Applikation und der evtl. vorhandenen übergeordneten Steuerung,
- Schalternetzteile.
2 Servomotoren

Merkmale eines Servomotors
Als Servomotoren bezeichnet man Motoren, die
• eine hohe Dynamik,
• eine hohe Positioniergenauigkeit
• und eine hohe Überlastfähigkeit
in einem großen Drehzahlbereich aufweisen.

Weiter Merkmale eines Servomotors sind:
• hohe Drehzahlgenauigkeit,
• großer Drehzahl-Stellbereich,
• kurze Hochlaufzeit,
• kurze Drehmoment-Anregelzeit,
• hohes Stillstandsmoment,
• kleines Massenträgheitsmoment,
• niedriges Gewicht,
• kompakte Bauweise.

Prinzipieller Aufbau
Prinzipiell besteht ein Servomotor aus
• einem Rotor,
• einem Stator,
• dem Leistungsanschluss; ausgeführt als Stecker oder Klemmenkasten,
• einem Feedback-System mit Anschluss.
2.1 Übersicht gängiger Servomotoren

Die Familie der Servomotoren kann in folgende Gruppen eingeteilt werden:

- mit Bürsten
 - DC-Motoren
- ohne Bürsten
 - AC-Motoren
 - Schrittmotoren
 - permanent erregte
 - DC-Servomotoren
 - permanent erregte
 - AC-Synchron-Servomotoren
 - rotativ
 - linear
 - AC-Asynchron-Servomotoren mit stromgeführter Vektorregelung

Bild 3: Übersicht Servomotoren

Die wichtigsten Unterscheidungsmerkmale liegen
- im Aufbau der Motoren (Stator, Rotor),
- in den notwendigen Reglerstrukturen,
- in den Gebersystemen.

Bis vor wenigen Jahren wurden bürstenlose, permanent erregte Gleichstrommotoren als Servoantriebe eingesetzt. Die Ansteuerung erfolgte über Thyristor- oder Transistorsteller.

Heute haben permanent erregte AC-Synchron-Servomotoren den größeren Marktanteil als AC-Asynchron-Servomotoren. Dies ist begründet durch die Eigenschaften der Motoren.

Die permanent erregten AC-Synchron-Servomotoren und die AC-Asynchron-Servomotoren werden im Folgenden näher betrachtet.

Begriffsdefinition

In der vorliegenden Druckschrift werden die Motorbenennungen wie folgt festgelegt:
- **Synchron-Servomotor** △ Permanent erregter AC-Synchron-Servomotor.
- **Asynchron-Servomotor** △ AC-Asynchron-Servomotor.
- **Synchroner Linearmotor** △ Permanent erregter AC-Linear-Synchron-Servomotor.
2.2 **Merkmale von Synchron- und Asynchron-Servomotoren**

<table>
<thead>
<tr>
<th>Merkmale Synchron-Servomotor</th>
<th>Merkmale Asynchron-Servomotor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hohe Dynamik</td>
<td>Mäßige bis hohe Dynamik</td>
</tr>
<tr>
<td>Mäßig gute Regeleigenschaften bei großen Massen</td>
<td>Gute Regeleigenschaften bei großen externen Massen</td>
</tr>
<tr>
<td>Hohe Überlastfähigkeit, bis zu 6-fach</td>
<td>Hohe Überlastfähigkeit, bis zu 3-fach</td>
</tr>
<tr>
<td>Hohe thermische Dauerbelastbarkeit über gesamten Drehzahlbereich</td>
<td>Hohe thermische Dauerbelastbarkeit, drehzahlabhängig</td>
</tr>
<tr>
<td>Wärmeabfuhr über Konvektion, Wärmeableitung und -strahlung</td>
<td>Wärmeabfuhr über Lüfter</td>
</tr>
<tr>
<td>Hohe Drehzahlgüte</td>
<td>Hohe Drehzahlgüte</td>
</tr>
<tr>
<td>Stillstandsmoment dauerhaft verfügbar</td>
<td>Wegen zu hoher thermischer Belastung im unteren Drehzahlbereich ohne Fremdlüfter dauerhaft kein Moment verfügbar</td>
</tr>
<tr>
<td>Hoher Drehzahl-Stellbereich, 1:5000</td>
<td>Hoher Drehzahl-Stellbereich, 1:5000</td>
</tr>
</tbody>
</table>
2.3 Aufbau von Synchron-Servomotoren

Prinzipieller Aufbau

Prinzipiell besteht ein Synchron-Servomotor aus
- einem Rotor mit Permanentmagneten,
- einem Stator mit entsprechender Wicklung,
- dem Leistungsanschluss; ausgeführt als Stecker oder Klemmenkasten,
- einem Geber.

Unterschiedliche Ausführungen

Bei Synchron-Servomotoren wird unterschieden zwischen
- Ausführung mit Gehäuse △ gehäusebehaftet,
- Ausführung ohne Gehäuse △ gehäuselos.

Ausführung ohne Gehäuse bedeutet, dass der Korpus des Motors durch das Blechpaket des Stators gebildet wird. Dies ermöglicht die Ausnutzung des gesamten Eisenquerschnittes.

Im Folgenden werden beide Ausführungen am Beispiel von SEW-Motoren dargestellt:
2.3.1 Aufbau CMP-Motor

CMP-Servomotoren zeichnen sich aus durch extrem hohe Dynamik, geringe Massenträgheit, Kompaktheit und hohe Leistungsdichte.

CMP-Servomotoren sind gehäusebehaftete Motoren.

Eigenschaften und Optionen CMP-Motor

- Bis zu 4,5-fache Überlastfähigkeit,
- Stator mit Zahnwicklung,
- Anbau an Standard- und Servogetriebe möglich,
- Getriebe-Direktanbau möglich,
- Resolver oder hochauflösender Absolutwertgeber möglich,
- Ausrichtbare Steckverbinder,
- Optional Fremdlüfter,
- Optional 24-V-Bremse,
- KTY-Sensor für thermischen Motorschutz.
2.3.2 Aufbau CM-/DS-Motor
CM-/DS-Servomotoren zeichnen sich aus durch ein breites Drehmomentspektrum, gute Regeleigenschaften bei hohen externen Massen, Einsatz von leistungsstarken Arbeitsbremsen und eine große Optionsvielfalt.
CM-/DS-Servomotoren sind gehäusebehaftete Motoren.

Bild 5: Aufbau Synchroner Servomotor CM von SEW-EURODRIVE

1. Rotor
2. Flanschlagernerv
3. Rillenkugellager
4. Gehäuse mit Stator
5. B-Lagerschild
6. Rillenkugellager
7. Resolver
8. Steckergehäuse
10. Signalstecker, kpl.

Eigenschaften und Optionen CM-/DS-Motor
- Bis zu 4-fache Überlastfähigkeit,
- Stator mit Einziehwicklung,
- Anbau an Standard- und Servogetriebe möglich,
- Getriebe-Direktanbau möglich,
- Resolver oder hochauflösender Absolutwertgeber möglich,
- Stecker oder Klemmenkasten,
- Optional Fremdlüfter,
- Optional Bremse mit Arbeitsvermögen,
- TF- oder KTY-Sensor für thermischen Motorschutz,
- Optional 2. Wellenende,
- Optional verstärkte Lagerungen.
2.3.3 Aufbau CMD-Motor

CMD-Servomotoren zeichnen sich aus durch extreme Kompaktheit, optimierte Drehzahlanpassung für Direktantriebstechnik und ein schlankes Variantenkonzept. CMD-Servomotoren sind gehäuselose Motoren.

Eigenschaften und Optionen CMD-Motor

- Bis zu 6-fache Überlastfähigkeit,
- Stator mit Zahnwicklung,
- Optional 24-V-Bremse,
- Resolver oder hochauflösender Absolutwertgeber möglich,
- KTY-Sensor für thermischen Motorschutz.

Bild 6: Aufbau Synchron-Servomotor CMD von SEW-EURODRIVE

[5] B-Lagerschild
2.3.4 Aufbau des Rotors

Der Rotor von Synchron-Servomotoren ist mit Permanentmagneten bestückt.

Durch das gesinterte Seltene-Erden-Material Neodym-Eisen-Bor besitzen diese Magnete eine überlegene magnetische Leistung, sodass eine kompaktere Bauweise bei optimierter Leistungsausbeute möglich ist.

Bild 7: Aufgeklebte Magnete am Rotor

[1] Aufgeklebte Magnete

2.4 Funktionsweise von Synchron-Servomotoren

Durch Anschließen des Motors an einen geeigneten Servoverstärker wird in den Wicklungen des Stators das so genannte Statordrehfeld erzeugt. Dieses Drehfeld übt eine magnetische Kraft auf den Läufer aus. Durch die magnetische Kopplung zwischen Stator und Läufer beschleunigt der Läufer und dreht mit der gleichen Winkelgeschwindigkeit wie das Drehfeld, also synchron.

Wird der Motor belastet, ergibt sich eine Verschiebung des Läuferdrehfeldes bezogen auf das Statordrehfeld. Die Pole des Läufers eilen denen des Statordrehfeldes um den Polradwinkel α nach. Das Drehmoment steigt an, je größer der Polradwinkel ist. Das maximale Drehmoment ist dann erreicht, wenn der Polradwinkel $\alpha = 90^\circ$ beträgt. In diesem Fall liegen die Pole des Läufers genau zwischen zwei Polen des Stators.

Dies bewirkt, dass der dem Läuferpol voraus eilende Statorpol den Läufer "zieht" und der nacheilende Statorpol den Läufer "schiebt".

Nimmt der Polradwinkel α Werte $> 90^\circ$ an, sinkt das Drehmoment. Der Motor befindet sich in einer instabilen Betriebslage und bleibt unter Umständen stehen. Eine thermische Schädigung ist die Folge.

Es gilt: $M = f (U, I, \sin \alpha)$.
2.4.1 Optimaler Betriebspunkt

Um den Synchronmotor mit dem maximalen Drehmoment betreiben zu können, muss sichergestellt werden, dass der Polradwinkel \(\alpha = 90^\circ \) beträgt. Im motorischen Betrieb muss der Statorpol demnach stets um 90° vorausseilen, im generatorischen Betrieb um 90° nacheilen. Die Motorführung stellt sicher, dass die drei Phasenströme des Motors aus einem vorgegebenen Moment und dem Strom-Sollwert gemäß dem Motormodell berechnet werden, um so im Motor das notwendige resultierende Magnetfeld zu erzeugen.

Dazu muss die Lage des Läufer mit Hilfe eines geeigneten Gebers erfasst werden. Zu dieser Rotor-Istposition werden je nach Drehmomentrichtung 90° addiert oder subtrahiert und die entsprechenden Phasenströme berechnet.

Zur jeweiligen Lage des Läufers wird die entsprechende Lage des Statordrehfeldes ermittelt. Dies erfolgt durch die Bestimmung der Größe und Zuordnung des Statorfeldes durch den Läufer, d. h. der Läufer dreht das Statorfeld.

Der in diesem Zusammenhang erwähnte Polradwinkel \(\alpha \) ist ein elektrischer Winkel. Bei einem 6-poligen Motor entsprechen 90° elektrisch 30° mechanisch.

2.4.2 Stromverhältnisse im Stator

Die Stromverhältnisse im Stator sehen wie folgt aus:

![Stromverhältnisse im Stator](image)

Bild 11: Stromverhältnisse im Stator

[1] Stromraumzeiger \(I = \text{vektorielle Summe der Ströme } i_U, i_V, i_W \)

2.4.3 Sinusförmige Speisung

Die meisten der heute angebotenen Synchron-Servomotoren werden durch einen sinusförmigen Strom gespeist, der von einem entsprechenden Servoverstärker in die Statorwicklung eingeprägt wird. Die drei Motorphasen werden gleichzeitig bestromt. Bild 12 zeigt die Strom- und Spannungshöhen zu den Zeitpunkten t₁ und t₂.

Bild 12: Sinusförmige Speisung

[1] Ersatzschaltbild eines Synchron-Servomotors
[2] Lage des Rotors zum Zeitpunkt t₁
[3] Diagramm: Strom, Spannung und Fluss über die Zeit bei konstanter Spannung

U₉ind Durch die Drehung des Läufers induzierte Spannung (EMK)
U₈ Spannungsabfall an der Induktivität

2.4.4 Blockförmige Speisung

Neben der sinusförmigen Speisung gibt es auch noch die blockförmige Speisung von Motoren, die jedoch heute nur noch eine eher untergeordnete Bedeutung hat. Wie der Name schon sagt, erfolgt hier die Speisung des Motors über blockförmige Spannungen aus dem Gleichspannungs-Zwischenkreis.

Bild 13: Blockförmige Speisung

[1] Ersatzschaltbild eines Synchron-Servomotors
[2] Lage des Rotors zum Zeitpunkt t_1
[3] Diagramm: Strom, Spannung und Fluss über die Zeit bei konstanter Spannung
U_{ind} Durch die Drehung des Läufers induzierte Spannung (EMK)
U_L Spannungsabfall an der Induktivität
In den Motorwicklungen werden blockförmige Ströme eingeprägt. Diese induzieren im Motor trapezförmige Spannungen. Bauartbedingt entsteht eine rechteckförmige Verteilung der Luftspaltinduktion, was eine constante Drehmomentbildung zur Folge hat.

Die Ansteuerung der Stromregler erfolgt bei der blockförmigen Speisung über einen Rotorlagegeber.

Für die Erfassung der Drehzahl wird ein weiterer Geber, meist ein Tachogenerator, benötigt.

Die absolute Lage des Rotors wird mit Hilfe eines Lagegebers erfasst.

Vor- und Nachteile der blockförmigen Speisung zur sinusförmigen Speisung:

Vorteile der blockförmigen Speisung
- einfachere und somit günstigere Gebersysteme wie z. B. Hallsensor, Lichtschranke für die Ermittlung der Rotorlage,
- einfache Erzeugung der Steuersignale für den Strom.

Nachteile der blockförmigen Speisung
- schlechtere Drehzahlkonstanz,
- schlechtere Drehmomentkonstanz, besonders bei niedrigen Drehzahlen,
- zusätzlicher Geber für die Drehzahl notwendig.

Bild 14: Reglerstruktur mit Gebersystemen bei blockförmig gespeistem Motor

- [1] Lage
- [2] Drehzahl
- [3] Strom
- [5] Last
- [6] Rotorlagegeber
- [7] Tachogenerator
- [8] Lagegeber
2.4.5 Thermische und dynamische Grenzkennlinie

Die dynamische Grenzkennlinie gibt Aufschluss darüber, welches maximale Drehmoment der Motor bei welcher Drehzahl abgeben kann.

Es ist zu beachten, dass der Servoverstärker einen ausreichenden Strom zur Verfügung stellen muss, damit der Motor das maximale Drehmoment erreichen kann.

Bild 15 zeigt die dynamische Grenzkennlinie eines Synchron-Servomotors CM90M für die Drehzahlklassen 2000, 3000, 4500 und 6000.

Bei der Projektierung eines Antriebes ist zu beachten, dass das maximale Drehmoment bei zugehöriger Drehzahl unter bzw. maximal auf der dynamischen Grenzlinie des Motors liegen darf, siehe hierzu auch Kapitel 8 "Projektierung".
Bei der Projektierung eines Antriebes werden zur Bestimmung der thermischen Auslastung des Motors die mittlere Motordrehzahl und das effektive Drehmoment berechnet. Anhand dieser Daten wird der Arbeitspunkt des Motors ermittelt.

Dieser Arbeitspunkt muss unterhalb der thermischen Grenzkennlinie des Motors liegen, andernfalls wird der Motor thermisch überlastet. Auch hier ist zu beachten, dass die Kennlinie mit steigender Drehzahl abfällt, weshalb bei der Projektierung eine Arbeitspunktberechnung unverzichtbar ist. Der Arbeitspunkt ergibt sich aus dem quadratischen Mittel aus dem mittleren Moment M_{eff} und der mittleren Drehzahl n.

Der Abfall der Kennlinie wird hauptsächlich durch Wirbelstrom-, Ummagnetisierungs- und Eisenverluste verursacht.

Bild 16 zeigt die thermische Grenzkennlinie eines Synchron-Servomotors CM90M für die Drehzahlklasse 6000.

Bild 16: Thermische Grenzkennlinien CM90M

Der Zusatz "/VR" hinter der Motorbezeichnung bedeutet, dass der Motor mit einem Fremdlüfter ausgestattet ist.
2.5 Aufbau von Asynchron-Servomotoren

Prinzipieller Aufbau

Prinzipiell besteht ein Asynchron-Servomotor aus
- einem Rotor mit kurzgeschlossener Wicklung,
- einem Stator mit entsprechender Wicklung,
- Leistungsanschluss (Klemmenkasten),
- einem Geber.

Im Folgenden werden die Asynchron-Servomotoren am Beispiel der Motorenreihe CT/CV von SEW-EURODRIVE dargestellt.

2.5.1 Aufbau CT-/CV-Motor

Bild 17: Aufbau Asynchron-Servomotor CT/CV von SEW-EURODRIVE

- [1] Läufer, kpl.
- [2] Rillenkugellager
- [3] Flanschlagerschild
- [4] Rillenkugellager
- [6] B-Lagerschild
- [7] Lüfter

Eigenschaften und Optionen CT-/CV-Motoren

- Drehmomentbereich von 3 - 200 Nm,
- Stator mit Einziehwicklung,
- 3-fache Überlastfähigkeit,
- gute Regeleigenschaften bei großen externen Massen,
- bei dauerhaft niedrigen Drehzahlen ist ein Fremdlüfter erforderlich,
- zur Bestimmung der Rotorlage ist ein Gebersystem erforderlich,
- Bremse möglich.

2.6 Funktionsweise von Asynchron-Servomotoren

Analog zum Transformator, bei dem die Primärwicklung über den Blechkern mit der Sekundärwicklung verbunden ist und dort eine Spannung induziert, ist beim Asynchron-Servomotor die Statorwicklung mit dem Käfigläufer über den Luftspalt gekoppelt. Gemäß dem Induktionsgesetz gilt:

\[U_i = -N \times \frac{\Delta \Phi}{\Delta t} \]

- \(U_i \) Induzierte Spannung [V]
- \(N \) Windungszahl
- \(\frac{\Delta \Phi}{\Delta t} \) Zeitliche Änderung des magnetischen Flusses [Wb/s]

Aus der Gleichung ist ersichtlich, dass eine Flussänderung zur Aufrechterhaltung der sekundärseitigen Spannung und somit auch des sekundärseitigen Stromes notwendig ist. Diese Gesetzmäßigkeit ist analog zum Transformator, mit dem keine Gleichspannung übertragen werden kann.
Durch die Bestromung des Stators entsteht ein magnetischer Fluss, der den Rotor durchflutet. Die lenzsche Regel besagt, dass alle durch eine Änderung des magnetischen Flusses induzierten Spannungen so gerichtet sind, dass die von ihnen hervorgerufenen Ströme die Ursache der Induktion entgegenwirken. Der im Rotor entstehende Strom wirkt also der Flussänderung entgegen. Bedingt durch die ohmschen Verluste im Läufer wird dieser Strom abgebaut, sofern keine Flussänderung seitens des Statorstroms erfolgt. Der Abbau des Läuferstromes erfolgt nach der elektrischen Zeitkonstante T_r des Läufers:

$$T_r = \frac{L_r}{R_r}$$

Beispiel

Nachstehend ist die prinzielle Funktionsweise einer stromgeführten Feldregelung am Beispiel eines Asynchronmotors (ASM) erläutert:

1. Zum Zeitpunkt t_0 wird der Stator bestromt, siehe Bild 18. Die Richtung dieser Erstbestromung ist zunächst willkürlich. Das Magnetfeld des induzierten Stromes wirkt der Änderung des magnetischen Flusses entgegen (lenzsche Regel), d. h. die Ströme von Läufer und Stator sind entgegengesetzt.

2. Es erfolgt eine Magnetisierung des Asynchron-Servomotors, da der Zustand von t_0 so lange aufrecht erhalten wird, bis der Strom im Läufer abgeklungen ist. Der Strom klingt aufgrund des ohmschen Widerstandes im Läufer ab. Die für die Magnetisierung erforderliche Zeit ist durch die elektrische Zeitkonstante T_r des Läufers definiert. Der abgeklungene Zustand kann mit $5 \times T_r$ als erreicht angesehen werden. Der Asynchron-Servomotor kann jetzt als magnetisiert angesehen werden, siehe Bild 19.
3. Das **schlagartige** Einprägen einer zusätzlichen Stromkomponente, die **senkrecht** zur Erstbestromung ausgerichtet ist, hat wiederum einen Strom zur Folge, siehe Bild 20. Dieser Zustand ist vergleichbar mit dem unter Punkt 1. beschriebenen, jedoch
 - richtet sich die Bestromung des Stators nach dem Strom von Punkt 1,
 - ist die Verharrung hier wesentlich kürzer als bei Zustand Punkt 1.

Der in den Stator eingeprägte Strom I_{sd} bestimmt die Magnetisierung. Der Rotorstrom I_q wirkt drehmomentbildend, er entspricht der um 180° gedrehten Stromkomponente I_{sq}. Da in der Feldorientierung beide Stromkomponenten bekannt sind, ist das Drehmoment bestimmbär. Gemäß den magnetischen Gesetzen erfährt ein stromdurchflossener Leiter, in diesem Fall der Läufer, im Magnetfeld eine Kraft F, die auf ihn wirkt. Diese Kraft bestimmt das Drehmoment.

Durch die gezielte rechtwinklige Anordnung wird der drehmomentbildende Läuferstrom optimal ausgenutzt. Das resultierende Magnetfeld beginnt sich auf den Winkel des Statorstromes auszurichten. Die Geschwindigkeit der Ausrichtung folgt einer e-Funktion und wird durch die Zeitkonstante T_r des Läufers bestimmt.

![Bild 21: Vereinfachte Darstellung der Ströme in Stator und Rotor zum Zeitpunkt t_1](56197axx)

<table>
<thead>
<tr>
<th>Ströme</th>
<th>Beschreibung</th>
</tr>
</thead>
<tbody>
<tr>
<td>i_{sq}</td>
<td>1. Statorstromkomponente (drehmomentbildend, bei t_1)</td>
</tr>
<tr>
<td>i_{s}</td>
<td>Statorstrom bei t_1</td>
</tr>
<tr>
<td>i_{sd}</td>
<td>1. Statorstromkomponente (magnetisierend, bei t_1)</td>
</tr>
<tr>
<td>i_q</td>
<td>Rotorstrom bei t_1</td>
</tr>
</tbody>
</table>

Wenn die Bestromung des Stators auf diese Weise für eine Zeit von $4 \times T_r \ldots 5 \times T_r$ beibehalten wird, sinkt der Läuferstrom auf Null ab und das magnetische Feld richtet sich auf den Winkel des Statorstromes aus. In diesem Fall wäre das resultierende Drehmoment gleich Null und die Feldorientierung ginge verloren.

Daher wird die Verharrungszeit t in Bezug auf die Läuferzeitkonstante T_r sehr kurz gewählt:

$$ t << T_r $$
In diesem Fall erfolgt bei der Bestromung des Stators eine Neuausrichtung der Statorströme:

Die Feldorientierung wird wieder hergestellt, indem die Statorstromkomponenten durch neu ausgerichtete Statorströme i_{sd} und i_{sq} ersetzt werden. Somit beschreiben die Vektoren des Statorstromes eine Kreisbahn:

Bild 23: Vereinfachte Darstellung der Stromänderung in Stator und Rotor zum Zeitpunkt t_1

- i_{sd-1}: 1. Statorstromkomponente bei t_1
- i_{is-1}: Statorstrom bei t_1
- i_{sq-1}: 2. Statorstromkomponente bei t_1
- i_{iq-1}: Rotorstrom bei t_1
- i_{sd-2}: Neu ausgerichtete 1. Statorstromkomponente bei t_2
- i_{is-2}: Statorstrom nach Neuausrichtung bei t_2
- i_{sq-2}: Neu ausgerichtete 2. Statorstromkomponente bei t_2
- i_{iq-2}: Rotorstrom nach Neuausrichtung bei t_2
- i_{sd-3}: Neu ausgerichtete 1. Statorstromkomponente bei t_3
- i_{is-3}: Statorstrom nach Neuausrichtung bei t_3
- i_{sq-3}: Neu ausgerichtete 2. Statorstromkomponente bei t_3
- i_{iq-3}: Rotorstrom nach Neuausrichtung bei t_3
2.6.1 Motorkennlinie

Am Beispiel des Asynchron-Servomotors CV100M4 von SEW-EURODRIVE sollen die für die Projektierung wichtigen Daten mit zugehöriger Motorkennlinie näher betrachtet werden. Üblicherweise sind die folgenden Motordaten bekannt:

- Motortyp: CV100M4
- Nenndrehzahl N_{Nenn}: 2100 1/min
- Nennmoment M_{Nenn}: 15 Nm
- Nennstrom I_{Nenn}: 8,1 A
- Eckdrehzahl n_{Eck}: 1760 1/min (in Verbindung mit 4-kW-Servoverstärker)

Die Servoverstärkerleistung wird nach dem erforderlichen Drehmoment ausgewählt. Aus der zulässigen Kombination eines Motors mit Servoverstärkern unterschiedlicher Leistung ergeben sich verschiedene Drehmomentkennlinien.
Bei der Projektierung muss darauf geachtet werden, dass das effektive Motordrehmoment bei mittlerer Drehzahl unterhalb bzw. maximal auf der S1-Kennlinie liegen darf. Liegt das effektive Motordrehmoment bei mittlerer Drehzahl oberhalb der S1-Kennlinie, wird der Motor thermisch überlastet.

