

Catalog

Gear Units

Edition 03/2020 29154650/EN

Table of contents

1	Intro	duction	6
	1.1	The SEW-EURODRIVE group of companies	6
	1.2	Documentation	8
	1.3	Decimal separator in numerical values	10
	1.4	Product names and trademarks	10
	1.5	Copyright notice	10
2	Produ	uct description	11
	2.1	Product features	11
	2.2	Corrosion and surface protection	15
	2.3	Extended storage	17
	2.4	Condition monitoring	18
	2.5	Oil expansion tank	19
	2.6	Agitator designs	20
	2.7	Explosion protection according to ATEX	21
	2.8	Components on the input end	21
3	Over	view of types and type designations	26
	3.1	Overview of gear units	26
	3.2	Designs and options – R, F, K, S, W gear units	27
	3.3	Gear unit nameplate	31
	3.4	Type designation of a gear unit	32
	3.5	Gear unit designs	33
	3.6	Components on the input end	43
4	Proje	ct planning for gear units	44
	4.1	Drive and gear unit selection data	44
	4.2	Project planning sequence	45
	4.3	Project planning notes – R, F, K, S, W gear units	46
	4.4	Service factor	48
	4.5	Overhung and axial loads – R, F, K, S, and W gear units	52
	4.6	Project planning for components on the input end	
	4.7	Multi-stage gearmotors	72
5	Gear	unit mounting positions and order information	74
	5.1	General mounting position information – R, F, K, S, W gear units	74
	5.2	Order information	76
	5.3	Mounting position sheets	79
	5.4	Mounting positions of AC motors	110
6	Desig	gn and operating notes	111
	6.1	Lubricants	111
	6.2	Gear unit venting	132
	6.3	Reduced backlash gear unit design /R	133
	6.4	Assembly/disassembly of gear units with hollow shaft and key	
	6.5	Gear units with hollow shaft	141
	6.6	TorqLOC® mounting system for gear units with hollow shaft	143
	6.7	Shouldered hollow shaft option with shrink disk	144
	6.6	TorqLOC® mounting system for gear units with hollow shaft	143
	6.7	Shouldered hollow shaft option with shrink disk	14

Table of contents

	6.8	Notes on stainless shrink disk or output shaft	150
	6.9	Gear unit mounting	151
	6.10	Torque arms	152
	6.11	Flange contours of RF and RF gear units	154
	6.12	Flange contours of FF, KF, SF and WF gear units	156
	6.13	Flange contours of