Die Drehmomentkennlinien mit Angabe der Servoverstärkerleistung geben Auskunft darüber, welche Momente bei welchen Drehzahlen verfügbar sind. Sie sagen jedoch nicht aus, ob dieses Moment auch dauerhaft abgegeben werden kann. Hierfür ist die S1-Kennlinie unentbehrlich.

Aus der Überlastfähigkeit der zulässigen Motor-Servoverstärker-Kombinationen ergeben sich unterschiedliche dynamische Drehmomentkennlinien. Auch hier muss bei der Projektierung beachtet werden, dass die Drehmomente wegen der Gefahr der thermischen Überlastung nicht dauerhaft zur Verfügung stehen, siehe hierzu auch Kapitel 8 "Projektierung".
2.7 Synchroner Linearmotor

Synchroner Linearmotor entsprechen in der Funktionsweise grundsätzlich den rotati-
vlen Synchron-Servomotoren. Linearmotoren kommen dann zum Einsatz, wenn höchste
Anforderungen z. B. an Dynamik und Positioniergenauigkeit gestellt werden. Da ein
synchroner Linearmotor aus einer Vielzahl von Komponenten besteht, erfolgt der
Zusammenbau erst an der Maschine, in die er eingebaut wird.

Die nachstehende Abbildung zeigt schematisch den Aufbau eines vollständigen linea-
ren Antriebssystems.

Bild 26: Lineares Antriebssystem

Vorteile von synchronen Linearmotoren

Im Folgenden sind die Vorteile eines synchronen Linearmotors gegenüber einem rota-
tiven System aufgeführt:
• höhere Geschwindigkeiten,
• höhere Beschleunigungen,
• Direktantrieb (kein Getriebe, Zahnriemen etc. erforderlich), d. h. Spielfreiheit,
• praktisch verschleißfrei,
• höhere Positioniergenauigkeit.

Anwendung

Synchrone Linearmotoren finden hauptsächlich Anwendung in folgenden Branchen:
• Handlingssysteme (Transport- und Logistikapplikationen),
• Verpackungstechnik,
• Werkzeugmaschinenbau,
• Montagetechnik,
Servomotoren
Synchroner Linearmotor

- Sondermaschinenbau.

In diesen Branchen ersetzen synchrone Linearmotoren traditionelle, nicht direktange-triebene Lösungen wie z. B. Spindel-, Zahnstangen-, Riemen- und Kettenantriebe.

2.7.1 Prinzipien der synchronen Linearmotoren

Bei den synchronen Linearmotoren werden zwei Prinzipien unterschieden:
- Langstatorprinzip.
- Kurzstatorprinzip.

Langstatorprinzip

Bei diesem Prinzip wird der Verfahrweg durch ein oder mehrere Primärteile festgelegt, die länger sind als die Magnetleiste. Die Magnetleiste befindet sich am bewegten Fahr- schlitten (Sekundärteil), d. h. das Sekundärteil benötigt keine Energiezuführung und ermöglicht somit theoretisch unbegrenzte Verfahrwege.

Das Langstatorprinzip ist hauptsächlich bei Transport- und Logistikapplikationen anzutreffen.

![Bild 27: Synchroner Linearmotor in einem Handlingssystem](56227axx)

![Bild 28: Langstatorprinzip](56181axx)

[1] Primärteil: Stator mit Windungen
[2] Sekundärteil: Permanent erregtes Reaktionsteil
Kurzstatorprinzip

Bei diesem Prinzip wird das im Vergleich zur Magnetleiste kurze Primärteil verfahren. Das Kurzstatorprinzip findet hauptsächlich Verwendung bei Servoanwendungen im Maschinenbau.

Aufbau und Wirkungsweise des Kurzstatorprinzips

Ähnlich wie bei den rotierenden Antrieben besteht ein synchroner Linearantrieb aus zwei Teilen, dem Primärteil und dem Sekundärteil. Bezogen auf die Funktionsweise entspricht
- das Primärteil des Linearmotors dem Stator des rotierenden Motors. Das Primärteil enthält das Blechpaket, die Motorwicklung und die Temperaturfühler.

Bild 29: Kurzstatorprinzip

[1] Sekundärteil: Permanent erregtes Reaktionsteil

Aufgrund der großen Verbreitung wird in diesem Band nur das Kurzstatorprinzip näher behandelt.

Bild 30: Prinzip des Linearmotors

Im Unterschied zum rotativen Motor kann jedoch beim Linearmotor entweder das Primärteil oder das Sekundärteil bewegt werden.

Bild 31: Aufbau

[1] Primärteil
[2] Elektrischer Anschluss
[3] Sekundärteil mit Permanentmagneten

2.7.2 Motorkennlinie

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Bedeutung</th>
</tr>
</thead>
<tbody>
<tr>
<td>F_{Peak}</td>
<td>Maximalkraft [N]</td>
</tr>
<tr>
<td>F_{1}</td>
<td>Maximalkraft [N], die bis Geschwindigkeit V_1 zur Verfügung steht</td>
</tr>
<tr>
<td>F_{Nenn}</td>
<td>Dauerkraft [N]</td>
</tr>
<tr>
<td>V_L</td>
<td>Theoretische maximale Verfahrgeschwindigkeit [m/s]</td>
</tr>
<tr>
<td>V_N</td>
<td>Geschwindigkeit [m/s], bis zu der die Kraft F_{1} zur Verfügung steht</td>
</tr>
<tr>
<td>V_{Nenn}</td>
<td>Geschwindigkeit [m/s], bis zu der die Nennkraft zur Verfügung steht</td>
</tr>
</tbody>
</table>

Bild 32: Motorkennlinie

Dauerkraft ist abhängig von:
- Größe der Flanschfläche Primärteil
- Stärke der Flanschfläche Primärteil
- Umgebungstemperatur
- Aufstellungshöhe
Die Kennlinie gibt Aufschluss darüber, welche Spitzenkräfte F_{Peak} und F_{Nenn} bei den zugehörigen Geschwindigkeiten vom Motor aufgebracht werden können. Hierbei ist zu beachten, dass bei der thermischen Auslastung des Motors auch ein entsprechender Wärmetransport vom Motor in die Umgebung vorhanden sein muss, um eine ausreichende Kühlung sicherzustellen. Die Größe der Kühlfläche wird maßgeblich durch die Flanschfläche und die Dicke des Primärteils bestimmt.

Generell können zwei Kühlarten unterschieden werden:
- die Konvektionskühlung,
- die Wasserkühlung.

Je nach Anwendungsfall können zusätzliche Maßnahmen erforderlich werden:
- Fremdlüfter bei Konvektionskühlung,
- Wasserkühlung,
- Wasserkühlung mit zusätzlicher thermischer Kapselung.

Konvektionskühlung

Prinziell erfolgt die Kühlung durch Abstrahlung und durch Erwärmung der Umgebungsluft. Durch entsprechende Projektierung der Oberfläche des Motors muss der Wärmetransport gewährleistet werden.

Zusätzlich in den Motor eingebaute Lüfter gewährleisten einen konstanten Luftstrom und transportieren die Wärmeenergie verstärkt ab.

Eigenschaften eines Kühlsystems mit Fremdlüfter sind:
- Hohe Kühlleistung,
- einfaches Prinzip, d. h. geringer technischer und finanzieller Aufwand.

SEW-Lösung:

![Bild 33: Synchroner Linearmotor SL2-Advance-System und SL2-Power-System](53419AXX)

| [3] | Elektrischer Steckverbinder |
Dieses Prinzip ermöglicht eine deutlich höhere Ausnutzung der Motornennkraft.

Wasserkühlung

Eine bei Linearmotoren im Maschinenbau verbreitete Art der Kühlung ist die Wasserkühlung.

Im Primärteil des Linearmotors sind Kühlkanäle angebracht, die mit einem Wasserkreislauf verbunden werden.

Eigenschaften dieses Systems sind:
- hohe Kühlleistung,
- der Motor gibt konstruktionsbedingt nur wenig Wärmeenergie an die umgebende Maschinenkonstruktion ab,
- hoher technischer Aufwand:
 - Projektierung,
 - Kühlkanäle im Primärteil,
 - Kühlaggregat erforderlich,
 - Schläuche für die Wasserzuführung,
- betreiben des Linearmotors ohne Wasserkühlung ist mit Leistungseinbußen verbunden,
- kostenintensiv.

Bild 34: Nennkräfte SL2-150M in Basic- und Power-Ausführung
Wasserkühlung mit thermischer Kapselung

Eigenschaften dieses Systems sind:
- sehr hohe Kühlleistung,
- thermische Entkoppelung des Motors von der Maschinenkonstruktion, d. h. keine Wärmeausdehnung,
- sehr hoher technischer Aufwand:
 - Projektierung,
 - Thermische Kapselung des Primärteils,
 - Kühlkanäle in der Kapselung,
 - Kühlaggregat erforderlich,
 - Schläuche für die Wasserzuführung.
- großes Bauvolumen,
- betreiben ohne Wasserkühlung mit Leistungseinbußen,
- sehr kostenintensiv.

2.7.3 Zubehör

Damit die linearen Antriebssysteme ihre Aufgaben optimal ausführen können, werden einige periphere Komponenten benötigt, die im Folgenden aufgeführt sind.

Linearführungssystem

Das Linearführungssystem hat folgende Aufgaben:
- die kundenseitige Last tragen und führen,
- die magnetischen Kräfte zwischen Primär- und Sekundärteil aufnehmen,
- das Mess-System führen,
- Luftspalt sicherstellen.

Auswahlkriterien an Linearführungssysteme sind:
- hohe Beschleunigungen,
- hohe Verfahrgeschwindigkeiten,
- starke Lastwechsel,
- geringe Geräuschentwicklung,
- Aufnahme von Querkräften, die durch Wärmeausdehnung entstehen.
Je nach Anwendung und Anforderungsschwerpunkt kommen unterschiedliche Führungssysteme zum Einsatz:

Bild 36: Führung mit Wälzkörpern

Bild 37: Führung mit Laufrollen

Puffer / Stoßdämpfer

Bild 38: Endlagendämpfer

SEW-EURODRIVE kann aufgrund der vielen unterschiedlichen Einsatzmöglichkeiten keine Puffer und Stoßdämpfer anbieten. Das übernehmen die jeweiligen Hersteller der Bauteile.
Im Folgenden sind die Eigenschaften von Puffern und Stoßdämpfern aufgelistet.

Puffer

- einfacher Aufbau,
- kostengünstig,
- teilweise Rückprall der auftreffenden Masse.

Bild 39: Puffer

Stoßdämpfer

- hohe Energieaufnahme,
- günstiger Verlauf des Energieabbaus,
- kein Rückprall der auftreffenden Masse,
- geringe Reaktionskräfte auf die bewegte Masse und die umgebende Konstruktion.

Bild 40: Stoßdämpfer
Schleppketten und Leitungen

Dort werden aufgrund von
- hohen Beschleunigungen,
- zum Teil langen Verfahrwegen,
- teilweise großen freitragenden Längen
besondere Anforderungen gestellt.

Auswahlkriterien

Bei Anwendungen mit freitragenden Schleppketten, d. h. das Obertrum der Schleppkette berührt über den gesamten Verfahrweg nicht das Untertrum, ist die Beschleunigung die kritische Größe, weniger die Geschwindigkeit. Hohe Beschleunigungen setzen die Schleppkette in Schwingung und verkürzen somit die Lebensdauer.

Bei der Auswahl von Kabeln müssen neben der meist hohen Dynamik noch weitere Kriterien beachtet werden:
- Biegeradien,
- Schleppketten-Tauglichkeit,
- Motorkabel geschirmt mit separater Schirmung für Temperaturfühler → Hybridkabel,
- Geberleitung paarweise verdrillt und geschirmt,
- EMV-gerechte Steckverbindungen,
- überdimensionieren von Leitungen vermeiden → Gewichtsgründe,
- auftretende Ströme → Kabelquerschnitt,
- anlagen- und länderspezifische Vorschriften.

Werden bei einem Linearsystem die Sekundärteile bewegt, ergibt sich daraus ein konstruktiver Vorteil, da in diesem Fall die Kabel nicht bewegt werden.
2.8 **Bremsen für rotative Servomotoren**

Das vorliegende Kapitel vermittelt einen kurzen Überblick über die Bremssysteme, die in SEW-Servomotoren eingesetzt werden. Diese Informationen ersetzen keinesfalls herstellerspezifische Hinweise oder landes- bzw. anlagenspezifische Sicherheitsvorschriften. Diese sind bei der Projektierung unbedingt zu beachten.

Je nach Anwendung muss die Motorbremse unterschiedliche Funktionen ausführen:
- Halten einer Last, z. B. Hubachse,
- Nothalt,
- Halten von Maschineneinheiten, z. B. Vorschubschlitten,
- Sicherung gegen unbeabsichtigtes Verschieben.

Im Folgenden finden Sie Informationen zu Bremssystemen, wie sie auch von SEW-EURODRIVE eingesetzt werden.

2.8.1 Federdruckbremse als Haltebremse

![Bild 42: Prinzipieller Aufbau der SEW-Haltebremse](image)

- [1] Belagträger
- [2] Bremslagerschild
- [4] Federkraft
- [5] Arbeitsluftspalt
- [6] Ankerscheibe
- [7] Bremsfeder
- [8] Bremsspule
- [9] Spulenkörper
- [10] Motorwelle
2.8.2 SEW-Bremse mit Arbeitsvermögen

Die Federdruckbremse von SEW-EURODRIVE ist eine gleichstromerregte Elektromagnetscheibenbremse, die elektrisch öffnet und durch Federkraft bremst. Dieses System genügt vielen Sicherheitsanforderungen, da bei Stromausfall die Bremse automatisch einfällt.

Bild 43: Aufbau der Bremse mit Resolver RH1L für CM71 .. 112

Bild 44: Schaltprinzip
Im Unterschied zu handelsüblichen gleichstromerregten Scheibenbremsen arbeiten die Bremsen von SEW-EURODRIVE mit einem Zwei- und Bremssystem.

Im stromlosen Zustand wird die Ankerscheibe durch die Federkraft gegen den Belagträger gedrückt, d. h. der Motor wird gebremst. Wird eine entsprechende Spannung an die Bremsbuchse angelegt, überwindet die Magnetkraft die Federkraft der Bremsfedern und die Ankerscheibe liegt am Spulenkörper an. Der Belagträger wird frei und der Motor kann drehen.

2.8.3 Permanent erregte Haltebremse

Beim Bremsen wird das Magnetfeld des Permanentmagneten über Innen- und Außenpol zum Anker geleitet. Der Anker wird über das Magnetfeld angezogen, da die Kraft \(F_M \) des Magnetfeldes größer ist als die Kraft \(F_F \) der Feder. Die Reibung zwischen dem rotierenden Anker und den stehenden Polen erzeugt das Bremsmoment.

Wird die Bremsspule bestromt, bildet sich ein Magnetfeld, dessen Kraft \(F_M \) die Federkraft \(F_F \) kompensiert. Der Anker löst sich von den Polen, d. h. die Bremse ist gelüftet.

Bild 45: Funktionsprinzip der Haltebremse

1. Dauermagnet
2. Bremsspule
3. Außenpol
4. Anker
5. Feder
6. Innenpol
7. Rotor

\[F_M \quad \text{Kraft des Magnetfeldes} \]
\[F_F \quad \text{Federkraft} \]
2.9 Bremsen für Linearmotoren

Die Ausführung der Bremsen von Linearmotoren variiert je nach Motorsystem oder Applikation und den daraus resultierenden Anforderungen sehr stark. SEW-EURODRIVE verweist auf die Dokumentation und die Literatur der entsprechenden Anbieter.

Die Bremse bei Linearmotoren hat die Funktion einer Haltebremse. Diese Haltebremse und das Führungssystem müssen zusammenpassen, d. h. es ist eine Abstimmung mit dem Hersteller des Führungssystems notwendig.

Aufgrund der meist hohen Verfahrgeschwindigkeiten werden an die Bremsen von Linearsystemen besondere Anforderungen gestellt:

- leichte, kompakte Ausführung,
- hohe Leistungsdichte,
- schnelles Öffnen und Schließen.

Je nach Applikation kommen Bremssysteme mit unterschiedlichen Eigenschaften zum Einsatz. Die nachstehende Auflistung gibt einen kurzen Überblick über die Eigenschaften der gängigsten Bremssysteme:

Elektromotorisch betätigte Bremse

- hohe Haltekräfte,
- sehr kompakt und leicht,
- leicht integrierbar,
- Bremse schließt langsam,
- Bremse muss aktiv mit Strom geschlossen werden.

Elektromagnetisch betätigte Bremse

- Bremse öffnet und schließt sehr schnell, d. h. sehr gut geeignet für kurze Taktzeiten,
- hohe Haltekräfte,
- robuster Ausführung,
- mit Federspeicher als Sicherheitsbremse.

Pneumatisch betätigte Bremse

- hohe Haltekräfte,
- sehr kompakt, leicht und Platz sparend einbaubar,
- preiswert und in großer Auswahl verfügbar,
- geeignet für mittlere Taktzeiten,
- Anschluss an ein Pneumatiksystem erforderlich.

Pneumatisch betätigte Bremsen sind in unterschiedlichen Ausführungen verfügbar:

- mit Druck öffnend (pneumatisch mit Federspeicher),
- mit Druck schließend.
Anhand zweier Beispiele wird die Integration von unterschiedlichen Bremsystemen an SL2-Motoren erläutert.

Besonders vorteilhaft ist hierbei, dass die Bremse auf der Loslagerseite zusammen mit dem Führungswagen an die Kühlbrücke angebaut ist und somit nicht thermisch belastet wird.

Kurz bauende Bremsenbauarten wie z. B. die pneumatisch betätigten Bremsen lassen sich Platz sparend zwischen den Führungswagen integrieren.

Für lang bauende Bremsen besteht die Möglichkeit, diese am Ende der Kühlbrücke zu montieren, siehe Bild 46.

3 Gebersysteme

3.1 Inkrementalgeber

3.1.1 Inkrementelle Drehgeber mit TTL- und HTL-Signalen

Üblicherweise haben diese Geber zwei Spuren und eine Nullimpulsspur. Durch die Invertierung der Signale ergeben sich dann insgesamt 6 Signale. Zwei um 90° versetzte Lichtschranken im Encoder liefern an den Spuren A (K1) und B (K2) zwei Folgen von Impulsen. Spur A (K1) hat bei Rechtsdrehung mit Blick auf die Motorwelle 90° Voreilung gegenüber B (K2). Über diese Phasenverschiebung wird die Drehrichtung des Motors ermittelt. Der Nullimpuls (ein Impuls pro Umdrehung) wird mit einer dritten Lichtschranke erfasst und als Referenzsignal an Spur C (K0) zur Verfügung gestellt.

Bei den TTL-Gebern werden die Spuren A (K1), B (K2) und C (K0) im Geber invertiert und als invertierte Signale an den Spuren \overline{A} (K1), \overline{B} (K2) und \overline{C} (K0) zur Verfügung gestellt.

Bild 47: Inkrementeller Drehgeber

[1] Inkrementalscheibe

Aufbau und Funktionsweise
Bei den inkrementellen Gebern werden 2 Signalpegel unterschieden:

- **TTL (Transistor-Transistor-Logik)**
 Die Signalpegel betragen $U_{\text{low}} \leq 0.5 \, \text{V}$ und $U_{\text{high}} \geq 2.5 \, \text{V}$. Die Signale werden symmetrisch übertragen und differenziell ausgewertet, d. h. für die Unterscheidung zwischen Low-Signal und High-Signal steht dann ein Spannungshub von 5 V zur Verfügung. Deshalb sind sie unempfindlich gegen Gleichaktstörungen und haben ein gutes EMV-Verhalten. Die Signalübertragung erfolgt nach der Schnittstellennorm RS422. Aufgrund dieser Eigenschaften finden TTL-Geber bei den inkrementellen Gebern die stärkste Verbreitung am Markt.

Bild 48: TTL-Signale mit Nullspur, mit invertierten Signalen
HTL-Signale mit Nullspur, ohne invertierte Signale

Bild 49: TTL-Signalpegel

[1] "1"-Bereich
[2] "0"-Bereich
Praxis der Antriebstechnik – Servotechnik

Gebersysteme

Inkrementalgeber

- HTL (Hochvolt-Transistor-Logik)
 Die Signalpegel betragen $U_{\text{low}} \leq 3 \text{ V}$ und $U_{\text{high}} \geq U_{\text{Bminus}} (= 3,5 \text{ V})$. HTL-Geber werden ohne die invertierten Spuren ausgewertet, es ist keine differenzielle Signalauswertung möglich. Die HTL-Signale sind daher anfällig für Gleichtaktstörungen, was sich ungünstig auf das EMV-Verhalten auswirken kann.

\[\begin{align*}
24.0 & \quad \text{(1)} \\
20.5 & \\
3.0 & \\
0.0 & \quad \text{(2)} \\
HTL & \\
\end{align*}\]

* Bild 50: HTL-Signalpegel

\[\begin{align*}
[1] & \quad \text{"1"-Bereich} \\
[2] & \quad \text{"0"-Bereich} \\
\end{align*}\]

Invertierte HTL-Signale dürfen am Gegenkopplungsausgang des Servoverstärkers in der Regel nicht angeschlossen werden, da die Eingangsstufen überlastet und dadurch zerstört werden können.
3.1.2 Inkrementalgeber mit sin/cos-Spuren

Aufbau und Funktionsweise

Üblicherweise haben sin/cos-Geber zwei Spuren und eine Nullimpulsspur. Durch die Invertierung der Signale ergeben sich dann insgesamt 6 Signale. Die zwei um 90° versetzten Sinus-Signale liegen auf Spur A (K1) und B (K2). Als Nullimpuls wird eine Sinus-Halbwelle pro Umdrehung an Spur C (K0) zur Verfügung gestellt. Die Spuren A (K1), B (K2) und C (K0) werden im Geber invertiert und als invertierte Signale auf den Spuren A* (K1*), B* (K2*) und C* (K0*) zur Verfügung gestellt.

![Diagramm sin/cos-Signale mit Nullspur und invertiertem Signal](image)

Bild 51: sin/cos-Signale mit Nullspur und invertiertem Signal

3.2 Absolutwertgeber

3.2.1 Absolutwertgeber mit SSI-Schnittstelle und sin-/cos-Signalen

Die Absolutwert-Information wird durch die folgende Tabelle erzeugt:

<table>
<thead>
<tr>
<th>Dezimal</th>
<th>Gray Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0000</td>
</tr>
<tr>
<td>1</td>
<td>0001</td>
</tr>
<tr>
<td>2</td>
<td>0011</td>
</tr>
<tr>
<td>3</td>
<td>0010</td>
</tr>
<tr>
<td>4</td>
<td>0110</td>
</tr>
<tr>
<td>5</td>
<td>0111</td>
</tr>
<tr>
<td>6</td>
<td>0101</td>
</tr>
<tr>
<td>7</td>
<td>0100</td>
</tr>
<tr>
<td>8</td>
<td>1100</td>
</tr>
<tr>
<td>9</td>
<td>1101</td>
</tr>
<tr>
<td>10</td>
<td>1111</td>
</tr>
<tr>
<td>11</td>
<td>1110</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>

Bild 52: Codescheibe mit Gray Code

Bild 53: Aufbau Multi-Turn-Geber

[1] Code-Scheibe zur Erfassung der Wickelposition

3.2.2 Absolutwertgeber mit HIPERFACE®-Schnittstelle

HIPERFACE®-Geber gibt es in 2 unterschiedlichen Ausführungen:
1. HIPERFACE®-Geber in Single-Turn-Ausführung,
2. HIPERFACE®-Geber in Multi-Turn-Ausführung: Mit Hilfe der Code-Scheibe mit Gray-Code, die an ein kleines, mehrstufiges Getriebe gekoppelt ist, kann die Absolutposition über 4096 Motorumdrehungen ausgegeben werden.

Eigenschaften des HIPERFACE®-Gebers:
- Betriebsspannung 7-12 V,
- Betriebstemperatur bis zu maximal 115 °C,
- maximale Kabellänge 100 m,
- 10-adriges Kabel,
- interner Speicher bietet Option "elektronisches Typenschild",
- sowohl Single- als auch Multi-Turn-Version verfügbar,
- optische Auswertung des Absolutwertes (Single-Turn-Teil),
- keine Referenzfahrt bei Wiedereinschalten mehr nötig (bei Multi-Turn),
- sowohl Absolutwert als auch sin/cos-Spuren (1024 sin- und cos-Perioden / Umdrehung) integriert,
- analoge Signalübertragung, die Auflösung der 1024 sin-/cos-Perioden erfolgt im Regler,
- hohe Störfestigkeit gegenüber elektromagnetischer Einstrahlung,
- Anbaugerät als Stand-alone-Lösung (Streckengeber),
- elektronische Kommuterungs-Justage,
- Prozessdatenkanal bearbeitet die Daten in Echtzeit,
- kleine Abmessungen.

1) HIPERFACE steht für High Performance Interface und ist eine von der Firma Sick Stegmann GmbH entwickelte Schnittstelle.

Im Moment des Wiedereinschaltens wird aus dem NVRAM im Servoverstärker Folgendes ausgegeben:
- der absolute Wert innerhalb eines Überlaufs, er beträgt max 4096 × 4096,
- die Anzahl der Überläufe, sie betragen 0...255.

Die Geberüberläufe werden im Servoverstärker mitgezählt, wodurch die absolute Position bestimmt werden kann. Der Anwender bekommt die eigentlichen Geberüberläufe nicht zu sehen, diese werden im Servoverstärker gespeichert. Somit ist der HIPERFACE®-Geber ein echter Absolutwertgeber.

Bild 55: Geberüberlauf

[2] 2. Geberüberlauf
[3] vom Anwender gesehene, absolute Position

Die Geberüberläufe werden im Servoverstärker mitgezählt, wodurch die absolute Position bestimmt werden kann.
3.2.3 Resolver

Aufbau und Funktionsweise

Der Resolver besteht aus 2 Funktionsbaugruppen, dem Transformator (Stator) und dem Drehtransformator (Rotor).

Durch die Drehung des Resolver-Rotors werden in der Statorwicklung des Drehtransformators rotorgebundene Spannungen induziert.

Bild 56: Schematischer Aufbau des Resolvers

Bild 57: Resolver

[1] Stator des Resolvers (Transformator)
[2] Rotor des Resolvers (Drehtransformator)

Bild 58: Ersatzschaltbild eines Resolvers

Praxis der Antriebstechnik – Servotechnik

Absolutwertgeber

Der Verlauf der Signale errechnet sich wie folgt:

\[
U_{\text{ref}} = A \times \sin (\omega_{\text{Erreger}} \times t)
\]

\[
U_{\cos}(t) = A \times \dot{u} \times \sin (\omega_{\text{Erreger}} \times t) \times \cos (p \times \alpha)
\]

\[
U_{\sin}(t) = A \times \dot{u} \times \sin (\omega_{\text{Erreger}} \times t) \times \sin (p \times \alpha)
\]

\[
p \times \alpha = \arctan \left(\frac{U_{\sin}}{U_{\cos}} \right)
\]

Abhängig von der Lage des Rotors ändern sich die Amplituden der Spannungen \(U_{\sin} \) und \(U_{\cos} \) und werden über jeweils einen Differenzverstärker dem A/D-Wandler zugeführt. Die Differenzverstärker filtern hochfrequente Einkopplungen auf den potenzialfreien Spurssignalen \(U_{\sin} \) und \(U_{\cos} \) aus und geben auf die Eingänge des A/D-Wandlers jeweils eine Spannung mit Massebezug.

Der A/D-Wandler tastet die beiden Hüllkurven synchron zur Erregerspannung im Maximalwert ab, wandelt diese analogen Signale in digitale Informationen um und übergibt sie an den DSP, siehe hierzu Bild 59. Dieser ermittelt die aktuelle Lage aus den abgetasteten Spurssignalen \(U_{\cos} \) und \(U_{\sin} \).

Die aktuelle mechanische Lage kann aus den abgetasteten Spurssignalen leicht ermittelt werden:

\[
p \times \alpha = \arctan \left(\frac{U_{\sin}}{U_{\cos}} \right)
\]
Somit wird bei jeder Periode des Erregersignals ein neuer Lagewert ermittelt. Die so errechneten Daten werden über eine DPR-Schnittstelle an den Micro-Controller des Achsreglers übergeben, der diese Informationen für die Regelung der Achse benötigt.

Die nachstehende Grafik gibt einen Überblick über die prinzipielle Hardwarestruktur einer Resolvertauswertung, die nach dem abtastenden Verfahren arbeitet.

Bild 60: Hardware Resolvertauswertung (vereinfachte Darstellung)
3.3 Gegenüberstellung / Auswahlhilfe für Resolver, sin-/cos-Geber, TTL-Geber

<table>
<thead>
<tr>
<th>Gebersystem</th>
<th>Resolver</th>
<th>HIPERFACE®-Geber (sin-/cos-Geber mit Absolutwert)</th>
<th>sin-/cos-Geber</th>
<th>Inkrementalgeber</th>
</tr>
</thead>
<tbody>
<tr>
<td>[SEW-Typ]</td>
<td>[RH1M, RH1L]</td>
<td>[AS1H, ES1H, AS3H, AS4H, AV1H]</td>
<td>[ES1S, ES2S, EV1S]</td>
<td>[ES1R, ES2R, EV1R]</td>
</tr>
<tr>
<td>Eigenschaften</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Auflösung</td>
<td>Wird durch die Resolver-</td>
<td>1024 sin-/cos-Perio-</td>
<td>1024 sin-/cos-Perioden</td>
<td>1024 Impulse/Umdre-</td>
</tr>
<tr>
<td></td>
<td>auswertung bestimmt: bis zu 16 Bit/Umdrehung</td>
<td>den (für Drehzahlre-</td>
<td>drehung (für Positio-</td>
<td>hung</td>
</tr>
<tr>
<td></td>
<td></td>
<td>gelung)</td>
<td>nierung)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>– 32768 Schritte/Umdrehung</td>
<td>– 1024 sin-/cos-Perioden</td>
<td>– 1024 Impulse/Umdre-</td>
<td></td>
</tr>
<tr>
<td>Zulässiger</td>
<td>ca. -55 °C bis +150 °C</td>
<td>-20 °C bis +115 °C (AS1H, ES1H)</td>
<td>-20 °C bis +85 °C</td>
<td></td>
</tr>
<tr>
<td>Temperaturbereich</td>
<td>– -20 °C bis +85 °C (AS3H, AS4H, AV1H)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mechanische Einflüsse</td>
<td>– Schock 100 g / 11 ms</td>
<td>– Schock 300 g / 1 ms</td>
<td>– Schock 100 g / 6 ms</td>
<td></td>
</tr>
<tr>
<td></td>
<td>– Vibration 20 g / 10 - 50 Hz</td>
<td>– Vibration 10 g / 10 - 2000 Hz</td>
<td>– Vibration 10 g / 10 - 2000 Hz</td>
<td></td>
</tr>
<tr>
<td>Einsatz</td>
<td>Für Drehzahlregelung und Bestimmung der Rotorlage innerhalb einer Motorumdrehung sowie "inkrementelle" Positionierung</td>
<td>Für Drehzahlregelung, Bestimmung der Rotorlage und Absolutposition</td>
<td>Für Drehzahlregelung und "inkrementelle" Positionierung</td>
<td>Für Drehzahlregelung und "inkrementelle" Positionierung</td>
</tr>
<tr>
<td>Geeignet für</td>
<td>– Synchrone Servomotoren</td>
<td>– Synchrone Servomotoren</td>
<td>Asynchrone Servomotoren</td>
<td>Asynchrone Servomotoren</td>
</tr>
<tr>
<td></td>
<td>– Asynchrone Servomotoren (auf Anfrage)</td>
<td>– Asynchrone Servomotoren</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Anbaubedingungen</td>
<td>Einbaugeber</td>
<td>Anbaugeber</td>
<td>Anbaugeber</td>
<td></td>
</tr>
<tr>
<td></td>
<td>– AS1H, ES1H: Einbaugeber (synchrone Servomotoren)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>– AS3H, AS4H, AV1H: Anbaugeber (asynchrone Servomotoren)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Weitere Eigenschaften</td>
<td>Mechanisch sehr robust</td>
<td>Durch Interpolation des sin-/cos-Signales Hochauflösung der Drehzahlinformation möglich, einfache Inbetriebnahme durch elektrisches Typenschild</td>
<td>Durch Interpolation des sin-/cos-Signales Hochauflösung der Drehzahlinformation möglich</td>
<td>Einfaches Gebersystem für Standardanwendungen</td>
</tr>
</tbody>
</table>
3.3.1 Technische Daten der von SEW-EURODRIVE eingesetzten Geber

<table>
<thead>
<tr>
<th>Gebertyp</th>
<th>Montage</th>
<th>Zum Anbau an</th>
<th>Signal</th>
<th>Versorgung [V]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inkrementalgeber</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ES1H</td>
<td>Einbaugeber, im synchronen Servomotor integriert</td>
<td>Synchrone Servomotoren DS/CM</td>
<td>1-V-sin/cos HIPERFACE® S Single-Turn mit eingebautem EEPROM zur Speicherung des elektronischen Typenschildes</td>
<td>7 .. 12</td>
</tr>
<tr>
<td>ES1T ES2T</td>
<td>Spreizwelle</td>
<td></td>
<td>5-V-TTL</td>
<td>5</td>
</tr>
<tr>
<td>ES1S ES2S</td>
<td></td>
<td></td>
<td>1-V-sin/cos</td>
<td></td>
</tr>
<tr>
<td>ES1R ES2R</td>
<td></td>
<td></td>
<td>5-V-TTL</td>
<td>10 .. 30</td>
</tr>
<tr>
<td>ES1C ES2C</td>
<td></td>
<td></td>
<td>24-V-HTL</td>
<td></td>
</tr>
<tr>
<td>EV1T</td>
<td>Kupplung mit Vollwelle</td>
<td></td>
<td>5-V-TTL</td>
<td>5</td>
</tr>
<tr>
<td>EV1S</td>
<td></td>
<td></td>
<td>1-V-sin/cos</td>
<td></td>
</tr>
<tr>
<td>EV1R</td>
<td></td>
<td></td>
<td>5-V-TTL</td>
<td>10 .. 30</td>
</tr>
<tr>
<td>EV1C</td>
<td></td>
<td></td>
<td>24-V-HTL</td>
<td></td>
</tr>
<tr>
<td>RH1M</td>
<td>Hohlwelle</td>
<td>Synchrone Servomotoren CM</td>
<td>Resolver-Signale 2-polig</td>
<td>7</td>
</tr>
<tr>
<td>Absolutwertgeber</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AV1H</td>
<td>Kupplung mit Vollwelle</td>
<td></td>
<td>1-V-sin/cos HIPERFACE® S Multi-Turn mit eingebautem EEPROM zur Speicherung des elektronischen Typenschildes</td>
<td>7 .. 12</td>
</tr>
<tr>
<td>AV1Y</td>
<td></td>
<td>M SSI 1-V-sin/cos</td>
<td></td>
<td>10 .. 30</td>
</tr>
<tr>
<td>AS1H</td>
<td>Einbaugeber, im synchronen Servomotor integriert</td>
<td>Synchrone Servomotoren DS/CM</td>
<td>1-V-sin/cos HIPERFACE® S Multi-Turn mit eingebautem EEPROM zur Speicherung des elektronischen Typenschildes</td>
<td>7 .. 12</td>
</tr>
<tr>
<td>AS2H</td>
<td>Spreizwelle</td>
<td></td>
<td>1-V-sin/cos HIPERFACE® S Multi-Turn mit eingebautem EEPROM zur Speicherung des elektronischen Typenschildes</td>
<td>7 .. 12</td>
</tr>
<tr>
<td>AS3H</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Resolver</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RH1M</td>
<td>Hohlwelle</td>
<td>Synchrone Servomotoren CM</td>
<td>Resolversignale 2-polig</td>
<td>7</td>
</tr>
<tr>
<td>RH1L</td>
<td></td>
<td>Synchrone Servomotoren mit Bremse</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
3.4 **Direkte Wegmess-Systeme für lineare Servomotoren**

Wie bereits im Kap. 2.7 dargestellt, wird für den Betrieb eines synchronen Linearmotors ein Mess-System benötigt, um die Lage des Primärteils zu erkennen. Daraus wird im zugehörigen Servoverstärker die Geschwindigkeit abgeleitet und die Positionierung ausgeführt.

Je nach Applikation gibt es für die Wahl des geeigneten Gebersystems verschiedene Auswahlkriterien:

- maximale Geschwindigkeit,
- maximaler Verfahrweg,
- Auflösung gemäß Anforderung an die Genauigkeit,
- Schmutzbelastung,
- EMV-Bedingungen.

3.4.1 **Aufbau und Funktionsweise optischer Wegmess-Systemen**

![Bild 61: Schematische Darstellung eines optischen Maß-Systems](56284axx)

1. Lichtquelle und Foto-Element
2. Linse
3. Abtastplatte
4. Reflektor
5. Lichtwellen

Je nach Auflösung unterscheidet sich das Arbeitsprinzip des optischen Wegmess-Systems in

- abbildendes Prinzip mit einer Strichteilung von 20-100 µm,
- interferenzielles Prinzip mit einer Strichteilung von 4-8 µm.
Abhängig von den Einsatzbedingungen und Umwelteinflüssen kommen bei den optischen Systemen unterschiedliche Ausführungen zum Einsatz.

Geschlossene Systeme
- maximale Verfahrgeschwindigkeit ca. 2 m/s,
- guter Schutz vor Umwelteinflüssen,
- mit mechanischer Führung.

Offene Systeme
Das System arbeitet ohne mechanische Führung.
- der Abtastkopf ist am beweglichen Teil montiert und "schwebt" quasi über der Strecke (Maßverkörperung), daher maximale Verfahrgeschwindigkeit ca. 8 m/s
- kaum Schutz vor Umwelteinflüssen.

3.4.2 Aufbau und Funktionsweise magnetischer Wegmess-Systeme

Magnetische Wegmess-Systeme bestehen aus:
- einem Magnetband,
- einem Sensor.

Das Magnetband ist als Maßband an der Strecke montiert. Der Sensor, der am Primärteil befestigt ist, verfährt über diesem Maßband.

![Bild 62: Magnetisches Wegmess-System](56237axx)
Bei der Projektierung sind die nachstehenden Eigenschaften von magnetischen Wegmess-Systemen zu berücksichtigen:

- Auflösung: meist 5000 µm/Sinusperiode,
- Genauigkeit ca. 300 µm/m,
- Verfahrgeschwindigkeiten bis ca. 6 m/s möglich,
- unempfindlich gegen Verschmutzung,
- mechanisch unempfindlich,
- Schnittstelle: SSI, HIPERFACE®.

3.4.3 Aufbau und Funktionsweise induktiver Wegmess-Systeme

![Schematische Darstellung eines induktiven Wegmess-Systems](image_url)

Bild 63: Schematische Darstellung eines induktiven Wegmess-Systems

- [1] Magnetische Feldlinien
- [3] Maßband im Querschnitt

Optional wird für induktive Mess-Systeme eine Auswerte-Elektronik angeboten, die die Sinus- und Cosinus-Signale in ein TTL-Signal umwandelt.

Induktive Wegmess-Systeme haben folgende Eigenschaften, die bei der Projektierung zu berücksichtigen sind:

- Verfahrgeschwindigkeiten bis ca. 20 m/s,
- Auflösung: 1000 µm / Sinusperiode (sin-/cos-Signal)
 5 - 50 µm (TTL-Signal),
- Genauigkeit: ca. 10 µm/m,
- Ausführung meistens in IP66,
- unempfindlich gegenüber Verschmutzung.

Bild 64: Schichtweiser Aufbau eines Maßbandes

[1] Abdeckband
[2] Teilung
[3] Referenzmarken
[4] Stahltreiberband
3.5 Begriffsdefinitionen

<table>
<thead>
<tr>
<th>Begriff / Abkürzung</th>
<th>Definition / Erklärung</th>
</tr>
</thead>
<tbody>
<tr>
<td>HIPERFACE®</td>
<td>High Performance Interface. Eingetragenes Warenzeichen der Firma Sick Stegmann GmbH</td>
</tr>
<tr>
<td>EMV</td>
<td>Elektromagnetische Verträglichkeit</td>
</tr>
<tr>
<td>TTL</td>
<td>Transistor-Transistor-Logik</td>
</tr>
<tr>
<td>HTL</td>
<td>Hochvolt-Transistor-Logik</td>
</tr>
<tr>
<td>SSI-Schnittstelle</td>
<td>Serial Synchronous Interface</td>
</tr>
<tr>
<td>Single-Turn-Geber</td>
<td>Ermittlung der absoluten Position über 1 Umdrehung</td>
</tr>
<tr>
<td>Multi-Turn-Geber</td>
<td>Ermittlung der absoluten Position über mehrere Umdrehungen</td>
</tr>
<tr>
<td>A/D-Wandler</td>
<td>Analog/Digital-Wandler</td>
</tr>
<tr>
<td>SRAM</td>
<td>Static Random Access Memory, statisches RAM</td>
</tr>
<tr>
<td>NVSRAM</td>
<td>Non-Volatile Static Random Access Memory, nicht-flüchtiges statisches RAM</td>
</tr>
<tr>
<td>EEPROM</td>
<td>Electrically Eraseable Programmable Read Only Memory</td>
</tr>
<tr>
<td>DSP</td>
<td>Digitaler Signal Prozessor</td>
</tr>
<tr>
<td>DPR-Schnittstelle</td>
<td>Dual Port RAM-Schnittstelle</td>
</tr>
<tr>
<td>Reluktanz</td>
<td>Magnetischer Widerstand</td>
</tr>
</tbody>
</table>
Allgemeine Informationen zu Servoverstärkern

Bedingt durch den deutlich gestiegenen Rationalisierungs- und Automatisierungsbedarf bei modernen Produktionsmaschinen und -anlagen sind auch die Anforderungen an leistungsfähige Servoverstärker entsprechend gestiegen.

Demzufolge arbeiten Servoantriebe nicht mehr als einfache Hilfs- oder Stellantriebe, sondern führen mit Hilfe von komplexen Technologiefunktionen wie z. B. Winkelsynchronlauf, elektronische Kurvenscheibe, Touch-Probe-Verarbeitung, Momentenregelung wichtige Maschinenfunktionen aus, die in der Vergangenheit mechanischen Lösungen vorbehalten waren.

Leistungsfähige Servoverstärker zeichnen sich aus durch:

- hohe Regelgüte:
 - Rundlaufgenauigkeit,
 - geringe Drehzahlabweichung,
 - geringe Positionsabweichung.
- hohe Dynamik:
 - kurze Ausregelzeiten für Sollwert- und Lastsprünge.
- Überlastfähigkeit:
 Bei Verfahrenzyklen mit kurzen Taktzeiten und hohen Beschleunigungen muss der Servoverstärker in der Lage sein, den entsprechenden Strom bereitzustellen. Aufgrund der kurzen Beschleunigungszeiten müssen Servoverstärker mit geringer Überlastfähigkeit größer gewählt werden, was höhere Systemkosten zur Folge hat.
- leistungsfähigen Micro-Controller, der eine freie Programmierung / Parametrierung ermöglicht,
- komplexen Technologiefunktionen wie z. B.:
 - elektronische Kurvenscheibe,
 - Winkelsynchronlauf,
 - Touch-Probe-Verarbeitung,
 - Momentenregelung.
- vielseitige Schnittstellen:
 - galvanisch getrennte binäre Ein- und Ausgänge,
 - analoge Ein- und Ausgänge,
 - mehrere Geberschnittstellen für unterschiedliche Gebersysteme, für Motor- und Streckengeber,
 - Optionskarten-Steckplatz, z. B. für Feldbus-Schnittstellen und Steuerungskarten.
 - zusätzliche Busschnittstelle für die Kommunikation mit anderen Servoverstärkern,
 - gängige Schnittstelle / Anschlussmöglichkeit für Bedienteil und PC, z. B. USB, Ethernet,
 - zusätzliche Sicherheitsmerkmale wie z. B. Anschlussklemmen für den "Sicheren Halt" gemäß EN 954-1, Kategorie 3,
 - großen Spannungsbereich der zulässigen Netzspannung, $3 \times 380 \text{ V} (-10\% \ldots 500 \text{ V} (+10\%))$,
 - Einhaltung der EMV-Grenzwertklassen A und B gemäß EN 5011,
 - Anschlussmöglichkeit für einen Bremswiderstand.
4.1.1 Der Zwischenkreis

Üblicherweise basiert das Leistungsteil eines Servoverstärkers auf dem Prinzip des Spannungs-Zwischenkreisverstärkers. Das drehmomentbildende Drehfeld wird aus diesem Gleichstromzwischenkreis, im Folgenden Zwischenkreis genannt, über eine Wechselrichterbrücke erzeugt. Der Zwischenkreis wird z. B. über eine B6-Diodenbrücke meist direkt, also ohne Transformator, aus dem 3-phasigen Versorgungsnetz generiert.

Der Zwischenkreiskondensator hat die Aufgabe, die gleichgerichtete Wechselspannung als Energiespeicher zu speichern. Die beim Abbremsen eines Antriebs entstehende kinetische Energie wird in elektrische Energie umgewandelt und in den Zwischenkreis zurückgespeist. Die Energiemenge, die er dabei aufnehmen kann, hängt von der Kapazität des Zwischenkreises ab.

SEW-EURODRIVE kombiniert bei ihren Servoverstärker-Systemen beide Ausführungsarten des Zwischenkreises.

<table>
<thead>
<tr>
<th>Dünner Zwischenkreis</th>
<th>Dicker Zwischenkreis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prinzip</td>
<td>Verwendung von</td>
</tr>
<tr>
<td>Verwendung von</td>
<td>• Metallschicht-Kondensatoren (MKS).</td>
</tr>
<tr>
<td>• Metallisierten Kunststoff-Folien-Kondensatoren (MKP)</td>
<td>Verwendung von</td>
</tr>
<tr>
<td></td>
<td>• Elektrolyt-Kondensatoren</td>
</tr>
<tr>
<td>Vorteil</td>
<td></td>
</tr>
<tr>
<td>Keine Ladeschaltung notwendig.</td>
<td>Höhere Energiespeichermöglichkeit, besonders bei dynamischen Anwendungen von Vorteil.</td>
</tr>
<tr>
<td>Kostenersparnis durch weniger Bauteile.</td>
<td>Effizienterer Energieaustausch zwischen den Achsmodulen</td>
</tr>
<tr>
<td>Platzersparnis durch geringeres Volumen der Geräte.</td>
<td></td>
</tr>
<tr>
<td>Längere Lebensdauer der Folienkondensatoren.</td>
<td></td>
</tr>
</tbody>
</table>
4.1.2 Der Wechselrichter

![Diagramm des Wechselrichters](Bild_66.png)

Bild 66: Blockschaltbild des Wechselrichters, getaktete Zwischenkreis-Spannung und Stromverlauf im Motor

4.1.3 Überlastüberwachung

Die Überlastphilosophie eines Servoverstärkers ist maßgeblich durch die Anforderung an hohe Dynamik, d. h. insbesondere sehr kurze Leistungsspitzen, so genannte "Leistungs-Peaks", geprägt. Diese können im Millisekundenbereich auftreten, wobei darauf längere "Ruhephasen" im Sekundenbereich folgen können.

Eine typische Überlastfähigkeit ist z. B. zwischen 200 % und 300 % der Nennlast für den Bereich von einer Sekunde. Im Mittel darf die Auslastung 100 % nicht übersteigen.

Das Beispieldiagramm in Bild 67 zeigt die Auslastung eines Achsmoduls aus dem kalten Gerätezustand heraus. Es ist ein Belastungsprofil gewählt, welches das Gerät bis an die Auslastungsgrenze von 100 % belastet.

Die Kurve [1] im obigen Diagramm zeigt den Verlauf des Stromes, der kurzzeitig und zyklisch 250 % des Nennstromes beträgt. Anhand der 100 %-Linie ist deutlich zu erkennen, wie sich besonders die Auslastung tendenziell bei 100 % der Auslastungsgrenze nähert.
4.1.4 EMV-Betrachtung

Von modernen Antriebssystemen wird erwartet, dass sie eine Störfestigkeitsklasse wie z. B. die EN 61800-3 erfüllen. Das Erreichen einer Störfestigkeitsklasse ist stark vom Aufbau und dem Einhalten bestimmter Maßnahmen abhängig.

Dazu gehören z. B.:
- Netzeitig:
 - Verwendung eines Netzfilters zwischen Versorgungsmodul und Netz,
 - Verwendung von kurzen abgeschirmten Leitungen zwischen Netzfilter und Versorgungsmodul.
- Motorseitig:
 - Verwendung einer Ausgangsdrossel,
 - Verwendung von abgeschirmten Motorkabeln,
 - Einhalten maximaler Motorkabellängen, typisch sind ca. 100 m, da sonst die kapazitiven Ableitströme zu hoch werden.
- Installation:
 - großflächig aufgelegte Abschirmungen, um hochfrequente Ableitströme abzuschirmen,
 - Leistungskabel und Signalleitungen sind getrennt zu führen.

Für weiterführende Informationen wird auf Kap. 6.5 "Elektromagnetische Störung / Elektromagnetische Verträglichkeit" verwiesen.

4.1.5 Optionskarten

Optionskarten machen ein modernes Servosystem erst skalierbar. Durch die Skalierbarkeit in horizontaler und vertikaler Ebene können kostenoptimale Lösungen für nahezu jede Applikation gefunden werden.

Gängige Optionskarten sind z. B.:
- Geberkarten ermöglichen u. a. die Anbindung von Streckengebern z. B. bei schlupfbehäfteten Strecken oder aber auch den wechselweisen Betrieb von mehreren Motoren an einem Achsmodul.
4.2 **Das modulare Mehrachs-Servoverstärkersystem**

Ein modulares Servosystem besteht aus folgenden Grundkomponenten:

- zentrales Versorgungsmodul,
- Achsmodul(e).

Ein weiterer Vorteil bei Mehrachsanapplikationen ist der reduzierte Installationsaufwand. Dieser ergibt sich, da nur eine Netzversorgung und ein Bremswiderstand an das zentrale Versorgungsmodul installiert werden müssen.

4.2.1 Das Versorgungsmodul

Das Versorgungsmodul dient der Leistungsversorgung der angeschlossenen Achsmodul über den Zwischenkreis. Der Anschluss erfolgt meist direkt am Drehstromnetz, typische Anschlusswerte sind AC 380 - 500 V, 50 - 60 Hz.

Ein Versorgungsmodul enthält im Wesentlichen:

- den Gleichrichter,
- den Brems-Chopper und die Anschlussklemmen des Bremswiderstandes\(^1\) oder alternativ eine Rückspeiseeinheit,
- den Überspannungsschutz,
- den Anschluss einer zentralen Kommunikation,
- einen Kommunikationsbus zu den Achsmodulen,
- einen 24-V-Anschluss zur Elektronikversorgung,
- verschiedene Überwachungsfunktionen wie Netzausfallüberwachung oder Messung der Zwischenkreis-Spannung.

\(^1\) Kommt ein Bremswiderstand zum Einsatz, ist dieser geräteextern zu montieren und anzuschließen. Bei kleinen anfallenden Energien kann auch ein Versorgungsmodul mit integriertem Bremswiderstand verwendet werden.
Das modulare Mehrachs-Servoverstärkersystem

Bei einem modularen Servoverstärkersystem wird der Zwischenkreis im Versorgungsmodul erzeugt. Er wird elektrisch über eine mechanische Zwischenkreisverbindung, z. B. einem Schienensystem, mit den Achsmodulen verbunden.

Zwischenkreis und Energie-Rückspeisung

Beim Abbremsen eines Antriebs wird kinetische Energie in elektrische Energie umgewandelt und in den Zwischenkreis zurückgespeist. Gemäß unten stehender Formel muss bei konstanter Zwischenkreis-Kapazität die Spannung ansteigen, um die eingespeiste Energie im Zwischenkreis aufnehmen zu können.

\[E = \frac{1}{2} \times J_{Mot} \times \omega_{Mot}^2 = \frac{1}{2} \times C_{ZK} \times U_{ZK}^2 \]

- \(J_{Mot} \): Massenträgheitsmoment des Motors
- \(\omega_{Mot} \): Winkelgeschwindigkeit des Motors
- \(C_{ZK} \): Kapazität des Zwischenkreises, konstant
- \(U_{ZK} \): Zwischenkreis-Spannung

Wenn der Antrieb nun abgebremst wird, muss die überschüssige Energie abgeführt werden.

Hierfür gibt es prinzipiell 4 Möglichkeiten:
- Netzrückspeisung, d. h. die Energie kann durch andere Verbraucher genutzt werden,
- Brems-Chopper und Bremswiderstand wandeln elektrische Energie in Wärmeenergie,
- Energieaustausch bei Mehrachsanwendungen durch Nutzung der elektrischen Energie von anderen angeschlossenen Motoren,
- Kapazitätsmodul (Kondensatormodul) zur Erhöhung der Zwischenkreis-Kapazität.
4.2.2 Netzrückspeisung

Die Netzrückspeisung hat den Vorteil, dass die Bremsenergie als elektrische Energie für andere Anwender im Netz zur Verfügung steht.

Es gibt verschiedene Möglichkeiten, eine Netzrückspeisung zu realisieren, z. B. die der antiparallelen Brücke. Bei dieser Form der Netzrückspeisung wird der Netzgleichrichter durch einen Wechselrichter, der netzsynchron angesteuert wird, ergänzt. Übersteigt die Zwischenkreis-Spannung den Gleichrichterwert, wird die überschüssige Energie ins Netz zurückgespeist.

4.2.3 Brems-Chopper und Bremswiderstand

Im Gegensatz zur Netzrückspeisung wird beim Brems-Chopper die überschüssige Energie nicht ins Netz zurückgespeist, sondern über einen Bremswiderstand in Wärme umgewandelt. Wenn nur wenig Bremsarbeit zu verrichten ist, stellt die Ausführung mit Brems-Chopper und zugehörigem Bremswiderstand die im Vergleich zur Netzrückspeisung kostengünstigere Alternative dar.
4.2.4 Vergleich zwischen Netzrückwirkung und Brems-Chopper-Betrieb

Je nach Applikation muss bei der Projektierung entschieden werden, welches Verfahren am Besten geeignet ist.

<table>
<thead>
<tr>
<th>Kriterium</th>
<th>Netzrückwirkung</th>
<th>Brems-Chopper und Bremswiderstand</th>
</tr>
</thead>
<tbody>
<tr>
<td>Auswirkung auf Umgebungstemperatur</td>
<td>Sehr gering.</td>
<td>Wärmeentwicklung am Bremswiderstand.</td>
</tr>
<tr>
<td>Zusätzliche Verdrahtung</td>
<td>---</td>
<td>Anschluss des Bremswiderstandes.</td>
</tr>
<tr>
<td>Energiebilanz</td>
<td>Elektrische Energie bleibt erhalten.</td>
<td>Elektrische Energie wird in Wärmeenergie umgewandelt.</td>
</tr>
<tr>
<td>Kosten</td>
<td>Netzrückwirkung ist teurer als Bremswiderstand.</td>
<td>Bremswiderstand ist relativ günstig.</td>
</tr>
<tr>
<td>EMV</td>
<td>Netzrückwirkung auf andere Verbraucher ist möglich.</td>
<td>Geringere Netzrückwirkung wie bei Netzrückwirkung.</td>
</tr>
</tbody>
</table>
4.2.5 Das Achsmodul

Das Achsmodul dient zur Ansteuerung eines Servomotors mit einem frequenzveränderlichen 3-phasigen Drehfeld.

Ein Achsmodul enthält im Wesentlichen:
- eine Wechselrichter-IGBT-Brücke als Leistungs-Endstufe,
- Kommunikations-Schnittstelle und binäre Ein-/Ausgänge als Grundfunktion der Steuerungstechnik,
- Motor-Geberschnittstellen,
- Einschübe für Optionen wie Geber, Feldbusse, weitere binäre Ein-/Ausgänge,
- Einschübe für Steuerungskarten,
- eine Ansteuerung für die Motorbremse,
- eine Auswertung des Motor-Temperaturfühlers,
- eine Ausstattung zur Realisierung der Sicherheitstechnik "Sicherer Halt" gemäß EN 60204-1,
- eine Anzeige zur Darstellung des Betriebszustandes,
- interne Betriebsüberwachungs-Funktionen.

Die IGBTs haben sich für diese Anwendung als robuster Leistungstransistoren durchgesetzt.

Die Hauptvorteile der IGBTs sind:
- geringe Schaltverluste,
- einfache Ansteuerung,
- hohe Schaltfrequenzen,
- hohe Spannungsfestigkeit.

*Bild 72: Prinzipieller Aufbau eines Achsmoduls, Darstellung mit Versorgungsmodul
Die Anzahl der an ein Versorgungsmodul anschließbaren Achsen ist begrenzt. Die Begrenzung ist bestimmt durch:

- die Leistung des Versorgungsmoduls,
- die Summen- bzw. Spitzenleistung der Achsmodule,
- die Anzahl der maximal adressierbaren Achsen,
- den mechanischen Aufbau,
- die Auslegung der Zwischenkreis-Verschaltung.

4.2.6 24-V-Versorgung

Zur Versorgung von industriellen Niederdruckverbrauchern wie z. B. SPS und Steuerteilen von Servoverstärkern wird die 24-V-Spannungsversorgung nach EN 61131 verwendet. In einigen Fällen wird allerdings eine eng tolerierte Spannung, z. B. zur Bremsenversorgung, notwendig. In diesem Fall reicht die konventionelle Netzteiltechnik mit B4-Diodenbrücke nicht mehr aus und ein Schaltnetzteil wird eingesetzt.

Wie in Bild 73 gezeigt wird, genügt es bei modularen Systemen, die 24-V-Versorgung extern zur Verfügung zu stellen und sie dann von Gerät zu Gerät weiterzuleiten.

Die 24-V-Versorgung für die Motorbremsenansteuerung und die Elektronik sind getrennt ausgeführt. Um einen sicheren Betrieb zu realisieren, werden die zwei Spannungen in den Geräten auf notwendige Toleranzen überwacht.

Bild 73: Prinzipieller Aufbau eines modularen Mehrachssystems mit externer 24-V-Versorgung
4.3 Der Einachsverstärker

Die Funktionen des Leistungsteils, d. h. des Netzmoduls und des Wechselrichters, entsprechen den Funktionen der in Kap. 4.2 beschriebenen modularen Servo-Verstärkersysteme.

Bild 74: Prinzipieller Aufbau eines Einachsverstärkers
4.4 **Gegenüberstellung modulares Mehrachssystem / Einachssystem**

Die nachstehend aufgeführten Vorteile der beiden Systeme geben eine Entscheidungshilfe, ob eine Applikation mit einem modularen Mehrachssystem oder mit einem Einachssystem optimal zu lösen ist.

Vorteile des modularen Mehrachssystems
- nur eine Netzeinspeisung, d. h. geringer Installationsaufwand,
- nur ein Bremswiderstand, sofern keine Netzrückspiegelung vorhanden, d. h. geringer Installationsaufwand,
- ab ca. 3 Achsen geringerer Platzbedarf im Schaltschrank (im Vergleich zu Einachsgeräten) aufgrund des reduzierten Installationsaufwandes,
- Energieaustausch zwischen den Achsmodulen über die Zwischenkreisverbindung,
- einfacher Informationsaustausch zwischen den einzelnen Achsmodulen über gemeinsamen System- und Meldebus.

Vorteile des Einachssystems
- eine dezentrale Platzierung ist möglich, um große Motorleitungslängen zu vermeiden,
- bei Anwendungen bis ca. 2 - 3 Achsen ist der Einachsverstärker meist die preislich günstigere Lösung,
- bei kleiner Leistung und geringer Achsenanzahl ist der Einachsverstärker meist die preislich günstigere Lösung.

4.5 **Begriffsdefinitionen**

<table>
<thead>
<tr>
<th>Begriff / Abkürzung</th>
<th>Definition / Erklärung</th>
</tr>
</thead>
<tbody>
<tr>
<td>IGBT</td>
<td>Insulated Gate Bipolar Transistor, Leistungshalbleiter</td>
</tr>
<tr>
<td>EMV</td>
<td>Elektromagnetische Verträglichkeit</td>
</tr>
<tr>
<td>E/A-Karten</td>
<td>Eingangs-/Ausgangskarten</td>
</tr>
<tr>
<td>SPS</td>
<td>Speicherprogrammierbare Steuerung</td>
</tr>
<tr>
<td>CPU</td>
<td>Central Processing Unit, Hauptprozessor</td>
</tr>
</tbody>
</table>
5 Regelstruktur und Betriebsarten

In diesem Kapitel wird die Regelstruktur mit sinusförmiger Speisung behandelt. Mehr Informationen hierzu und zur blockförmigen Speisung finden Sie in Kapitel 2.4 "Funktionsweise von Synchron-Servomotoren".

5.1 Übersicht

Bei vielen Anwendungen werden Servoantriebe zur Lageregelung oder Drehzahlregelung eingesetzt. Der Regelkreis wird meist kaskadenförmig aufgebaut, d.h. die Regelkreise überlagern sich.

- Der innerste Regelkreis regelt den Strom. Mit diesem Regler alleine ist die Momenteauslenkung möglich.
- Die Überlagerung des Stromreglers mit einem Drehzahlregler ermöglicht die Regelung der Drehzahl.
- Die weitere Überlagerung mit einem Lageregler ermöglicht die Regelung der Lage.

In Bild 75 ist der prinzipielle Aufbau der Regelstruktur eines Servoreglers dargestellt. Üblicherweise sind in heutigen Servoverstärkern die Regler voll digital ausgeführt.

Bild 75: Prinzipieller Aufbau der Regelstruktur eines Servoreglers.

In den folgenden Kapiteln werden die einzelnen Reglertypen näher betrachtet.
5.2 Die Stromregelung

Das Bewegungsverhalten eines Servoantriebes wird unmittelbar durch das Drehmoment des Motors bestimmt. Das Drehmoment selbst ist durch die Ströme im Motor bestimmt. Um einen Drehmoment-Sollwert an der Motorwelle möglichst dynamisch umsetzen zu können, ist es notwendig, nicht nur eine gesteuerte Spannung an den Motor anzulegen (U/f-Verfahren), sondern die Ströme zu regeln.

![Bild 76: Differenz der Stromamplituden Soll-/Ist-Strom](image)

I1	Soll-Strom
I2	Ist-Strom
t1	Totzeit des Reglers

Es liegt also auch im eingeschwungenen Zustand, d. h. bei keiner Änderung der Stromamplitude, eine Differenz zwischen den Soll- und Istwerten vor. Die Rechenleistung heutiger Prozessoren erlaubt es, die gemessenen Ist-Ströme durch eine Koordinatentransformation in ein System von Gleichgrößen zu wandeln. Danach erfolgt die Regelung dieser Gleichgrößen. Anschließend werden die Motorspannungen als die Stellgrößen des Reglers wieder zurücktransformiert.

Als Soll-Größen für den Stromregler kommen die drehmomentbildende Komponente I_{sq} und die magnetfeldbildende Komponente I_{sd} zur Anwendung. Für weitergehende Informationen empfehlen wir Literatur zum Thema "Feldorientierte Regelung von Drehstrommotoren".

Die gewünschte Grundwelle der Spannung ergibt sich durch schnelles Schalten zwischen \(+U_z\) und \(-U_z\). Übliche Frequenzen für die Pulsweiten-Modulation sind dabei z. B. 4 kHz, 8 kHz, 16 kHz.

Da eine Spannungsänderung nur im Raster des PWM-Intervalls erfolgen kann, arbeiten üblicherweise auch die Stromregler mit den Frequenzen der PWM. Intelligente digitale Verfahren für die Stromregelung erlauben inzwischen eine Strom-Sollwertänderung in nahezu einem Abtastschritt auszuregeln. Bei einer Stromregelfrequenz von z. B. 8 kHz bedeutet dies eine Stromanregelzeit von 125 µs.

5.3 Die Drehzahlregelung

5.3.1 Struktur der Drehzahlregelung

Das Bild zeigt die prinzipielle Struktur des Drehzahl-Regelkreises.

Nach der Aufbereitung

- des Drehzahl-Sollwerts, siehe Seite 85,
- der Erfassung des Drehzahl-Istwerts, siehe Seite 83
- und des Drehzahl-Istwerts, siehe Seite 85,

wird die Differenz dieser Signale an einen PI-Regler gegeben. Dessen Stellgröße ist verantwortlich für die Beschleunigung des Antriebs. Daraus lässt sich über die Massen trägheit des Antriebsstrangs das erforderliche Drehmoment berechnen.

Über den Kehrwert der Motorkonstante \(k_T = M_n/I_{qn} \) ergibt sich der drehmomentbildende Strom, der dem Stromregler zugeführt wird.

Um die Dynamik des Führungsverhaltens zu verbessern, ist eine Beschleunigungs-Vorsteuerung implementiert, siehe hierzu auch Seite 87.
5.3.2 Lage- und Drehzahlerfassung

Zur Lage- und Drehzahlerfassung kommen verschiedene Gebersysteme zum Einsatz. Zunächst kann man die Geber nach folgenden Kriterien unterscheiden:

- Geber mit Absolutinformation über die Lage, z. B. Resolver, Hiperface (Gebersystem der Fa. Sick / Stegmann), EnDat (Gebersystem der Fa. Heidenhain)
- Geber mit rein inkrementeller Information über die Lage, z. B. TTL-Geber, sin-/cos-Geber.

Permanent erregte Synchronmotoren benötigen für die Motorführung eine absolute Lageinformation. Deshalb werden für diesen Motortyp üblicherweise Absolutwertgeber eingesetzt.

Wenn die Forderung besteht, dass nach dem Einschalten des Antriebs die Lage sofort ohne Referenzierung bekannt sein soll, ist ebenfalls der Einsatz eines Absolutwertgebers sinnvoll. Der Resolver ist für diese Art des Einsatzes weniger geeignet, da er die absolute Lageinformation nur innerhalb einer Motorumdrehung liefert.

Die Drehzahlregelung erfordert für eine hohe Dynamik einen möglichst aktuellen Drehzahl-Istwert. Aus diesem Grund muss das Abtastintervall kurz gewählt sein. Die Auflösung der Gebersysteme spielt hierbei eine entscheidende Rolle. Oben genannte Gebersysteme bieten dabei die folgenden Auflösungen pro Motorumdrehung:

- Resolver: Mit neuesten Auswerteverfahren kann das Resolversignal mit 15 Bit ausgewertet werden, somit ergibt sich eine Auflösung von \(2^{15} = 32768\) Inkrementen / Umdrehung.
- TTL-Geber: Bei einer Auflösung von 1024 Impulsen / Umdrehung ergibt sich aufgrund der beiden um 90° versetzten Geberspuren im Servoverstärker eine Auflösung von \(4 \times\) Geberstrichzahl, d. h. \(4 \times 1024 = 4096\) Inkremente / Umdrehung. Somit ist es bei diesem Gebersystem völlig ausreichend, wenn im Servoverstärker mit 12 Bit ausgewertet wird (\(2^{12} = 4096\)).

\[\text{Bild 79: Signale TTL-Geber}\]

- sin-/cos-Geber, Hiperface, EnDat: Die Auflösung beträgt \(2^{10} \times\) Geberstrichzahl. Ausgewertet wird mit \(2^{10} \times 1024 = 1048576\).
Wird nun die Drehzahl über ein Zeitintervall von z. B. 500 µs gebildet, so ergeben sich aufgrund der Lageauflösung der verschiedenen Geber die folgenden Auflösungen für die Drehzahl:

Resolver

\[
\frac{1 \text{ Umdrehung}}{2^{15}} = 3,05175 \times 10^{-5} \text{ Umdrehungen}
\]

\[
\frac{3,05175 \times 10^{-5} \text{ Umdrehungen}}{500 \ \mu s} = 0,061 \ \frac{1}{s} = 3,66 \ \frac{1}{\text{min}}
\]

TTL-Geber (1024 Striche)

\[
\frac{1 \text{ Umdrehung}}{4096} = 2,44 \times 10^{-4} \text{ Umdrehungen}
\]

\[
\frac{2,44 \times 10^{-4} \text{ Umdrehungen}}{500 \ \mu s} = 0,48828 \ \frac{1}{s} = 29,3 \ \frac{1}{\text{min}}
\]

Sin-/Cos-Geber

\[
\frac{1 \text{ Umdrehung}}{1024 \times 2^{10}} = 9,5367 \times 10^{-7} \text{ Umdrehungen}
\]

\[
\frac{9,5367 \times 10^{-7} \text{ Umdrehungen}}{500 \ \mu s} = 1,907348 \times 10^{-3} \ \frac{1}{s} = 0,114 \ \frac{1}{\text{min}}
\]

![Grafik des Drehzahl-Ripple](image_url)

Bild 80: Darstellung des Drehzahl-Ripple

- \(t_s \) Abtastschritt n-Regler
- \([1]\) Ist-Drehzahl
- \([2]\) Solldrehzahl

5.3.3 Drehzahl-Istwertfilter

Wie im vorangegangenen Abschnitt erläutert, muss die Welligkeit des Motordrehmoments limitiert werden. Da die Welligkeit vom Drehzahl-Istwert herrührt, ist es notwendig, diesen Wert entsprechend zu filtern. Die erforderliche Zeitkonstante ist dabei abhängig von
- dem verwendeten Gebertyp,
- der Verstärkung der Drehzahlreglers,
- der Massenträgheit.

Nachteilig wirkt sich ein Filter durch eine zeitliche Verzögerung des Drehzahl-Istwerts aus. Diese Verzögerung limitiert wiederum die Dynamik des Drehzahl-Regelkreises. Daher darf nur so viel wie unbedingt erforderlich gefiltert werden. Es stehen hier mehrere Größen in Wechselwirkung zueinander:
- Auflösung des Gebersystems,
- maximaler Drehmoment-Ripple,
- gewünschte Dynamik im Drehzahl-Regelkreis,
- Massenträgheit,
- Filterzeitkonstante des Drehzahl-Istwertfilters.

Es ist offensichtlich, dass die Berücksichtigung all dieser Zusammenhänge und somit auch die korrekte Einstellung aller Parameter des Regelkreises schwierig sein kann. Moderne Inbetriebnahme-Tools können durch eine automatische Verarbeitung dieser Zusammenhänge eine wertvolle Unterstützung liefern, siehe hierzu auch Seite 89 "Steifigkeit".

5.3.4 Aufbereitung des Drehzahl-Sollwertes

Unter bestimmten Umständen ist erforderlich, den von außen zugeführten Drehzahl-Sollwert aufzubereiten, bevor er auf den Regler gegeben wird. Dies ist z. B. der Fall, wenn der Sollwert in analoger Form vorliegt und so stark rauscht, dass eine Filterung notwendig wird. Diese Filterung vermindert, wie beim Drehzahl-Istwert, den entstehenden Drehmoment-Ripple.

![Diagramm](Bild 81: Fein-Interpolator)

- $T_{a, \text{int}}$: Abtastzeit des Drehzahlreglers
- $T_{a, \text{ext}}$: Abtastzeit der externen Sollwertquelle

5.3.5 Drehzahlregler

Mit zulässigen Näherungen, die hier nicht genauer erläutert werden, lässt sich das Übertragungsverhalten des Drehzahlreglers als ein Filter 1. Ordnung beschreiben. Die Zeitkonstante beschreibt dabei die Dynamik des Regelkreises, sie berechnet sich wie folgt:

\[T_n = \frac{1}{Kp_n} \]

\(T_n \) Zeitkonstante des Drehzahlreglers
\(Kp_n \) P-Anteil des Drehzahlreglers

Es gibt eine minimale Zeitkonstante, bei der der Regelkreis gerade noch stabil arbeitet. Unterschreitet die Zeitkonstante durch Erhöhung von \(Kp_n \) diesen Grenzwert, beginnt der Drehzahl-Regelkreis zu schwingen. Der kleinste erreichbare Wert \(T_n \) hängt dabei von den folgenden Einflussfaktoren ab:

- Dynamik des Stromreglers,
- Zeitverhalten der Drehzahl-Istwerterfassung (Abtastintervall für die Lageerfassung),
- Rechenzeit des digitalen Drehzahlreglers,
- Abtastfrequenz des Drehzahlreglers.

Der Integrator (I-Anteil) im Drehzahlregler hat keinen wesentlichen Einfluss auf die Zeit konstante \(T_n \). Seine Aufgabe ist es, bleibende Regelabweichungen zwischen Drehzahl Sollwert und Drehzahl-Istwert bei auftretenden Lastmomenten zu vermeiden. Die Parameterierung des Integrierers beeinflusst das Einschwingverhalten des Drehzahl-Istwerts. Normalerweise erfolgt dabei eine Einstellung für ein "aperiodisches Einschwingen".

Die beiden nächsten Abschnitte zeigen, dass auch die Massenträgheit einen wesentlichen Einfluss auf die Dynamik des Drehzahlreglers hat.
5.3.6 Beschleunigungs-Vorsteuerung

Falls der Drehzahl-Sollwert mit hochfrequenten Störungen behaftet ist, also stark "rauscht", muss dieser gefiltert werden, um das Drehmoment-Ripple klein zu halten. Auch hier hat das Filtern eine verzögernde Wirkung auf das Beschleunigungssignal und reduziert damit die Dynamik im Führungsverhalten. Zusätzlich kann der Vorsteuerwert noch gewichtet werden, in der Regel wird dieser Parameter jedoch auf 100 % eingestellt.

5.3.7 Spielfreie Lastankopplung

Das Ankoppeln einer Masse an einen Servomotor kann spielfrei oder spielbehaftet sein. In diesem Abschnitt wird die "spielfreie Lastankopplung" beschrieben.

Unter "spielfreier Lastankopplung" ist zu verstehen, dass die Last jeder Bewegung des Motors unmittelbar folgt, auch wenn es sich um kleinste Lageänderungen handelt. Häufig werden solche Antriebe auch mit "Direktantrieb" bezeichnet.

Durch die Ankopplung einer Masse erhöht sich das Massenträgheitsmoment \(J_{ges} \) gegenüber dem leer laufenden Motor. Bleibt der Drehmoment-Ripple trotz der höheren Trägheit innerhalb des zulässigen Bereiches, kann auch ein Antrieb mit spielfrei angekoppelter Last mit der gleichen Dynamik wie ein leer laufender Motor betrieben werden.

Erhöht sich jedoch die Massenträgheit \(J_{ges} \) soweit, dass das Drehmoment-Ripple den zulässigen Bereich verlässt, muss die Zeitkonstante des Filters für den Drehzahl-Istwert erhöht werden. Da, wie oben beschrieben, das Istwertfilter die Dynamik des Reglers einschränkt, ist es erforderlich, die Zeitkonstante des Regelkreises durch Verminderung von \(K_p \) zu erhöhen. Hier wird deutlich, dass Gebersysteme mit einer hohen Auflösung, die den Drehmoment-Ripple ohne hohes Istwertfilter klein halten, Vorteile für die Dynamik des Regelkreises bieten.

\[
J_{ges} = J_{Mot} + J_{ext}
\]

\(J_{ges} \) Gesamte Massenträgheit
\(J_{Mot} \) Massenträgheit des Motors
\(J_{ext} \) Massenträgheit der Last, reduziert auf die Motorwelle
Unter einer "spielbehafteten Lastankopplung" ist zu verstehen, dass die Last nicht jeder Bewegung des Motors unmittelbar folgt, d. h. der drehzahl geregelte Motor bewegt sich, ohne dass sich die Last mitbewegt. Typischerweise ist das beim Anbau eines Getriebes an einen Motor der Fall.

Wird der Drehzahlregler auf die minimal mögliche Zeitkonstante parametriert und der Parameter J_{ges} auf die gesamte Massenträgheit $J_{Mot} + J_{ext}$, funktioniert das nur so lange, wie sich Motor und Last gemeinsam bewegen.

Wenn sich der Motor innerhalb des Spiels bewegt, gibt der Drehzahlregler zu hohe Drehmomente vor, da diesem das "Fehlen" der Last nicht bekannt ist. Als Folge der zu hohen Drehmomente wird die minimale Zeitkonstante des Regelkreises unterschritten und damit der Regler instabil. Damit dies nicht eintritt, muss die Verstärkung K_p des Reglers um den Faktor $J_{Mot} / (J_{Mot} + J_{ext})$ reduziert werden. Daraus ergibt sich dann die minimale Zeitkonstante des Drehzahlreglers mit spielbehafteter Lastankopplung:

$$T_{n,\text{Spiel}} = T_{n,\text{Motor}} \times \frac{J_{Mot} + J_{ext}}{J_{Mot}}$$

Ein spielbehafteter Antrieb ist also grundsätzlich um das so genannte Massenträgheitsverhältnis langsamer als die minimal mögliche Zeitkonstante des Drehzahlreglers nach Abschnitt "Steifigkeit", siehe hierzu auch Seite 89. Wird z. B. eine Last mit der 100-fachen Motormassenträgheit angekoppelt und hat der Drehzahlregler eine minimal erreichbare Zeitkonstante T_n von 2 ms, dann ergibt sich für diesen Antrieb eine minimal mögliche Zeitkonstante von 202 ms.
5.4 Lageregelung

Der Lageregler wird im allgemeinen als P-Regler ausgeführt. Der Integrierer im unterlagerten Drehzahl-Regelkreis gewährleistet auch für den Lageregelkreis bei einer Störgröße in Form eines Lastmoments, dass keine Regelabweichung bestehen bleibt.

\[K_{p_x} = \frac{K_{p_n}}{2} \]

\[K_{p_n} \quad \text{P-Anteil des Lagereglers} \]

\[K_{p_m} \quad \text{P-Anteil des Drehzahlreglers} \]

Steifigkeit

5.5 Begriffsdefinitionen

<table>
<thead>
<tr>
<th>Begriff / Abkürzung</th>
<th>Definition / Erklärung</th>
</tr>
</thead>
<tbody>
<tr>
<td>HIPERFACE® (Hiperface)</td>
<td>High Performance Interface. Eingetragenes Warenzeichen der Firma Sick Stegmann GmbH</td>
</tr>
<tr>
<td>Integrierer</td>
<td>Erzeugt eine Stellgröße, die stetig größer wird, je länger die Abweichung ansteht.</td>
</tr>
<tr>
<td>Kp</td>
<td>Proportionalverstärkung des Reglers</td>
</tr>
<tr>
<td>Kv</td>
<td>Gewichtungsfaktor der Vorsteuerung</td>
</tr>
<tr>
<td>P-Glied</td>
<td>Proportionalverstärker</td>
</tr>
<tr>
<td>PWM</td>
<td>Pulsweiten-Modulation</td>
</tr>
<tr>
<td>Regelkreis</td>
<td>Besteht aus: Soll-/Istwert-Vergleich, Regler, Reglerstrecke</td>
</tr>
<tr>
<td>Rippel / Welligkeit / Rauschen / Cogging</td>
<td>Schwingungen einer Größe um ihren Mittelwert</td>
</tr>
<tr>
<td>(T_{I_n})</td>
<td>Nachstellzeit des Integrierers</td>
</tr>
<tr>
<td>Zeitkonstante / Dynamik eines Regelkreises</td>
<td>Reaktionsgeschwindigkeit eines Regelkreises</td>
</tr>
<tr>
<td>Totzeit</td>
<td>Verzugszeit eines Regelkreises, bis eine Änderung erfolgt</td>
</tr>
<tr>
<td>U/f-Verfahren</td>
<td>Spannung/Frequenz-Regelverfahren</td>
</tr>
</tbody>
</table>
6 Industrieller Einsatz

6.1 Netzverhältnisse

6.2 Umgebungsbedingungen

Die für die Servoverstärker als zulässig definierten Umgebungsbedingungen sind bei der Projektierung besonders zu beachten.

Wichtige Umgebungsbedingungen sind:

- Aufstellungshöhe
 Moderne Servoverstärker sind meist so bemessen, dass sie bis zu einer Aufstellungshöhe von 1000 m ohne Einschränkungen betrieben werden können. Werden die Geräte in größeren Höhen betrieben, so ist ein Derating, d. h. eine Leistungsreduzierung, zu beachten. Diese Leistungsreduzierung wird verursacht durch die verminderte Wärmeabfuhr aufgrund des geringeren Luftdrucks und der geringeren Überschlagsfestigkeit in dieser Umgebung.

- Umgebungstemperatur
 Temperaturbereiche von ca. 0 °C - 45 °C sind marktüblich. Bei höheren Temperaturen muss aufgrund vermindertem Wärmeabfuhr unbedingt ein Derating beachtet werden.

- Temperatur bei Lagerung
 Für die Lagertemperatur wird normalerweise ein größerer Temperaturbereich zugelassen als für den Betrieb, da im Gerät keine abzuführende Wärme entsteht. Es ist jedoch zu beachten, dass die niedrigste zulässige Temperatur nicht unterschritten wird, da sonst die Kondensatoren im Zwischenkreis tiefentladen werden. Nach langerer Lagerung und nach einer Tiefentladung müssen die Kondensatoren vor Anschluss an die Netzspannung formiert werden.

- Verschmutzungsklasse nach IEC 60664-1; VDE 0110-1.

- Störfestigkeit.

6.3 Hinweise zum Motor

Außerdem müssen Motoren und Servoverstärker bei der Projektierung hinsichtlich der Leistung aufeinander abgestimmt werden. Es muss sichergestellt sein, dass der Servoverstärker die für die Spitzenmomente erforderlichen Ströme bereitstellen kann, siehe hierzu auch Kapitel 8 "Projektierung".
6.3.1 Synchrone Motoren

Optional kann in vielen Fällen das thermische Grenzmoment mit Hilfe eines Fremdlüfters erhöht werden. Hierzu geben die Motorkennlinien weiteren Aufschluss.

6.3.2 Asynchrone Motoren

Asynchrone Servomotoren sind meist eigenbelüftet, weshalb bei dauerhaften Belastungen im unteren Drehzahlbereich der thermischen Auslastung besondere Aufmerksamkeit zu schenken ist. Der Arbeitspunkt, d.h. das effektive Drehmoment bei mittlerer Drehzahl, muss unterhalb bzw. darf maximal auf der thermischen Grenzkennlinie liegen. Aufgrund der reduzierten Kühlleistung bei niedrigen Drehzahlen weist demzufolge diese Kennlinie in diesem Bereich auch kleinere Werte auf, siehe auch Kapitel 2.6.1 "Motorkennlinie".

6.4 Leitungsverlegung

6.5 Elektromagnetische Störung / Elektromagnetische Verträglichkeit

Dieses Kapitel erläutert in Kürze die wichtigsten Begriffe zum Thema "Elektromagnetische Verträglichkeit".

Dem Leser wird für weitergehende Informationen die SEW-EURODRIVE-Druckschrift "Praxis der Antriebstechnik: EMV in der Antriebstechnik" empfohlen. Dort werden die Themen

- Störmechanismus,
- EMV-Planung,
- EMV-Maßnahmen,
- Normen und Gesetze,
- EMV-Begriffe,
- Wirkungsweise von so genannten EMV-Komponenten wie Netzfilter, Drossel, etc. ausführlich behandelt.
Elektromagnetische Störungen werden in den entsprechenden Gesetzen als elektromagnetische Erscheinung definiert, die die Funktion eines Gerätes beeinträchtigen können. Ursachen elektromagnetischer Störungen können sein:

- **ESD** = Entladung statischer Elektrizität,
- **Surge** = Stoßspannung wie Gewitterauswirkungen oder Schaltvorgänge in einem Netz,
- Leitungsgebundene und gestrahlte HF-Einkopplung,
- **Burst** = schnelle (transiente) Störgrößen durch öffnende Kontakte inktiver Stromkreise.

Auf dem Gebiet der elektromagnetischen Störungen werden folgende Begriffe unterschieden:

- **Störfestigkeit**: Die Fähigkeit eines Gerätes, während einer elektromagnetischen Störung ohne Funktionsbeeinträchtigung zu arbeiten (EMB = elektromagnetische Beeinflussbarkeit, Immissionsverhalten). Die Störfestigkeit ist ein Qualitätsmerkmal der Störsenke.
- **Störaussendung**: Die Fähigkeit eines Gerätes, elektromagnetische Signale zu erzeugen, die bei anderen Geräten Funktionsbeeinträchtigungen verursachen können (EMA = elektromagnetische Aussendung, Emissionsverhalten). Störaussendung ist ein Qualitätsmerkmal der Störquelle.

Servoverstärker und Zubehör sind Komponenten, die für den Einbau in Maschinen und Anlagen gedacht sind und daher die EMV-Produktnorm EN 61800-3 "Drehzahlabhängige elektrische Antriebe" erfüllen müssen. Darüberhinaus sind noch anlagen- und länderspezifische Vorschriften zu beachten.

Dabei werden folgende Normen angewandt:

<table>
<thead>
<tr>
<th>EMV-Produktnorm für drehzahlabhängige Antriebssysteme</th>
</tr>
</thead>
<tbody>
<tr>
<td>EN 61800-3</td>
</tr>
<tr>
<td>Störaussendung</td>
</tr>
<tr>
<td>EN 550xx</td>
</tr>
<tr>
<td>Störfestigkeit</td>
</tr>
<tr>
<td>EN 61000-4 .. x</td>
</tr>
</tbody>
</table>

Bei der Störaussendung wird unterschieden zwischen

- **Grenzwertklasse B** (EN 55011): In Wohngebieten müssen üblicherweise niedrigere Störpegel eingehalten werden, um z. B. keine Rundfunksender stören.

Bei der Projektierung einer Servoapplikation ist es wichtig zu wissen, welcher Grenzwert eingehalten werden muss und welche Maßnahmen dafür notwendig sind. Ein Servoverstärker alleine kann nicht die Einhaltung einer Grenzwertklasse garantieren, dies wird noch maßgeblich bestimmt durch

- evtl. notwendige Zusatzkomponenten wie z. B. Netzfilter, Drosseln, geschirmte Motorleitungen etc.
- eine EMV-gerechte Installation.
Umsetzung der EMV-Maßnahmen

An dieser Stelle wird nochmals auf die Druckschrift "Praxis der Antriebstechnik: EMV in der Antriebstechnik" von SEW-EURODRIVE verwiesen, die wissenswertes zum Thema EMV behandelt.

6.6 Geräteschnittstellen

Eine Vielzahl der Geräteschnittstellen ermöglicht unterschiedliche Vernetzungsmöglichkeiten.

Die nachstehenden Kapitel geben einen Überblick über die wichtigsten und am häufigsten anzutreffenden Vernetzungsmöglichkeiten industrieller Geräteschnittstellen.

6.6.1 Feldbussysteme: Anbindung an übergeordnete Steuerung

Feldbussysteme bieten eine digitale Verknüpfung von Komponenten der industriellen Automatisierungstechnik.

Bild 83: SPS-Steuerung mit Feldbus-Master und Feldbus-Slave

[1] Feldbus-Master (Steuerung)
[2] Feldbus
[3] Feldbus-Slaves
Geräteschnittstellen

Zyklischer Datenverkehr

Azyklischer Datenverkehr

Sehr häufig handelt es sich dabei um
- das Auslesen einzelner Geräteinformationen wie z. B. eines Fehlerspeichers,
- das Lesen und Schreiben ganzer Datensätze wie z. B. Parametersätze, Messaufzeichnungen, Kurvenscheiben-Stützpunkte usw.

Verbreitete Feldbussysteme sind z. B.:
- PROFIBUS DP,
- DeviceNet,
- INTERBUS-S.

Beispielhaft werden im Folgenden Eigenschaften der Bussysteme PROFIBUS DP und INTERBUS-S aufgeführt.

6.6.2 Feldbussystem Profibus DP

Eigenschaften

- Profibus steht für "**Process Field Bus**" und wurde von der SIEMENS AG entwickelt.
- In der PROFIBUS-Nutzerorganisation haben sich die Weltmarktführer der Automatisierungstechnik zusammengeschlossen. Gemeinsam mit den Mitgliedern wird die internationale Durchsetzung von PROFIBUS gefördert. Hauptaufgaben der Organisation sind:
 - gemeinsame Marketing-Aktivitäten,
 - Verbreitung von Informationen,
 - Weiterentwicklung der Technologie,
 - Vergabe und Verwaltung von PROFIBUS-Identnummern.
- Üblicherweise wird das Protokoll "PROFIBUS DP" ("**Dezentrale Peripherie**") genutzt:
 - Protokollerweiterung "DP-V1" (Version 1: azyklische Parameterdienste),
 - Protokollerweiterung "DP-V2" (Version 2: Takt-Synchronisierung).
- Linien-Topologie auf Basis RS485:
 - 12 MBit/s bis 100 m Leitungslänge,
 - 9,6 kBit/s bis 1,5 km Leitungslänge.
• Übertragungsmedium ist meist Kupfer, Lichtwellenleiter sind äußerst selten.
• Bis zu 126 Teilnehmer möglich, in dieser Anzahl jedoch mit entsprechend geringer Performance. Der Buszugriff erfolgt über Polling.
• Der Master benötigt eine Gerätestammdatei (GSD) von jedem Slave (Teilnehmerotyp).

Beispiel

Nachstehend das Beispiel eines Profibus-Aufbaus mit zentral im Schaltschrank platzierten Busteilnehmern, hier MOVIDRIVE®-Servoverstärker von SEW-EURODRIVE, und dezentral angeordneten Busteilnehmern, hier MOVIMOT® von SEW-EURODRIVE.

![Bild 84: Beispiel einer Profibus-Topologie](image)

6.6.3 Feldbussystem INTERBUS-S

Eigenschaften

• INTERBUS-S wurde von der Fa. Phoenix Contact GmbH & Co entwickelt.
• Der INTERBUS-Club e.V. ist eine internationale Vereinigung von Unternehmen mit dem gemeinsamen Ziel, INTERBUS technologisch und in seiner Verbreitung voranzutreiben, sowie Automatisierungslösungen mit INTERBUS und komplementären Technologien zu fördern.
• Ring-Topologie auf Basis RS485:
 • Jeder Teilnehmer wirkt als Verstärker / Repeater.
 • Bis 2 MBit/s Übertragungsgeschwindigkeit.
 • Sehr niedrige Zykluszeit aufgrund hoher Dateneffizienz.
• Summenrahmenprotokoll: An Stelle von einzelnen Telegrammen an jeden Teilnehmer sendet der Master ein Summentelegramm, in dem die Einzeltelegramme an jeden Teilnehmer aneinandergereiht sind. Hierdurch wird die Zykluszeit beträchtlich reduziert.
• Daten werden auf ein Register geschoben, siehe Bild 85.
• Einfach auf Lichtwellenleiter-Technik umrüstbar.
• Einfache Fehlerlokalisierung.
• Gerätetausch im Betrieb aufgrund der Ringstruktur nicht möglich.
6.6.4 Ethernet in Feldbus-Anwendungen

Solche Anwendungen sind beispielhaft:

- PROFINET : SIEMENS AG
- MODBUS TCP : AEG Schneider
- Powerlink : B&R
- EtherCAT : Beckhoff
- EtherNet / IP : Rockwell Automation / Allen Bradley
6.6.5 Achs-zu-Achs-Kommunikation

Werden mehrere Achsen direkt miteinander vernetzt, können diese Achsen untereinander sowohl zeitkritische und zyklische Daten als auch azyklische Parameterinformationen austauschen.

Ein Beispiel für eine solche Anwendung ist der Winkelsynchronlauf, bei dem die Position des Masters synchronisiert an den Slave übertragen wird. Auf diese Weise kann z. B. eine "elektronische Welle" realisiert werden.

Bild 86: Prinzipieller Aufbau einer elektronischen Welle mit synchronisiertem Slave (Winkelsynchronlauf)
6.6.6 Diagnosebus

Wird in die serielle Verbindung von Achse zu Achse zusätzlich ein PC eingebunden, besteht die Möglichkeit, das Netzwerk auch als Diagnosebus zu nutzen. Der PC tauscht hierbei Parameterdaten über den Parameterkanal mit den Achsen aus und visualisiert diese Daten auf dem PC.

Der Anwender kann mit Hilfe eines Diagnose-Tools folgende Aktionen durchführen:
- die Inbetriebnahme der Achsen,
- die Diagnose der Achsen,
- die Geräteparameter aus den Achsen herauslesen und im PC abspeichern.

Neben seriellen Schnittstellen werden immer häufiger CAN- oder Ethernet-basiierende Systeme als Diagnosebus eingesetzt.

6.7 Begriffsdefinitionen

<table>
<thead>
<tr>
<th>Begriff / Abkürzung</th>
<th>Definition / Erklärung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Derating</td>
<td>Leistungsreduzierung durch thermische Belastung</td>
</tr>
<tr>
<td>ESD</td>
<td>Entladung statischer Energie</td>
</tr>
<tr>
<td>Surge</td>
<td>Stoßspannung</td>
</tr>
<tr>
<td>Burst</td>
<td>Schnelle, transiente Störgrößen</td>
</tr>
<tr>
<td>EMV</td>
<td>Elektromagnetische Verträglichkeit</td>
</tr>
<tr>
<td>EMB</td>
<td>Elektromagnetische Beeinflussbarkeit</td>
</tr>
<tr>
<td>EMA</td>
<td>Elektromagnetische Aussendung</td>
</tr>
<tr>
<td>Polling</td>
<td>Sendeaufruf zur Synchronisation bei der Datenübertragung</td>
</tr>
</tbody>
</table>
7 Servogetriebe

In seiner Funktion als Wandler von Drehmoment und Drehzahl ist das Getriebe der zentrale Baustein eines Servo-Getriebemotors.

7.1 Anforderungen an ein Servogetriebe

Aufgrund der meist kurzen Taktzeiten und der daraus resultierenden hohen Beschleunigungen bei heutigen Servo-Anwendungen werden an die Servogetriebe besondere Anforderungen gestellt:

- niedriges Massenträgheitsmoment,
- geringes Verdrehspiel,
- hohe Verdrehsteifigkeit,
- hoher Wirkungsgrad,
- Übertragung von sehr hohen Drehmomenten aufgrund hoher Beschleunigungswerte,
- schwingungsarm,
- idealerweise ganzzahlige Übersetzungen,
- langlebig und wartungsarm,
- kompakt und leicht.

In der folgenden Tabelle werden Anforderungen an Servogetriebe in Abhängigkeit von der Anwendung gezeigt.

<table>
<thead>
<tr>
<th>Anwendung</th>
<th>mittlere Abtriebsdrehzahl</th>
<th>Max. Querkraft</th>
<th>Max. Beschleunigungs­moment</th>
<th>Bremsmoment</th>
<th>Massenträgheit</th>
<th>Steifigkeit</th>
<th>Gleichförmigkeit der Bewegung</th>
<th>Lebensmit­tel­verträgliche Antriebe</th>
<th>Explosionsgeschützte Ausführung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Holzbearbeitung</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Druckmaschinen</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>Werkzeugmaschinen</td>
<td>x</td>
<td></td>
<td></td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>Werkzeugwechsler</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>Dreh­tische</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>Getränkeindustrie</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>Füller</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>Transferachsen</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>CD-Industrie</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>Verpackung</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>x</td>
</tr>
</tbody>
</table>

Ein niedriges Massenträgheitsmoment des Getriebes ist Voraussetzung für die Realisierung eines hochdynamischen Antriebs. Besonders bei Antrieben, die schnell beschleunigen, ist ein dynamisches Getriebe mit hohem Wirkungsgrad unumgänglich.

Für den Positionierbetrieb werden ein möglichst geringes Verdrehspiel und eine hohe Verdrehsteifigkeit gefordert. Speziell für die Anforderungen der Servotechnik wurden Getriebe entwickelt, deren Verdrehspiel im Bereich von nur 3 - 6 Winkelminuten liegt.
7.2 Allgemeine Getriebeübersicht

Abhängig von der Richtung des Kraftflusses wird zwischen folgenden Getriebetypen unterschieden:

- Koaxialgetriebe,
- Parallelwellengetriebe,
- Winkelgetriebe.

Bei Koaxial- und Parallelwellengetrieben liegen die eintreibende und die abtreibende Welle in einer Ebene. Somit ist der Kraftfluss geradlinig. Bei Winkelgetrieben stehen die eintreibende und die abtreibende Welle senkrecht zueinander, der Kraftfluss wird rechtwinklig umgelenkt.

In den folgenden Abschnitten werden die in der Servotechnik am häufigsten eingesetzten Getriebearten kurz beschrieben.

7.2.1 Servo-Planetengetriebe

Bei Servo-Applikationen werden besonders häufig Planetengetriebe eingesetzt.

Die wichtigsten Eigenschaften der spielarmen Planetengetriebe von SEW-EURODRIVE sind:

- hohe zulässige Momente,
- hohe Wirkungsgrade,
- hohe Verdrehsteifigkeit,
- zuverlässig und langlebig,
- fein abgestuften Übersetzungen bis 1:100,
- geringe Betriebstemperatur,
- konstant geringe Verdrehspiele,
- hohe zulässige Querkräfte.

Servogetriebe

Allgemeine Getriebeübersicht

Bild 88: Beispiel Servo-Planetengetriebe

<table>
<thead>
<tr>
<th>Typ</th>
<th>Bedeutung</th>
</tr>
</thead>
<tbody>
<tr>
<td>PSF..</td>
<td>Servo-Planetengetriebe mit Vollwelle.</td>
</tr>
<tr>
<td>PSKF..</td>
<td>Servo-Planetengetriebe mit Vollwelle und Passfeder.</td>
</tr>
</tbody>
</table>
7.2.2 Servo-Kegelradgetriebe

Die wichtigsten Eigenschaften der Servo-Kegelradgetriebe von SEW-EURODRIVE sind:

- hohe zulässige Momente,
- hohe zulässige Querkräfte,
- zuverlässig und langlebig,
- fein abgestufte Übersetzungen bis 1:40,
- verschleifsfrei laufende Verzahnung,
- Höchstmaß an Variabilität,
- kompakte und leichte Bauweise,
- konstant geringe Verdrehspiele.

Ausführungsarten spielarmer Kegelradgetriebe

<table>
<thead>
<tr>
<th>Typ</th>
<th>Bedeutung</th>
</tr>
</thead>
<tbody>
<tr>
<td>BSF..</td>
<td>Servo-Kegelradgetriebe mit Vollwelle.</td>
</tr>
</tbody>
</table>

Bild 89: Beispiel Servo-Kegelradgetriebe
7.2.3 Stirnradgetriebe

Da Stirnradgetriebe kostengünstig herstellbar sind und mit ihrer einfachen und robusten Bauweise einer Vielzahl von Anforderungen genügen, werden sie bei vielen Anwendungen eingesetzt.

Bei Stirnrad-Flachgetrieben verlaufen eintreibende und abtreibende Welle parallel zueinander. Deshalb ist der Gesamtantrieb kurz und schmal, was sich besonders bei begrenzten Platzverhältnissen als vorteilhaft erweist.

Stirnradgetriebe werden in der Servotechnik üblicherweise in spielarmer Ausführung eingesetzt.

Die wichtigsten Eigenschaften von Stirnradgetrieben sind:

- günstiger Preis,
- viele Kombinationsmöglichkeiten,
- großer Übersetzungs- und Drehmomentbereich; Getriebeaufbau: ein-, zwei-, dreistufig; Doppelgetriebe,
- hoher Wirkungsgrad,
- optional mit reduziertem Verdrehflankenspiel.

![Bild 90: Beispiel Stirnrad-Getriebemotoren](image-url)
7.2.4 Kegelradgetriebe

Bei beengtem Einbauraum kommen häufig Kegelradgetriebe zum Einsatz, da sie aufgrund des Winkelabtriebes sehr kompakt bauen. Kegelradgetriebe sind verfügbar mit

- Hohlwelle mit Passfeder,
- Hohlwelle mit Schrumpfscheibe,
- Vollwelle,
- Vielkeilausführung.

Außerdem bieten die beiden Ausführungsarten, Befestigungsflansch oder Aufsteckausführung, viele Möglichkeiten, sie in die unterschiedlichsten Anlagen zu integrieren. Für Servo-Applikationen eignen sich aufgrund der hohen Beschleunigungen und häufigen Lastwechsel Kegelradgetriebe in spielarmer Ausführung.

Die wichtigsten Eigenschaften von Kegelradgetrieben sind:

- geringer Platzbedarf durch Winkelabtrieb, kurze Baulänge in Achsrichtung,
- optimal in die Anlage integrierbar,
- umfassende Palette an Bauformen und Ausführungsarten,
- viele Kombinationsmöglichkeiten,
- großer Übersetzungs- und Drehmomentbereich; Getriebeaufbau: dreistufig; Doppelgetriebe,
- hoher Wirkungsgrad,
- hohes Anlaufmoment.

Bild 91: Beispiel Kegelrad-Getriebemotoren
8 Projektierung

8.1 Allgemeine Hinweise

Mit den berechneten Drehmomenten und Drehzahlen des Antriebes lässt sich unter Berücksichtigung sonstiger mechanischer Forderungen sowie Umgebungs- und Einsatzbedingungen der passende Servoantrieb bestimmen.

Die Projektierung eines Servoantriebes und eines linearen Servomotors wird nachfolgend anhand je eines praktischen Beispiels veranschaulicht.
8.2 Daten zur Antriebs- und Getriebeauslegung

Damit die Komponenten für einen Antrieb eindeutig festgelegt werden können, müssen bestimmte Daten bekannt sein bzw. bestimmt werden. Diese sind:

Daten für die Auslegung eines Servo-Getriebemotors

<table>
<thead>
<tr>
<th>Daten für die Auslegung eines Servo-Getriebemotors</th>
<th>Einheit</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\Delta S) Positionsgenauigkeit</td>
<td>[mm]</td>
</tr>
<tr>
<td>ED Relative Einschaltdauer</td>
<td>%</td>
</tr>
<tr>
<td>H Aufstellungshöhe</td>
<td>[m ü. NN]</td>
</tr>
<tr>
<td>(\eta_{\text{Getriebe}}) Wirkungsgrad des Getriebes</td>
<td>-</td>
</tr>
<tr>
<td>(\eta_L) Last-Wirkungsgrad</td>
<td>-</td>
</tr>
<tr>
<td>i Getriebübersetzung</td>
<td>-</td>
</tr>
<tr>
<td>(I_0) Nennstrom</td>
<td>[A]</td>
</tr>
<tr>
<td>(I_{\text{eff, Motor}}) effektiver Motorstrom</td>
<td>[A]</td>
</tr>
<tr>
<td>(I_{\text{N, Inverter}}) Nennstrom des Servo-Verstärkers</td>
<td>[A]</td>
</tr>
<tr>
<td>IP, Geforderte Schutzart</td>
<td>-</td>
</tr>
<tr>
<td>(\varphi) Verdrehspiel</td>
<td>[']</td>
</tr>
<tr>
<td>(\vartheta_{\text{Umg}}) Umgebungstemperatur</td>
<td>[°C]</td>
</tr>
<tr>
<td>(J_{\text{ext}}) Massenträgheitsmoment (extern) reduziert auf die Motorwelle</td>
<td>[kgm²]</td>
</tr>
<tr>
<td>(J_{\text{Getriebe}}) Massenträgheitsmoment des Getriebes</td>
<td>[kgm²]</td>
</tr>
<tr>
<td>(J_{\text{Mot}}) Massenträgheitsmoment des Motors</td>
<td>[kgm²]</td>
</tr>
<tr>
<td>(k) Massenträgheitsverhältnis (J_{\text{ext}} / J_{\text{Mot}})</td>
<td></td>
</tr>
<tr>
<td>(M_0) Nennmoment</td>
<td>[Nm]</td>
</tr>
<tr>
<td>M1 - M6 Bauform</td>
<td>-</td>
</tr>
<tr>
<td>(M_{\text{1, ..., M_n}}) Abtriebsmoment im Zeitabschnitt (t_1) bis (t_n)</td>
<td>[Nm]</td>
</tr>
<tr>
<td>(M_{\text{kub}}) Kubisches Abtriebsmoment</td>
<td>[Nm]</td>
</tr>
<tr>
<td>(M_{\text{max}}) Maximales Abtriebs-Drehmoment</td>
<td>[Nm]</td>
</tr>
<tr>
<td>(M_B) Bemessungs-Drehmoment</td>
<td>[Nm]</td>
</tr>
<tr>
<td>(M_{\text{Br, Motor}}) Bremsmoment des Motors</td>
<td>[Nm]</td>
</tr>
<tr>
<td>(M_{\text{DYN}}) Dynamisches Grenzmoment des Servomotors</td>
<td>[Nm]</td>
</tr>
<tr>
<td>(M_{\text{max}}) Maximales Eintriebs-Drehmoment</td>
<td>[Nm]</td>
</tr>
<tr>
<td>(M_{\text{eff}}) Effektiver Drehmomentbedarf (bezogen auf den Motor)</td>
<td>[Nm]</td>
</tr>
<tr>
<td>(M_{\text{eff, Motor}}) Effektives Motor-Drehmoment</td>
<td>[Nm]</td>
</tr>
<tr>
<td>(M_{\text{Getriebe}}) Getriebemoment</td>
<td>[Nm]</td>
</tr>
<tr>
<td>(M_{\text{max}}) Maximales Abtriebs-Drehmoment des zu projektierenden Antriebs</td>
<td>[Nm]</td>
</tr>
<tr>
<td>(M_{\text{Motor}}) Motormoment</td>
<td>[Nm]</td>
</tr>
<tr>
<td>(M_{\text{NOTAUS}}) Zulässiges NOT-AUS-Moment</td>
<td>[Nm]</td>
</tr>
<tr>
<td>(M_{\text{NOTAUS, Appl}}) NOT-AUS-Moment der Applikation</td>
<td>[Nm]</td>
</tr>
<tr>
<td>(M_{\text{stat}}) Statisches Moment des Motors</td>
<td>[Nm]</td>
</tr>
<tr>
<td>(M_{\text{stat, Motor}}) Motormoment während Konstantfahrt</td>
<td>[Nm]</td>
</tr>
<tr>
<td>(M_n) Moment im Abschnitt (n)</td>
<td>[Nm]</td>
</tr>
<tr>
<td>(M_{\text{Theff}}) Effektives Moment bezüglich Getriebe-Erwärmung</td>
<td>[Nm]</td>
</tr>
<tr>
<td>(M_{\text{THERM}}) Thermisches Moment</td>
<td>[Nm]</td>
</tr>
<tr>
<td>(n_{\text{a, max}}) Maximale Abtriebsdrehzahl</td>
<td>[min⁻¹]</td>
</tr>
<tr>
<td>(n_{\text{am}}) Mittlere Abtriebsdrehzahl des Getriebes</td>
<td>[min⁻¹]</td>
</tr>
<tr>
<td>(n_{\text{e}}) Einfriebsdrehzahl</td>
<td>[min⁻¹]</td>
</tr>
<tr>
<td>(n_{\text{e, max}}) Maximale Einfriebsdrehzahl</td>
<td>[min⁻¹]</td>
</tr>
<tr>
<td>(n_K) Drehzahlkonstante</td>
<td>[min⁻¹]</td>
</tr>
</tbody>
</table>
Daten für die Auslegung eines Servo-Getriebemotors

<table>
<thead>
<tr>
<th>Zeichen</th>
<th>Bezeichnung</th>
<th>Einheit</th>
</tr>
</thead>
<tbody>
<tr>
<td>η_{max}</td>
<td>Maximale Drehzahl</td>
<td>[min$^{-1}$]</td>
</tr>
<tr>
<td>η_{Mot}</td>
<td>Motordrehzahl</td>
<td>[min$^{-1}$]</td>
</tr>
<tr>
<td>η_{N}</td>
<td>Nenndrehzahl</td>
<td>[min$^{-1}$]</td>
</tr>
<tr>
<td>η_{x}</td>
<td>Mittlere Drehzahl im Abschnitt x</td>
<td>[min$^{-1}$]</td>
</tr>
<tr>
<td>P_{Br}</td>
<td>Bremsleistung</td>
<td>[W]</td>
</tr>
<tr>
<td>$P_{\text{Br, peak}}$</td>
<td>Spitzenbremsleistung</td>
<td>[W]</td>
</tr>
<tr>
<td>$S_\text{..}$</td>
<td>Betriebsart</td>
<td>-</td>
</tr>
<tr>
<td>$t_{1\cdots n}$</td>
<td>Zeitaschnitt 1 bis n</td>
<td>[min]</td>
</tr>
<tr>
<td>t_{Brn}</td>
<td>Bremszeit im Abschnitt n</td>
<td>[s]</td>
</tr>
<tr>
<td>t_{Zyklus}</td>
<td>Zykluszeit</td>
<td>[s]</td>
</tr>
</tbody>
</table>

Daten für die Auslegung eines linearen Servoantriebs

<table>
<thead>
<tr>
<th>Zeichen</th>
<th>Bezeichnung</th>
<th>Einheit</th>
</tr>
</thead>
<tbody>
<tr>
<td>μ</td>
<td>Reibungs-Koeffizient</td>
<td>-</td>
</tr>
<tr>
<td>α</td>
<td>Steigungswinkel des Verfahrweges</td>
<td>['']</td>
</tr>
<tr>
<td>a_{max}</td>
<td>Maximale Beschleunigung</td>
<td>[ms$^{-2}$]</td>
</tr>
<tr>
<td>E_D</td>
<td>Relative Einschaltdauer</td>
<td>[%]</td>
</tr>
<tr>
<td>F_A</td>
<td>Maximal benötigte Vorschubkraft</td>
<td>[N]</td>
</tr>
<tr>
<td>F_D</td>
<td>Magnetische Anziehungskraft</td>
<td>[N]</td>
</tr>
<tr>
<td>F_E</td>
<td>Effektivkraft außerhalb des Gesamtzyklus</td>
<td>[N]</td>
</tr>
<tr>
<td>F_G</td>
<td>Gewichtskraft</td>
<td>[N]</td>
</tr>
<tr>
<td>F_I</td>
<td>Auftretende Kraft innerhalb eines Teilzyklus</td>
<td>[N]</td>
</tr>
<tr>
<td>F_{max}</td>
<td>Maximale Kraft</td>
<td>[N]</td>
</tr>
<tr>
<td>F_{mM}</td>
<td>Maximale Schubkraft des Motors</td>
<td>[N]</td>
</tr>
<tr>
<td>F_{Nenn}</td>
<td>Nennkraft</td>
<td>[N]</td>
</tr>
<tr>
<td>F_R</td>
<td>Maximalen Reibkraft</td>
<td>[N]</td>
</tr>
<tr>
<td>F_{Tabelle}</td>
<td>Kraft aus Umrichtertabelle</td>
<td>[N]</td>
</tr>
<tr>
<td>F_V</td>
<td>Vorschubkraft</td>
<td>[N]</td>
</tr>
<tr>
<td>F_{vmax}</td>
<td>maximale Vorschubkraft</td>
<td>[N]</td>
</tr>
<tr>
<td>F_Z</td>
<td>Zusätzliche Prozesskraft</td>
<td>[N]</td>
</tr>
<tr>
<td>g</td>
<td>Erdbeschleunigung</td>
<td>[ms$^{-2}$]</td>
</tr>
<tr>
<td>I_{Nenn}</td>
<td>Nennstrom</td>
<td>[A]</td>
</tr>
<tr>
<td>k_K</td>
<td>Kraftkonstante</td>
<td>[NA$^{-1}$]</td>
</tr>
<tr>
<td>l_p</td>
<td>Länge des projektierten Primärteiles</td>
<td>[mm]</td>
</tr>
<tr>
<td>m_l</td>
<td>Zu bewegende Masse einer Achse</td>
<td>[kg]</td>
</tr>
<tr>
<td>m_p</td>
<td>Masse des Primärteils</td>
<td>[kg]</td>
</tr>
<tr>
<td>m_z</td>
<td>Zusatzmasse</td>
<td>[kg]</td>
</tr>
<tr>
<td>P_{max}</td>
<td>Maximale Leistung des Bremswiderstandes</td>
<td>[kW]</td>
</tr>
<tr>
<td>P_{n}</td>
<td>Mittlere Leistung des Bremswiderstandes</td>
<td>[kW]</td>
</tr>
<tr>
<td>s</td>
<td>Verfahrbereich</td>
<td>[mm]</td>
</tr>
<tr>
<td>S</td>
<td>Länge des projektierten Verfahrweges</td>
<td>[mm]</td>
</tr>
<tr>
<td>S_p</td>
<td>Endschalterbereich</td>
<td>[mm]</td>
</tr>
<tr>
<td>s_s</td>
<td>Sekundärteilänge</td>
<td>[mm]</td>
</tr>
</tbody>
</table>
Daten für die Auslegung eines linearen Servoantriebs

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Beschreibung</th>
<th>Einheit</th>
</tr>
</thead>
<tbody>
<tr>
<td>(t)</td>
<td>Gesamtzyklusdauer einschließlich Pausenzeit</td>
<td>[s]</td>
</tr>
<tr>
<td>(t_i)</td>
<td>Zyklusdauer (zu (F_i))</td>
<td>[s]</td>
</tr>
<tr>
<td>(t_n)</td>
<td>Zeit im Abschnitt (n)</td>
<td>[s]</td>
</tr>
<tr>
<td>(v_{\text{max}})</td>
<td>Maximale Geschwindigkeit einer Achse</td>
<td>[ms(^{-1})]</td>
</tr>
</tbody>
</table>
8.3 **Projektierungsablauf eines Servo-Getriebemotors**

Der Projektierungsablauf ist wie folgt gegliedert.

- Getriebeauslegung, siehe auch Bild 92:
 - [1] Verzahnung,
 - [2] Lager,

Bild 92: 3-stufiger Projektierungsablauf

- Motorenauslegung,
- Servoverstärker-Auslegung,
- Auslegung des Bremswiderstandes.
Die folgenden Ablaufdiagramme zeigen schematisch die Vorgehensweise bei der Projektierung eines Servo-Kegelradgetriebes für einen Positionierantrieb im S3-Betrieb.

Projektierungsablauf Teil 1, Servogetriebe

1. Auswahl von M_B aus den Kombinationsübersichten für Servogetriebe mit Adapter
2. Auswahl von $M_C^{(n)}$ aus den Kombinationsübersichten für Servogetriebemotoren
Projektierungsablauf Teil 2, Servogetriebe

1. Kupplungsbetrieb
 - ja
 - nein

2. Getriebe in Ordnung
 - ja
 - nein

3. Getriebe größer / Applikation prüfen
 - ja
 - nein

4. \(F = M_R a_F \cdot R_{xW} \cdot f + x \)

5. \(F_{RxW} = \frac{c}{f + x} \)

6. \(F_{RxL} = \frac{a}{b + x} \)

7. \(m_{\text{max}} > m_0 \)
 - ja
 - nein

8. \(F_{Ra} = F_{Ra}(N) \)

9. \(x = \frac{1}{2} \)
 - ja
 - nein

10. \(F_{RxL} < F_{RxW} \)
 - ja
 - nein

11. \(F_{Rx} < F_{Rx} \cdot M_R \)
 - ja
 - nein

12. \(F = M_R a_F \cdot R_{xW} \cdot f + x \)
 - ja
 - nein

13. \(F = M_R a_F \cdot R_{xW} \cdot f + x \)
 - ja
 - nein
Projektierungsablauf Teil 3, Servomotoren

Bestimmung des maximalen Eintriebsdrehmoments M_{max}

\[M_{\text{max}} = \frac{M_{\text{max}}}{I \times \Omega} \]

Vorläufige Bestimmung des Motors mit Hilfe des Moments M_{DYN}

Bestimmung des Massenträgheitsverhältnisses "k"

\[k < 10 \cdot 15 \]

ja

Motormomente für alle Fahrtabschnitte bestimmen

Bestimmung des effektiven Motormoments

\[M_{\text{eff}} = \frac{1}{I/2} \cdot \left[M_1 \cdot x_1 + \ldots + M_n \cdot x_n \right] \]

Bestimmung der mittleren Eintriebsdrehzahl n_{Ein}

\[n_{\text{Ein}} = n_{\text{Ein}} \times i \]

Bestimmung des Arbeitspunktes

Arbeitspunkt unterhalb bzw. max. auf der thermischen Grenzkennlinie

\[M_{\text{max}} \leq M_{\text{therm}} \]
Projektierungsablauf Teil 4, Servomotoren

Dynamisches Grenzmoment überprüfen

-ja-

Auswahl des Reglers in den Auswahltabellen* über das effektive Moment \(M_{\text{eff}} \) und max. auftretendes Motormoment \(M_{\text{max}} \)

Berechnung der Spitzenbremsleistung

\[P_{\text{Br, in}} = \frac{M_{\text{max}} \cdot n_0 \cdot \eta_{\text{last}}}{9550} \]

Berechnung der mittleren Bremsleistung

\[P_{\text{Br}} = \frac{P_{\text{Br, 1t}} - \ldots - P_{\text{Br, 1t}}}{t_2} \]

Auswahl Bremswiderstand in der "Zuordnungstabelle Bremswiderstand - Umrichter" über die maximale Bremsleistung und die mittlere Bremsleistung

Auswahl weiterer Komponenten wie Geberschnittstellen und eventuell Feldbuskarten etc.

Ende

* MOVIDRIVE®-Systemhandbuch
8.4 Projektierungsbeispiel eines Servo-Getriebemotors

Zur Auslegung des Antriebs werden zunächst die Daten der anzutreibenden Maschine (Masse, Drehzahl, Stellbereich usw.) benötigt. Mit diesen Daten werden die erforderliche Leistung, das Drehmoment und die Drehzahl bestimmt. Das nachfolgende Projektierungsbeispiel eines Servo-Getriebemotors mit zugehörigem Servoverstärker veranschaulicht die Vorgehensweise ausführlich.

Folgende Daten sind gegeben:

- Masse der Last: \(m_{\text{Last}} = 150 \text{ kg} \)
- Masse des Verfahrwagens: \(m_{\text{Wagen}} = 100 \text{ kg} \)
- Verfahrgeschwindigkeit: \(v = 5 \text{ ms}^{-1} \)
- Beschleunigung: \(a = 10 \text{ ms}^{-2} \)
- Verzögerung: \(-a = 10 \text{ ms}^{-2} \)
- Verzögerung bei NOT-AUS: \(-a = 16,8 \text{ ms}^{-2} \)
- Durchmesser des Laufrades: \(D_L = 250 \text{ mm} \)
- Fahrwiderstand: \(F_F = 100 \text{ N/t} \)
- Lastwirkungsgrad: \(\eta_L = 0,9 \)
- Umgebungstemperatur: \(\vartheta = 20^\circ\text{C} \)
- Geforderte Positioniergenauigkeit: \(0,7 \text{ mm} \)
- Positioniergenauigkeit der Mechanik: \(0,3 \text{ mm} \)
- Geforderte EMV-Grenzklasse: \(\text{A} \)
- Motortyp: Synchroner Servomotor
- Getriebetyp: BSF..
- Getriebebauform: M4
- Gebertyp: Absolutwertgeber
- Anbindung an ein Feldbussystem vom Typ: Profibus DPV1
- Zuschlagsfaktor: \(f_z = 2,5 \)
Projektierung

Projektierungsbeispiel eines Servo-Getriebemotors

Fahrdiagramm

Aus dem Fahrdiagramm ergeben sich folgende Zeitabschnitte:
- \(t_1 = t_3 = t_5 = t_7 = 0,5 \text{ s} \)
- \(t_2 = t_6 = 2,0 \text{ s} \)
- \(t_4 = t_8 = 1,5 \text{ s} \)

Zeitabschnitte

Die mittlere Drehzahl im Abschnitt \(x \) berechnet sich:

\[
\bar{n}_x = \frac{n_a + n_e}{2}
\]

Auswahl des Servogetriebes

Schritt 1:

Vorläufige Bestimmung der Getriebeübersetzung

\[
n_{a \text{ max}} = \frac{v_{\text{max}}}{D_L \times \frac{\pi}{2}}
\]

\[
n_{a \text{ max}} = \frac{5 \text{ m/s}}{0,25 \text{ m} \times \frac{\pi}{2}} = 6,366 \text{ 1/s} = 382 \text{ 1/min}
\]

Mit Hilfe der maximalen Abtriebsdrehzahl und einer zunächst angenommenen Motornenndrehzahl \(n_N = 4500 \text{ 1/min} \) wird die Getriebeübersetzung näherungsweise bestimmt. Es hat sich dabei als vorteilhaft erwiesen, eine Drehzahlreserve von ca. 10 % zu berücksichtigen.

\[
i_{\text{vorfällig}} = \frac{n_N - 10 \%}{n_{a \text{ max}}} = \frac{4050 \text{ 1/min}}{382 \text{ 1/min}} = 10,6
\]

Die gewählte Getriebeübersetzung ist: \(i = 10 \).
Aufgrund der gewählten Getriebeübersetzung ergibt sich die maximal eintreibende Drehzahl $n_{e\text{ max}}$:

$$n_{e\text{ max}} = i \times n_{a\text{ max}}$$

$$n_{e\text{ max}} = 10 \times 382 \text{ 1/min} = 3820 \text{ 1/min}$$

Schritt 2: Bestimmung der statischen und dynamischen Drehmomente

* **Dynamisches Moment im Abschnitt t_1:**

$$M_{DYN1} = \frac{m \times a \times D_s}{\eta_L \times 2}$$

$$M_{DYN1} = \frac{(150 \text{ kg} + 100 \text{ kg}) \times 10 \text{ m/s}^2 \times 0,25 \text{ m}}{0,9 \times 2} = 347 \text{ Nm}$$

* **Dynamisches Moment im Abschnitt t_3:**

Dem dynamischen Moment im Abschnitt t_3 kommt der Wirkungsgrad zugute, da verzögert wird.

$$M_{DYN3} = \frac{m \times (-a) \times \eta_L \times D_s}{2}$$

$$M_{DYN3} = \frac{(150 \text{ kg} + 100 \text{ kg}) \times (-10 \text{ m/s}^2) \times 0,9 \times 0,25 \text{ m}}{2} = -281 \text{ Nm}$$

* **Statistisches Moment:**

Das statische Moment errechnet sich anhand des Fahrwiderstandes und muss in jedem Fahrabschnitt berücksichtigt werden.

Beim Beschleunigen:

$$M_{stat1} = \frac{F \times D \times m}{\eta_L \times 2}$$

$$M_{stat1} = \frac{100 \text{ N/t} \times 0,25 \text{ m} \times (0,15 \text{ t} + 0,1 \text{ t})}{0,9 \times 2} = 3,5 \text{ Nm}$$

Beim Verzögern:

$$M_{stat3} = \frac{F \times D \times m \times \eta_L}{2}$$

$$M_{stat3} = \frac{100 \text{ N/t} \times 0,25 \text{ m} \times (0,15 \text{ t} + 0,1 \text{ t}) \times 0,9}{2} = 2,8 \text{ Nm}$$
Schritt 3: Bestimmung des maximalen Abtriebsmomentes $M_{a\ max}$

Beim Beschleunigen:

$M_{a\ max1} = M_{stat1} + M_{dyn1}$

$M_{a\ max1} = 3,5 \text{Nm} + 347 \text{Nm} = 351 \text{Nm}$

Beim Verzögern:

$M_{a\ max3} = M_{stat3} + (-M_{dyn1})$

$M_{a\ max3} = 2,8 \text{Nm} - 281 \text{Nm} = -278 \text{Nm}$

Schritt 4: Auswahl der Getriebegröße

Die vorläufige Auswahl des Servogetriebes erfolgt anhand der Kombinationstabellen des Kataloges "Spielarme Servo-Getriebemotoren (BSF.., PSF..)".

Vorläufige Getriebeauswahl: BSF 502

Auswahlkriterium: $M_{a\ max} = 351 \text{Nm}$

Forderung: $M_B \geq M_{a\ max}$

$375 \text{Nm} \geq 351 \text{Nm} \rightarrow \text{Forderung erfüllt}$

Schritt 5: Bestimmung der mittleren Abtriebsdrehzahl

$n_{am} = \frac{n_x \cdot t_x + \ldots + n_x \cdot t_x}{t_x + \ldots + t_x}$

$n_{am} = \frac{382 \text{min}^{-1} \cdot 0,5 \text{s} + 382 \text{min}^{-1} \cdot 2 \text{s} + 382 \text{min}^{-1} \cdot 0,5 \text{s}}{0,5 \text{s} + 2 \text{s} + 0,5 \text{s} + 1,5 \text{s}} = 212 \text{min}^{-1}$

Forderung: $n_{am} \leq n_k$

$212 \text{min}^{-1} \leq 130 \text{min}^{-1} \rightarrow \text{Forderung ist nicht erfüllt}$.

Um sicherzustellen, dass das Getriebe hinsichtlich der Belastung optimal gewählt ist, muss die mittlere Abtriebsdrehzahl kleiner bzw. darf maximal so groß sein wie die Drehzahlkonstante n_k des Getriebes. Ist diese Bedingung nicht erfüllt, dann muss die Belastung anhand des kubischen Moments überprüft werden, siehe Schritt 6.

Schritt 6: Bestimmung des kubischen Abtriebsmomentes $M_{a\ kub}$

$M_{a\ kub} = 3 \frac{n_x \cdot t_x \cdot [M_x]^3 + \ldots + n_x \cdot t_x \cdot [M_x]^3}{n_x \cdot t_x + \ldots + n_x \cdot t_x}$

$M_{a\ kub} = 3 \frac{0,5 \text{s} \cdot 191 \text{min}^{-1} \cdot [351 \text{Nm}]^3 + 2 \text{s} \cdot 382 \text{min}^{-1} \cdot [3,5 \text{Nm}]^3 + 0,5 \text{s} \cdot 191 \text{min}^{-1} \cdot [278 \text{Nm}]^3}{0,5 \text{s} \cdot 191 \text{min}^{-1} + 2 \text{s} \cdot 382\text{min}^{-1} + 0,5 \text{s} \cdot 191 \text{min}^{-1}} = 186,4 \text{Nm}$
Schritt 7: Bestimmung des Drehzahlfaktors \(f_k \)

Der Quotient aus der mittleren Abtriebsdrehzahl und der Drehzahlkonstanten \(n_k \) ergibt den Drehzahlfaktor \(f_k \). Der Drehzahlfaktor wird zur Überprüfung des kubischen Abtriebsmomentes benötigt. Dieses muss kleiner bzw. maximal so groß sein, wie das Bemesungs-Drehmoment des Getriebes.

\[
f_k = \left(\frac{n_0}{n_k} \right)^{0,3} \\
f_k = \left(\frac{212 \text{ min}^{-1}}{130 \text{ min}^{-1}} \right)^{0,3} = 1,16
\]

Forderung:

\[
M_{hub} \leq \frac{M_B}{f_k} \leq \frac{375 \text{ Nm}}{1,16} \leq 323 \text{ Nm}
\]

\[186 \text{ Nm} \leq 323 \text{ Nm} \rightarrow \text{Forderung ist erfüllt.}\]

Schritt 8: Bestimmung des effektiven Moments zur Überprüfung der zulässigen Getriebewärzung

\[
M_{\text{eff}} = \frac{\sum n_x t_x M_{12}^{12}}{n_x t_1 + \ldots + n_x t_n}
\]

\[
M_{\text{eff}} = \sqrt{\frac{0,5 \times 191 \text{ min}^{-1} \times 351 \text{ Nm}^{12} + 2 \times 382 \text{ min}^{-1} \times 3,5 \text{ Nm}^{12} + 0,5 \times 191 \text{ min}^{-1} \times 278 \text{ Nm}^{12}}{0,5 \times 191 \text{ min}^{-1} + 2 \times 382 \text{ min}^{-1} + 0,5 \times 191 \text{ min}^{-1}}}
\]

\[= 83,6 \text{ Nm}\]

Schritt 9: Bestimmung des zulässigen thermischen Momentes wegen Getriebewärzung

\[
M_{\text{THERM}} = a_0 + a_1 \times n_{am} + \frac{a_2}{n_{am}^{12}}
\]

\[
M_{\text{THERM}} = 17,47 + (-0,316 \times 212) \left(\frac{119454}{212^{12}} \right) = 108,6 \text{ Nm}
\]

Forderung: \(M_{\text{eff}} \leq M_{\text{THERM}} \)

\[83,6 \text{ Nm} \leq 108,6 \text{ Nm} \rightarrow \text{Forderung ist erfüllt.}\]
Schritt 10: Vergleich des NOT-AUS-Momentes mit dem NOT-AUS-Moment des Getriebes

Im Fall eines Not-Aus kommt es aufgrund von kürzeren Verzögerungszeiten zu höheren Momenten. Daher muss überprüft werden, ob das sogenannte Not-Aus-Moment der Applikation \(M_{\text{NOTAUS, Appl}} \) kleiner ist als das zulässige Not-Aus-Moment \(M_{\text{NOTAUS}} \) des Getriebes.

Gemäß Applikationsdaten wird im Falle eines Not-Aus mit 16,8 m/s² verzögert:

\[
M_{\text{NOTAUS, Appl}} = m \times a \times \frac{D}{2} \\
M_{\text{NOTAUS, Appl}} = (150 \text{ kg} + 100 \text{ kg}) \times 16,8 \text{ m/s}^2 \times \frac{0,25 \text{ m}}{2} = 525 \text{ Nm}
\]

Forderung: \(M_{\text{NOTAUS, Appl}} \leq M_{\text{NOTAUS}} \)

525 Nm \(\leq \) 560 Nm \(\Rightarrow \) \text{Forderung ist erfüllt.}

Schritt 11: Bestimmung der Querkraft

Der Angriffspunkt für die Querkraft ist die Wellenmitte. Aufgrund der Vorspannkraft des Zahnriemens wird ein Zuschlagsfaktor von 2,5 für die Querkraft zu Grunde gelegt.

\[
F_R = \frac{M_{\text{max}} \times 2000}{d_o} \times f = \frac{347 \times 2000}{250} \times 2,5 = 6940 \text{ N}
\]

Forderung: \(M_N < M_{\text{max}} < M_B \Rightarrow F_R \leq F_{Ra} (M_B). \)

\(\Rightarrow 6940 \text{ N} \leq 12000 \text{ N} \Rightarrow \text{Forderung ist erfüllt.} \)

Auswahl des Servomotors

Schritt 12: Umrechnung des Beschleunigungsmomentes am Antrieb auf die Motorseite

\[
M_{\theta, \text{max}} = \frac{M_{a, \text{max}}}{i \times \eta \text{ Getriebe}} \\
M_{\theta, \text{max}} = \frac{351 \text{ Nm}}{10 \times 0,91} = 38,6 \text{ Nm}
\]

Anhand dieses maximalen eintreibenden Moments wird eine vorläufige Motorauswahl getroffen, die jedoch noch überprüft werden muss:

\(\Rightarrow \) CM90L/BR

- \(J_{\text{Mot}} = 35,9 \times 10^{-4} \text{ kgm}^2. \)
- \(M_0 = 21,0 \text{ Nm.} \)
- \(n_N = 4500 \text{ 1/min.} \)

Schritt 13: Überprüfung des zusätzlichen Motordrehmomentes für die Beschleunigung

Für die Beschleunigung muss der Motor noch ein bestimmtes Moment aufbringen, um sich selbst zu beschleunigen.

\[
M_{\text{Motor}} = \frac{J_{\text{Motor}} \times \eta_{\text{max}} \times 2 \times \pi}{t_a} \\
M_{\text{Motor}} = \frac{35,9 \times 10^{-4} \text{ kgm}^2 \times 3820 \text{ min}^{-1} \times 2 \times \pi}{0,5 \text{ s}} = 2,9 \text{ Nm}
\]
Projektierungsbeispiel eines Servo-Getriebemotors

Schritt 14:
Bestimmung des Motor-Gesamtmomentes bei der Beschleunigung

\[M_{\text{max}} = M_{e\text{max}} + M_{\text{Motor}} \]
\[M_{\text{max}} = 38,6 \text{ Nm} + 2,9 \text{ Nm} = 41,5 \text{ Nm} \]

Schritt 15:
Bestimmung des Motor-Gesamtmomentes bei der Verzögerung

\[M_{\text{Br\text{Motor}}} = M_{3\text{max}} \times \eta_{\text{Getriebe}} \times \frac{1}{i} + M_{\text{Motor}} \]
\[M_{\text{Br\text{Motor}}} = -278 \text{ Nm} \times 0,91 \times \frac{1}{10} + (-2,9) \text{ Nm} = -28,2 \text{ Nm} \]

Schritt 16:
Bestimmung des Motordrehmomentes während Konstantfahrt

\[M_{\text{stat\text{Motor}}} = M_{\text{stat}} \times \frac{1}{i} \times \eta_{\text{Getriebe}} \]
\[M_{\text{stat\text{Motor}}} = \frac{3,5 \text{ Nm}}{10 \times 0,91} = 0,39 \text{ Nm} \]

Schritt 17:
Bestimmung des effektiven Motordrehmomentes

Wenn die Motordrehmomente für jeden Fahrabschnitt bestimmt sind, kann das effektive Motordrehmoment berechnet werden. Dies ist für die Ermittlung des Arbeitspunktes unerlässlich (siehe Schritt 18).

\[M_{\text{eff}} = \sqrt{\frac{1}{t_{\text{zyklus}}} (M_{t1^2} \times t_1 + M_{t2^2} \times t_2 + \ldots + M_{tn^2} \times t_n)} \]
\[M_{\text{eff}} = \sqrt{(41,5 \text{ Nm})^2 \times 0,5 \text{ s} + (0,39 \text{ Nm})^2 \times 2 \text{ s} + (-28,2 \text{ Nm})^2 \times 0,5 \text{ s}} \]
\[n = 212 \text{ min}^{-1} \times 10 = 2120 \text{ min}^{-1} \]
Schritt 19: Bestimmung des Arbeitspunktes

Aus Gründen der Betriebssicherheit empfiehlt es sich, einen gewissen Abstand des Arbeitspunktes zur thermischen Grenzkennlinie einzuhalten. Dies sichert bei evtl. notwendigen Änderungen wie z. B. höhere Beschleunigungswerte, höhere Last etc. noch eine gewisse Reserve.

Daher wird der Motor CM90L mit einem Fremdlüfter VR ausgerüstet: CM90L/VR.

Bild 94: Thermische Grenzkennlinie CM90L/VR mit Arbeitspunkt der Beispielapplikation
Schritt 20: Bestimmung des maximalen Arbeitspunktes

Anhand des maximalen Momentes und der zugehörigen Drehzahl in jedem Fahrschnitt wird der bzw. die maximalen Arbeitspunkte in das Diagramm "Dynamische Grenzkennlinie" eingetragen, siehe Bild 95. Dabei ist zu beachten, dass der oder die maximalen Arbeitspunkte unterhalb bzw. maximal auf der dynamischen Grenzkennlinie liegen.

Aus Gründen der Betriebssicherheit empfiehlt es sich, einen gewissen Abstand des Arbeitspunktes zur dynamischen Grenzkennlinie einzuhalten. Dies sichert bei evtl. notwendigen Änderungen wie z. B. Änderungen des Fahrdiagrammes, höhere Last etc. noch eine gewisse Reserve.

![Dynamische Grenzkennlinie CM90L mit max. Arbeitspunkt der Beispielapplikation](image)

Bild 95: Dynamische Grenzkennlinie CM90L mit max. Arbeitspunkt der Beispielapplikation

Besonders im oberen Drehzahlbereich ist zu beachten, dass das maximal verfügbare Drehmoment abfällt.
Das Verhältnis von externer zu internen Massenträgheit hat entscheidenden Einfluss auf das Regelergebnis und darf daher nicht vernachlässigt werden. Die Massenträgheits-Verhältnisse gemäß nachstehender Tabelle dürfen nicht überschritten werden.

<table>
<thead>
<tr>
<th>Antriebsstrang</th>
<th>Reglereigenschaft</th>
<th>Massenträgheits-Verhältnis J_{ext}/J_{Mot}</th>
</tr>
</thead>
<tbody>
<tr>
<td>Geschmiedete Zahnstange, spielreduziertes Getriebe</td>
<td>Spiel- und elastizitätsarmer Antrieb</td>
<td>$J_{ext}/J_{Mot} < 15$</td>
</tr>
<tr>
<td>Zahnriemen, spielreduziertes Getriebe</td>
<td>Übliche Servoanwendungen</td>
<td>$J_{ext}/J_{Mot} < 15$</td>
</tr>
<tr>
<td>Zahnriemen, Standardgetriebe</td>
<td>Standardanwendungen, Kupplungen mit Drehmomentpuffer</td>
<td>$J_{ext}/J_{Mot} < 10$</td>
</tr>
</tbody>
</table>

Die Reduzierung des Massenträgheits-Verhältnisses durch die Motordrehzahl bzw. der Getriebeübersetzung bringt ab dem Wert $J_{ext}/J_{Mot} < 8$ kaum mehr einen regelungstechnischen Vorteil.

\[
J_{ext} = 91,2 \times m \left(\frac{V}{n_{Mot}} \right)^2
\]

\[
J_{ext} = 91,2 \times 250 \text{ kg} \times \left(\frac{5 \text{ m/s}}{3820 \text{ min}^{-1}} \right)^2 = 390 \times 10^{-4} \text{ kgm}^2
\]

\[
k = \frac{J_{ext}}{J_{Mot}} = \frac{390 \times 10^{-4} \text{ kgm}^2}{35,9 \times 10^{-4} \text{ kgm}^2} = 10,9
\]

Forderung: $J_{ext}/J_{Mot} < 15$

$10,9 < 15 \rightarrow \text{Forderung ist erfüllt.}$

Schritt 22:
Bestimmung des Beschleunigungsmomentes wegen Massenträgheit des Getriebes

\[
M_{Getriebe} = J_{Getriebe} \times n_{max} \times 2 \times \pi \frac{t_s}{t_s}
\]

\[
M_{Getriebe} = 4 \times 10^{-4} \text{ kgm}^2 \times 3820 \text{ min}^{-1} \times 2 \times \pi \frac{0,5 \text{ s}}{0,5 \text{ s}} = 0,9 \text{ Nm}
\]
Schritt 23:
Auswahl des Servoverstärkers

Anhand des effektiven und des maximalen Motordrehmomentes kann nun gemäß der Motor-Servoverstärker-Zuordnungstabelle ein Servoverstärker ausgewählt werden:

\[
I_{\text{eff, Motor}} = \frac{l \times M_{\text{eff, Motor}}}{M_0}
\]

\[
I_{\text{eff, Motor}} = \frac{21.6 \text{ A} \times 16.7 \text{ Nm}}{21 \text{ Nm}} = 17.2 \text{ A}
\]

Forderung: \(I_{\text{eff, Motor}} \leq I_{N, \text{Inverter}}\)

17,2 A \(\leq\) 32 A \(\rightarrow\) **Forderung ist erfüllt.**

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>2000</td>
<td>CFM71S</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CFM71M</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CFM71L</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CFM90S</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CFM90M</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CFM90L</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CFM112S</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CFM112M</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CFM112L</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CFM112H</td>
<td></td>
</tr>
<tr>
<td>3000</td>
<td>DFS56M</td>
<td></td>
</tr>
<tr>
<td></td>
<td>DFS56L</td>
<td></td>
</tr>
<tr>
<td></td>
<td>DFS56H</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CFM71S</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CFM71M</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CFM71L</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CFM90S</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CFM90M</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CFM90L</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CFM112S</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CFM112M</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CFM112L</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CFM112H</td>
<td></td>
</tr>
<tr>
<td>4500</td>
<td>DFS56M</td>
<td></td>
</tr>
<tr>
<td></td>
<td>DFS56L</td>
<td></td>
</tr>
<tr>
<td></td>
<td>DFS56H</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CFM71S</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CFM71M</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CFM71L</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CFM90S</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CFM90M</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CFM90L</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CFM112S</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CFM112M</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CFM112L</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CFM112H</td>
<td></td>
</tr>
</tbody>
</table>
Projektierungsbeispiel eines Servo-Getriebemotors

Schritt 24: Auswahl der Komponenten

Je nach einzuhaltender EMV-Grenzwertklasse sind neben der EMV-gerechten Installa-
tion noch weitere Maßnahmen erforderlich. So gibt es je nach Grenzwertklasse motor-
bzw. netzseitig die folgenden Lösungsmöglichkeiten.

Da in unserem Projektierungsbeispiel die Grenzwertklasse A eingehalten werden muss,
wird motorseitig eine Ausgangsdrossel und netzseitig ein Netzfilter gewählt (siehe nach-
stehende Tabelle).

Ausgangsdrossel:

Grenzwertklasse A

Für die EMV-gerechte Installation nach EN 55011, **Grenzwertklasse A**, stehen je nach
Anlagenkonfiguration 3 Lösungsmöglichkeiten zur Verfügung:

<table>
<thead>
<tr>
<th>Grenzwertklasse A</th>
<th>motorseitig</th>
<th>netzseitig</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Baugrößen 0 bis 6</td>
<td>Baugrößen 0 bis 2</td>
</tr>
<tr>
<td>1. Möglichkeit</td>
<td>Ausgangsdrossel HD...</td>
<td>keine Maßnahme notwendig</td>
</tr>
<tr>
<td>2. Möglichkeit</td>
<td>geschirmte Motorleitung</td>
<td>keine Maßnahme notwendig</td>
</tr>
<tr>
<td>3. Möglichkeit</td>
<td>Ausgangsfilter HF...</td>
<td>keine Maßnahme notwendig</td>
</tr>
</tbody>
</table>

Grenzwertklasse B

Für die EMV-gerechte Installation nach EN 55011, **Grenzwertklasse B**, stehen je nach
Anlagenkonfiguration 3 Lösungsmöglichkeiten zur Verfügung:

<table>
<thead>
<tr>
<th>Grenzwertklasse B</th>
<th>motorseitig</th>
<th>netzseitig</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Baugrößen 0 bis 5</td>
<td>Baugrößen 0 bis 5</td>
</tr>
<tr>
<td>1. Möglichkeit</td>
<td>Ausgangsdrossel HD...</td>
<td>Netzfilter NF...-...</td>
</tr>
<tr>
<td>2. Möglichkeit</td>
<td>geschirmte Motorleitung</td>
<td>Netzfilter NF...-...</td>
</tr>
<tr>
<td>3. Möglichkeit</td>
<td>Ausgangsfilter HF...</td>
<td>Netzfilter NF...-...</td>
</tr>
</tbody>
</table>

Die Ausgangsdrossel kann aus der entsprechenden Übersichtstabelle im
MOVIDRIVE®-Systemhandbuch gewählt werden:

<table>
<thead>
<tr>
<th>Ausgangsdrossel-Typ</th>
<th>HD001</th>
<th>HD002</th>
<th>HD003</th>
<th>HD004</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sachnummer</td>
<td>813 325 5</td>
<td>813 557 6</td>
<td>813 558 4</td>
<td>816 885 7</td>
</tr>
<tr>
<td>max. Verlustleistung $P_{V_{\text{max}}}$</td>
<td>15 W</td>
<td>8 W</td>
<td>30 W</td>
<td>100 W</td>
</tr>
<tr>
<td>für Kabelquerschnitte/Anschlüsse</td>
<td>1.5...16 mm²</td>
<td>≤ 1.5 mm²</td>
<td>≥ 16 mm²</td>
<td>Anschlussbolzen M12</td>
</tr>
</tbody>
</table>

Die Ausgangsdrossel wird entsprechend dem Kabelquerschnitt der Motorleitung
gewählt, somit ergibt sich: Ausgangsdrossel-Typ HD001.
Netzfilter

Die Auswahl des Netzfilters erfolgt ebenfalls anhand der Auswahltabelle im MOVIDRIVE®-Systemhandbuch:

Bei der Auswahl muss darauf geachtet werden, dass Netzspannung und Auslastung auf die Anforderung der Applikation passen.

<table>
<thead>
<tr>
<th>Netzfilter-Typ</th>
<th>NF009-503</th>
<th>NF014-503</th>
<th>NF018-503</th>
<th>NF035-503</th>
<th>NF048-503</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sachnummer</td>
<td>827 412 6</td>
<td>827 116 X</td>
<td>827 413 4</td>
<td>827 128 3</td>
<td>827 117 8</td>
</tr>
<tr>
<td>Nennspannung (U_N)</td>
<td>3 × 500 V(_{AC}) +10 %, 50/60 Hz</td>
<td>(9\ A_{AC})</td>
<td>(14\ A_{AC})</td>
<td>(18\ A_{AC})</td>
<td>(35\ A_{AC})</td>
</tr>
<tr>
<td>Nennstrom (I_N)</td>
<td>(6\ W)</td>
<td>(9\ W)</td>
<td>(12\ W)</td>
<td>(15\ W)</td>
<td>(22\ W)</td>
</tr>
<tr>
<td>Verlustleistung bei (I_N) (P_V)</td>
<td>< 25 mA</td>
<td>< 25 mA</td>
<td>< 25 mA</td>
<td>< 25 mA</td>
<td>< 40 mA</td>
</tr>
<tr>
<td>Ableitstrom bei (U_N)</td>
<td>< 25 mA</td>
</tr>
<tr>
<td>Umgebungstemperatur (\vartheta_U)</td>
<td>–25 ... +40 °C</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Schutzart</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>IP 20 (EN 60529)</td>
</tr>
<tr>
<td>Anschlüsse L1-L3/L1’-L3’</td>
<td>4 mm(^2) Bolzen M5</td>
<td></td>
<td></td>
<td>10 mm(^2) Bolzen M5/M6</td>
<td></td>
</tr>
</tbody>
</table>

Für das Projektierungsbeispiel wurde ausgewählt: Netzfilter-Typ NF048-503.

Schritt 25:
Auswahl weiterer Systemkomponenten:

Geber (Geberkarte)

Für das Projektierungsbeispiel wurde daher gewählt: Geberkarte DEH11B.

Feldbus

Für die Anbindung an das Feldbussystem wird folgende Feldbus-Schnittstelle ausge wählt: Profibus-Schnittstelle DFP21B.

Schritt 26:
Bestimmung der Spitzenbremseleistung im Abschnitt \(t_3\)

\[
P_{Br_peak} = \frac{M_{Br_Motor} \times n_{max}}{9550}
\]

\[
P_{Br_peak} = \frac{-28.2 \, \text{Nm} \times 3820 \, \text{min}^{-1}}{9550} = 11.28 \, \text{kW}
\]
Schritt 27: Bestimmung der mittleren Bremsleistung im Abschnitt t_3

$$P_{Br_peak} = \frac{M_{Br_Motor} \times \frac{n_{max}}{2}}{9550}$$

$$P_{Br_peak} = \frac{-28,2 \text{Nm} \times \frac{3820 \text{min}^{-1}}{2}}{9550} = 5,64 \text{kW}$$

Schritt 28: Bestimmung der Einschaltdauer ED des Bremswiderstandes

$$ED = \frac{t_{Br1} + \ldots + t_{Brn}}{t_1 + \ldots + t_n} \times 100\%$$

$$ED = \frac{0,5 \text{s}}{0,5 \text{s} + 2 \text{s} + 0,5 \text{s} + 1,5 \text{s}} \times 100\% = 11,1\%$$

Schritt 29: Auswahl und Überprüfung des Bremswiderstandes

Auswahl des Bremswiderstandes mit Hilfe des "Systemhandbuchs MOVIDRIVE® MDX60B/61B": BW018-015

Forderung: 5,64 kW_{ED 11\%} < 6,7 kW und 11,4 kW_{ED 6\%} > 11,3 kW

→ Forderung ist erfüllt.

Schritt 30: Überprüfung der Positioniergenauigkeit

$$\Delta S = \Delta S_{Getriebe} + \Delta S_{Geber} + \Delta S_{Mechanik}$$

$$\Delta S_{Getriebe} = \frac{D \times \pi \times \alpha_{Getriebe}}{360^\circ}$$

$$\Delta S_{Getriebe} = \frac{0,25 \text{m} \times \pi \times 6^\circ}{360^\circ} = 0,218 \text{mm}$$

$$\Delta S_{Geber} = \frac{D \times \pi \times 5 \text{inc}}{4096 \text{inc} \times i}$$

$$\Delta S_{Geber} = \frac{0,25 \text{m} \times \pi \times 5 \text{inc}}{4096 \text{inc} \times 10} = 0,095 \text{mm}$$

$$\Delta S_{Mechanik} = 0,3 \text{mm}$$

$$\Delta S = 0,218 \text{mm} + 0,095 \text{mm} + 0,3 \text{mm} = 0,613 \text{mm}$$

Forderung: $\Delta S < 0,7 \text{mm}$

→ Forderung ist erfüllt.
8.5 Projektierungsablauf eines linearen Servoantriebs

Das folgende Ablaufdiagramm zeigt schematisch die Vorgehensweise bei der Projektierung eines SEW-Linearantriebes SL2.

1. Bestimmen der mechanischen Anlagendaten:
 - bewegte Massen
 - Reibungskoeffizienten der Lagerung
 - Vertiefung
 - Motoreinbaulage
 - evtl. auftretende Bearbeitungskräfte
 - Umgebungsbedingungen (Temperatur, Schmutz usw.)

2. Bestimmen der kinematischen Anforderungen:

3. Berechnung des Fahrzyklus auf Basis gegebener Anlagendaten möglich?
 - Ja
 - Nein

4. Berechnen des Fahrzyklus mit den Ergebnisdaten:
 - Beschleunigungen / Verzögerungen
 - Geschwindigkeiten
 - Fahrzeiten / Pausenzeiten

5. Abschätzen der relativen Einschaltdauer

6. Abschätzen der Motorbaugröße:
 - Primär- und Sekundärteile auswählen
 - Umrichter und Bremswiderstände auswählen

7. Lebensdauerberechnung des Führungssystems

8. Bestimmen der äußeren Kräfte auf das Primärteil

9. Abschätzen der Primärteilegrößen
 - siehe Kapitel 4.8

10. Bestimmen der auftretenden Kräfte:
 - max. benötigte Vorschubkraft: \(F_v \)
 - effektiv benötigte Kraft: \(F_e \)

11. Abschätzen der Motorbaugröße:
 - anhand der benötigten Kräfte
 - durch eine Berechnung der Kräfte unter Berücksichtigung der Motormasse
 - überprüfen der mechanischen Belastungsgrenze

12. Motorgröße ausreichend?
 - Ja
 - Nein

13. Bestimmen der auftretenden Kräfte:
 - durch erneute Berechnung der Kräfte unter Berücksichtigung der Motormasse

14. Lebensdauerberechnung des Führungssystems

15. Primär- und Sekundärteile auswählen
 - Unterricht und Bremswiderstände auswählen

16. Projektierungsbeginn

\(F_v = \text{max. benötigte Vorschubkraft} \)
\(F_e = \text{effektiv benötigte Kraft} \)
\(F_{me} = \text{max. Schubkraft des Motors} \)
\(F_N = \text{Nennschubkraft des Motors} \)
8.6 Projektierungsbeispiel eines linearen Servoantriebs SL2

Ein High-Speed-Ladeportal soll mit synchronen Linearmotoren SL2 ausgerüstet werden.

 Folgende Daten sind gegeben:

Horizontalachse (x-Achse):
- Masse \(m_L = 50 \text{ kg} + \text{Masse der Vertikalachse} \)
- Max. Geschwindigkeit \(v_{\text{max}} = 6 \text{ m/s} \)
- Verfahrenweg \(s = 2 \text{ m} \)

Vertikalachse (z-Achse):
- Masse \(m_L = 25 \text{ kg} \)
- Max. Geschwindigkeit \(v_{\text{max}} = 6 \text{ m/s} \)
- Verfahrenweg \(s = 0.8 \text{ m} \)
Die Zykluszeit für ein Produkt soll minimal sein. Es wird daher in der z-Achse ein Dreiecksbetrieb angestrebt, solange die maximale Geschwindigkeit von 6 m/s dadurch nicht überschritten wird.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>ca. 0.5 s</td>
<td></td>
</tr>
</tbody>
</table>

Bild 97: Verfahrzyklus

Dadurch ergeben sich folgende Fahrdiagramme:

Horizontalachse (x-Achse)

Vertikalachse (z-Achse)

Im nachfolgenden Projektierungsbeispiel wird zuerst die x-Achse und dann die z-Achse berechnet.
Projektierungsbeispiel 1A Fahrwerk (x-Achse)
(Maschinen-Nullpunkt = linke Ruheposition, positive Verfahrrichtung: nach rechts)

Schritt 1: Verfahrgzyklus ermitteln

1, 2, 3, 4 = Abschnitte des Verfahrzyklus

Aus den Fahrdiagrammen ergibt sich, dass der Antrieb 2 m in 0,5 s zurücklegen soll. Bei Dreiecksbetrieb ergibt sich eine maximal geforderte Geschwindigkeit v_{max} von:

$$v_{\text{max}} = \frac{2 \times s}{t} = \frac{2 \times 1 \text{ m}}{0,25 \text{ s}} = 8 \text{ m/s}$$

Da $v_{\text{max}} > v_{\text{maxMotor}}$, ist für die x-Achse nur ein Trapezbetrieb möglich.

Berechnung der geforderten Beschleunigung unter der Annahme eines Trapezbetriebs

$$a_{\text{max}} = \frac{v_{\text{max}}}{\frac{1}{3} \times t} = \frac{6 \text{ m/s}}{0,1667 \text{ s}} = 36 \text{ m/s}^2$$

Schritt 2: Motorgröße abschätzen

Zur Abschätzung der Motorbaugröße wird die Gesamtlast der Hubachse mit 60 kg angenommen.

Üblicherweise wird zuerst die Hubachse projektiert und danach die Fahrrachse. Da jedoch die Projektierung einer Hubachse auf der Projektierung einer Fahrrachse aufbaut, wurde hier die Reihenfolge getauscht und für das Gewicht der Hubachse eine Annahme getroffen.

Damit ergibt sich für das Fahrwerk:

$$m_L = 50 \text{ kg} + 60 \text{ kg} = 110 \text{ kg}$$

$$F_{\text{mm}} = m_L \times [a_{\text{max}} + (g \times \sin \alpha)] \times 1,5$$

$$F_{\text{mm}} = 110 \text{ kg} \times 36 \text{ m/s}^2 \times 1,5 = 5940 \text{ N}$$
Aus der Motortabelle wird ein SL2-P-150ML-060 ausgewählt mit:

- \(F_1 = 6000 \text{ N} \),
- \(v_1 = 6 \text{ m/s} \),
- \(F_D = 17000 \text{ N} \),
- \(m_P = 36 \text{ kg} \).

Forderung: \(F_{mM} \leq F_1 \)

\[5940 \text{ N} \leq 6000 \text{ N} \rightarrow \text{Forderung ist erfüllt.} \]

Schritt 3: Berechnung der Kräfte in den einzelnen Bewegungsabschnitten und Prüfung der dynamischen Auslastung:

\[
F_R = (F_G + F_D) \times \mu
\]

\[
F_R = [(m_L + m_P) \times g \times \cos \alpha + F_D] \times \mu
\]

\[
F_R = [(110 \text{ kg} + 36 \text{ kg}) \times 9.81 \text{ m/s}^2 + 17000 \text{ N}] \times 0.01 = 184.3 \text{ N}
\]

zusätzliche Prozesskraft \(F_Z \): keine
dynamische Beschleunigungskraft:

\[
F_A = (m_L + m_P) \times a_{\text{max}}
\]

\[
F_A = (110 \text{ kg} + 36 \text{ kg}) \times 36 \text{ m/s}^2 = 5256 \text{ N}
\]

Mit den Formeln zur Berechnung der gleichförmig beschleunigten Bewegung ergeben sich für die einzelne Bewegungsabschnitte:

<table>
<thead>
<tr>
<th>Abschnitt</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Weg [m]</td>
<td>0.5</td>
<td>1</td>
<td>0.5</td>
<td>0</td>
</tr>
<tr>
<td>Zeit [s]</td>
<td>0.167</td>
<td>0.167</td>
<td>0.167</td>
<td>0.5</td>
</tr>
<tr>
<td>Endgeschwindigkeit [m/s]</td>
<td>6</td>
<td>6</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Beschleunigung [m/s²]</td>
<td>36</td>
<td>0</td>
<td>-36</td>
<td>0</td>
</tr>
<tr>
<td>Vorschubkraft [N]</td>
<td>(F_A + F_R)</td>
<td>(F_R)</td>
<td>(- F_A + F_R)</td>
<td>0</td>
</tr>
</tbody>
</table>

| | 5440.3 | 184.3 | 5071.7 | 0 |

Damit liegen alle Betriebspunkte innerhalb der dynamischen Grenzkraftkennlinie und die maximale Vorschubkraft ist

\(F_{v\text{max}} = F_A + F_R = 2765.7 \text{ N} \)

Forderung: \(F_{v\text{max}} \leq F_1 \)

\[5440.3 \text{ N} \leq 6000 \text{ N} \rightarrow \text{Forderung ist erfüllt.} \]
Schritt 4: Berechnung der Effektivkraft, der mittleren Geschwindigkeit und Prüfung der thermischen Auslastung

Um die thermische Belastung des Motors zu ermitteln, werden die Effektivkraft und die mittlere Geschwindigkeit ermittelt.

\[F_E = \sqrt{\frac{\sum (F_i^2 \times t_i)}{t}} \]

\[F_E = \sqrt{(5440,3 \text{ N})^2 \times 0,167 \text{ s} + (184,3 \text{ N})^2 \times 0,167 \text{ s} - (5071,7 \text{ N})^2 \times 0,167 \text{ s}} \]

\[F_E = 3040,4 \text{ N} \]

Da im gesamten Verfahrzyklus \(v_{\text{max}} \) immer \(\leq v_1 \), ist damit automatisch die mittlere Geschwindigkeit auch \(< v_{\text{Nenn}} \).

Forderung: \(F_E \leq F_{\text{Nenn}} \)

3040 N \(\leq \) 3600 N \(\rightarrow \) **Forderung ist erfüllt**, da der thermische Betriebspunkt innerhalb der Kennlinie für den S1-Betrieb liegt.

Schritt 5: Auswahl des Servoverstärkers MDx_B

Auswahl des Servoverstärkers mit Hilfe der "Betriebsanleitung Synchrone Linearmotoren SL2".

Mit Nenngeschwindigkeit 6 m/s und \(F_{\text{max}} = 5440,3 \text{ N} \) ergibt sich ein MDX61B0300.

Schritt 6: Auswahl des Bremswiderstandes

Zur Auswahl des Bremswiderstandes werden die maximal geforderte und die mittlere Leistung, wenn der Bremswiderstand eingeschaltet ist, ermittelt. Der Bremswiderstand ist aktiv in Abschnitt 3, siehe Bild 99.

Maximale Leistung des Bremswiderstandes am Beginn von Abschnitt 3:

\[P_{\text{max}} = F_{\text{max}} \times v_{\text{max}} \times \eta \]

\[P_{\text{max}} = 5071,7 \text{ N} \times 6 \text{ m/s} \times 0,9 = 27,4 \text{ kW} \]

Verfahrzyklus Abschnitt 3:

Mittlere Bremsleistung:

\[P_3 = \frac{P_{\text{max}}}{2} = 13,7 \text{ kW} \]

Bei einer Einschaltdauer \(ED \) von

\[ED = \frac{t_3}{t} = \frac{0,167 \text{ s}}{1 \text{ s}} = 17 \% \]

Mit Hilfe des Systemhandbuchs MOVIDRIVE® wird ein Bremswiderstand BW012-050 gewählt.
Schritt 7:
Bestimmung der Sekundärteile für den Verfahrweg

Die erforderliche Länge eines Sekundärteils errechnet sich aus:

\[s_s \geq s + L_p + (2 \times s_e) \]

\[s_s \geq 2,0 \text{ m} + 0,72 \text{ m} \geq 2,72 \text{ m} \]

Für den Endschalterbereich \(s_e \) wurden 10 mm je Seite vorgesehen. Überfährt der Antrieb die Endschalter, wird er zusätzlich durch die Endlagendämpfer abgebremst. In diesem Fall muss das Primärteil das Sekundärteil nicht mehr vollständig überdecken.

Es werden

- 5 x 512 mm-Stücke SL2-S-150-512
- 3 x 64 mm-Stücke SL2-S-150-064

ausgewählt.

Schritt 8:
Auswahl der Zusatzkomponenten

Zur Projektierung des Gesamtantriebs benötigen Sie weitere Komponenten, die nicht zum Lieferumfang von SEW gehören.

Im Falle der Fahrachse sind dies:

1. Hiperface-Absolutgeber (Stegmann Lincooder) oder Inkrementalgeber,
2. Linearführungen,
3. Schleppkette,
4. Motor- und Geberkabel schleppkettentauglich,
5. Endlagendämpfer,
6. eventuell externe Notbremse.
Projektierungsbeispiel 1B Hubwerk (z-Achse)

(Maschinen-Nullpunkt = obere Ruheposition, positive Verfahrrichtung: nach oben)

Schritt 1:

Verfahrrzyklus ermitteln

1, 2, 3, 4, 5 = Abschnitte des Verfahrrzyklus

Berechnung der geforderten Beschleunigung unter der Annahme Dreiecksbetrieb:

\[
a_{\text{max}} = \frac{v_{\text{max}}^2}{2 \times \frac{S}{2}} = \frac{(6 \text{ m/s})^2}{0.8 \text{ m}} = 45 \text{ m/s}^2
\]

\[
t = \frac{v_{\text{max}}}{a_{\text{max}}} = \frac{6 \text{ m/s}}{45 \text{ m/s}^2} = 0.133 \text{ m/s}
\]

Schritt 2:

Motorbaugröße abschätzen

\[
F_{\text{mN}} \leq F_1
\]

\[
F_{\text{mN}} = m_L \times [a_{\text{max}} + (g \times \sin 90^\circ)] \times 1.5
\]

\[
F_{\text{mN}} = 25 \text{ kg} \times (45 \text{ m/s}^2 + 9.81 \text{ m/s}^2) \times 1.5 = 2055 \text{ N}
\]

Aus der Motortabelle wird ein SL2-P-100M-060 ausgewählt mit:

- \(F_1 = 3000 \text{ N},\)
- \(v_1 = 6 \text{ m/s},\)
- \(F_D = 8570 \text{ N},\)
- \(m_P = 18.9 \text{ kg}.)
Reibkraft:
\[F_R = (F_G + F_D) \times \mu \]
\[F_R = [(m_L + m_P) \times g \times \cos 90° + F_D] \times \mu \]
\[F_R = 8570 \text{ N} \times 0.01 = 85.7 \text{ N} \]

Gewichtskraft zuzüglich Prozesskraft (Gewichtskraft + Zusatzmasse)
\[F_Z = (m_L + m_P + m_Z) \times g \]
\[F_Z = (25 \text{ kg} + 18.9 \text{ kg} + 5 \text{ kg}) \times 9.81 \text{ m/s}^2 = 480 \text{ N} \]
Die Haltebremse des Hubwerks und die Schleppkette mit Kabel und Geber werden zusammen mit 5 kg berücksichtigt.

Dynamische Beschleunigungskraft:
\[F_A = (m_L + m_P + m_Z) \times a_{\text{max}} \]
\[F_A = (25 \text{ kg} + 18.9 \text{ kg} + 5 \text{ kg}) \times 45 \text{ m/s}^2 = 2200 \text{ N} \]

Damit ergibt sich für die einzelnen Bewegungsabschnitte:

<table>
<thead>
<tr>
<th>Abschnitt</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Weg [m]</td>
<td>0.4</td>
<td>-0.4</td>
<td>-0.4</td>
<td>0.4</td>
<td>0.4</td>
</tr>
<tr>
<td>Zeit [s]</td>
<td>0.5</td>
<td>0.133</td>
<td>0.133</td>
<td>0.133</td>
<td>0.133</td>
</tr>
<tr>
<td>Endgeschwindigkeit [m/s]</td>
<td>0.4</td>
<td>-6.0</td>
<td>0.133</td>
<td>0.133</td>
<td>0.133</td>
</tr>
<tr>
<td>Beschleunigung [m/s²]</td>
<td>0.133</td>
<td>45.0</td>
<td>45.0</td>
<td>45.0</td>
<td>-45.0</td>
</tr>
<tr>
<td>Vorschubkraft [N]</td>
<td>394.3</td>
<td>-1805.7</td>
<td>2594.3</td>
<td>2765.7</td>
<td>-1634.3</td>
</tr>
</tbody>
</table>

Damit liegen alle Betriebspunkte innerhalb der dynamischen Grenzkraftkennlinie und die maximale Vorschubkraft ist
\[F_{v\text{max}} = F_A + F_Z + F_R = 2765.7 \text{ N} \]

Forderung: \(F_{v\text{max}} \leq F_1 \)
\[2765.7 \text{ N} \leq 3700 \text{ N} \rightarrow \text{Forderung ist erfüllt.} \]
Schritt 4: Projektierungsbeispiel eines linearen Servoantriebs SL2

Um die thermische Belastung des Motors zu ermitteln, werden die Effektivkraft und die mittlere Geschwindigkeit ermittelt.

\[F_E = \sqrt{\frac{\sum (F_i^2 \times t)}{t}} \]

\[F_E = 1667 \text{ N} \]

Da im gesamten Fahrzyklus \(v_{\text{max}} \) immer \(\leq v_1 \), ist damit automatisch die mittlere Geschwindigkeit auch \(< v_{\text{Nenn}} \).

Forderung: \(F_E \leq F_{\text{Nenn}} = 1800 \text{ N} \)

\[1667 \text{ N} \leq 1800 \text{ N} \rightarrow \text{Forderung ist erfüllt}, \text{ da der thermische Betriebspunkt innerhalb der Kennlinie für den S1-Betrieb liegt.} \]

Schritt 5: Auswahl des Servoantriebs MDx_B

Auswahl des Servoantriebs MDx_B mit Hilfe der "Betriebsanleitung Synchrone Linearmotoren SL2".

Forderung: \(F_{v_{\text{max}}} \leq F_{\text{Tabelle}} \)

Bei MDX61B0220 gilt

\[2765,7 \text{ N} < 3300 \text{ N} \rightarrow \text{Forderung ist erfüllt.} \]

Bei elektrisch haltenden Hubwerken muss geprüft werden, ob der Servoantrieb dauerhaft den Strom für die Haltekraft aufbringen kann. Dies gilt auch, wenn der gesamte Strom durch eine IGBT-Brücke fließt.

Kraftkonstante / Nennpunkt

\[k_N = \frac{F_{\text{Nenn}}}{I_{\text{Nenn}}} = \frac{1800 \text{ N}}{23,3 \text{ A}} = 77,3 \text{ N/A} \]

Ermitteln der zulässigen Dauerkraft:

\[F_{\text{Dauer}} \leq \frac{I_{\text{Nenn_Verstärker}}}{\sqrt{2}} \times k_N \]

\[F_{\text{Dauer}} \leq \frac{46 \text{ A}}{\sqrt{2}} \times 77,3 \text{ N/A} \]

\[F_{\text{Dauer}} \leq 2514 \text{ N} \]

Forderung: \(F_{\text{Dauer}} > F_{V \text{ Abschnitt 1}} \)

\[2514 \text{ N} > 394,3 \text{ N} \rightarrow \text{Forderung ist erfüllt.} \]
Zur Auswahl des Bremswiderstandes werden die maximal geforderte und die mittlere Leistung ermittelt, wenn der Bremswiderstand eingeschaltet ist. Der Bremswiderstand ist aktiv in Abschnitt 3 und 5.

Maximale Leistung des Bremswiderstandes am Beginn von Abschnitt 3 des Verfahrzyklus:

\[P_{\text{max}} = F_{\text{max}} \times v_{\text{max}} \times \eta \]

\[P_{\text{max}} = 2594,3 \text{ N} \times 6 \text{ m/s} \times 0,9 = 14 \text{ kW} \]

Verfahrzyklus Abschnitt 3:
Mittlere Bremsleistung:

\[P_3 = \frac{P_{\text{max}}}{2} = 7 \text{ kW} \]

Einschaltdauer: \(t_3 = 0,133 \text{ s} \)

Verfahrzyklus Abschnitt 5:
Mittlere Bremsleistung:

\[P_5 = \frac{1}{2} \times F_{\text{max}} \times v_{\text{max}} \times \eta = 0,5 \times 1634,3 \text{ N} \times 6 \text{ m/s} \times 0,9 = 4,4 \text{ kW} \]

Einschaltdauer: \(t_5 = 0,133 \text{ s} \)

Verfahrzyklus Abschnitt 3 und 5:
Mittlere Leistung:

\[P_{\text{avg}} = \frac{(P_3 \times t_3) + (P_5 \times t_5)}{t_3 + t_5} = \frac{(7 \text{ kW} \times 0,133 \text{ s}) + (4,4 \text{ kW} \times 0,133 \text{ s})}{0,266 \text{ s}} = 5,7 \text{ kW} \]

Bei einer Einschaltdauer von:

\[ED = \frac{t_3 + t_5}{t} = \frac{0,266 \text{ s}}{1 \text{ s}} = 27 \% \]

Mit Hilfe des Systemhandbuches Movidrive® B wird ein Bremswiderstand BW018-035 gewählt.
Schritt 7:
Bestimmung der Sekundärteile für den Verfahrweg

Die erforderliche Länge eines Sekundärteils errechnet sich aus:

\[s_s \geq s + L_P + (2 \times s_E) \]
\[s_s \geq 0,8 \, m + 0,544 \, m + 0,02 \, m \geq 1,346 \, m \]

Für den Endschalterbereich wurden 10 mm je Seite vorgesehen. Überfährt der Antrieb die Endschalter, wird er zusätzlich durch die Endlagendämpfer abgebremst. In diesem Fall muss das Primärteil das Sekundärteil nicht mehr vollständig überdecken.

Es werden

- 2 x 512 mm-Stücke SL2-S-100-512,
- 1 x 256 mm-Stücke SL2-S-100-256,
- 1 x 128 mm-Stücke SL2-S-100-128

ausgewählt.

Schritt 8:
Auswahl der Zusatzkomponenten

Zur Projektierung des Gesamtantriebs benötigen Sie weitere Komponenten, die nicht im Lieferumfang von SEW gehören.

Im Falle der Hubachse sind dies:

1. Hiperface-Absolutgeber (Stegmann Lincoder),
2. Linearführungen,
3. Schleppkette,
4. Motor- und Geberkabel schleppkettentauglich,
5. Endlagendämpfer,
6. externe Betriebs- und Haltebremse.
Index

A
- Achs-zu-Achs-Kommunikation ... 97
- Asynchrone Motoren ... 91
- Aufbau und Funktionsweise .. 56
- Aufbau und Funktionsweise induktiver Wegmess-Systeme 63
- Aufbau und Funktionsweise magnetischer Wegmess-Systeme 62
- Aufbau und Funktionsweise optischer Wegmess-Systemen 61
- Aufbereitung des Drehzahl-Sollwertes 85
- Azyklischer Datenverkehr ... 94

B
- Beschleunigungs-Vorsteuerung ... 87
- Blockförmige Speisung ... 21
- Bremsen für Linearmotoren ... 46
- Bremsenanbau an Linearmotor SL2-Advance-/Power-System 47

D
- Diagnosebus .. 98
- Drehzahl-Istwertfilter ... 85
- Drehzahlregler ... 86
- Dynamische Motorkennlinie .. 23

E
- Elektromagnetisch betätigte Bremse 46
- Elektromotorisch betätigte Bremse .. 46
- Ethernet in Feldbus-Anwendungen .. 96

F
- Federdruckbremse .. 43
- Feldbussystem INTERBUS-S ... 95
- Feldbussystem Profibus DP .. 94

G
- Geschlossene Systeme ... 62

H
- Haltebremse .. 45

K
- Kegelraddgetriebe ... 104
- Kurzstatorprinzip ... 35

L
- Lage- und Drehzahlerfassung .. 83
- Langstatorprinzip ... 34
- Linearführungssystem ... 39

M
- Motorkennlinie ... 31, 36

N
- Nachteil der blockförmigen Speisung 22

O
- Offene Systeme ... 62
- Optimaler Betriebspunkt ... 19

P
- Pneumatisch betätigte Bremse ... 46
- Prinzipien der synchronen Linearmotoren 34
- Projektierungsablauf Teil 1, Servogetriebe 110
- Projektierungsablauf Teil 2, Servogetriebe 111
- Projektierungsablauf Teil 3, Servomotoren 112
- Projektierungsablauf Teil 4, Servomotoren 113
- Puffer ... 41
- Puffer / Stoßdämpfer ... 40

R
- Resolver ... 84

S
- Schleppketten und Leitungen .. 42
- Servo-Kegelraddgetriebe ... 102
- Servo-Planetengeräte .. 100
- SEW-Lösung
 - Montagekühlbrücken ... 37
- Sin-/cos-Geber ... 84
- Sinusförmige Speisung ... 20
- Spielbehaltete Lastankoppelung ... 88
- Spielfreie Lastankoppelung ... 87
- Steifigkeit ... 89
- Stirnraddgetriebe ... 103
- Stoßdämpfer ... 41
- Stromverhältnisse im Stator .. 19
- Struktur der Drehzahlregelung ... 82
- Synchronen Motoren .. 91

T
- Thermische Motorkennlinie .. 24
- TTL-Geber (1024 Striche) .. 84

V
- Vorteile der blockförmigen Speisung 22
- Vorteile von synchronen Linearmotoren 33

W
- Wasserkühlung .. 38
- Wasserkühlung mit thermischer Kapselung 39
- Weitere Komponenten eines Servosystems 9

Z
- Zyklischer Datenverkehr ... 94
Wie man die Welt bewegt

Mit Menschen, die schneller richtig denken und mit Ihnen gemeinsam die Zukunft entwickeln.

Mit einem Service, der auf der ganzen Welt zum Greifen nahe ist.

Mit Antrieben und Steuerungen, die Ihre Arbeitsleistung automatisch verbessern.

Mit einem umfassenden Know-how in den wichtigsten Branchen unserer Zeit.

Mit kompromissloser Qualität, deren hohe Standards die tägliche Arbeit ein Stück einfacher machen.

Mit einer globalen Präsenz für schnelle und überzeugende Lösungen. An jedem Ort.

Mit innovativen Ideen, in denen morgen schon die Lösung für übermorgen steckt.

Mit einem Auftritt im Internet, der 24 Stunden Zugang zu Informationen und Software-Updates bietet.

SEW-EURODRIVE
Driving the world

SEW-EURODRIVE GmbH & Co KG
P.O. Box 3023 · D-76642 Bruchsal / Germany
Phone +49 7251 75-0 · Fax +49 7251 75-1970
sew@sew-eurodrive.com

→ www.sew-eurodrive.com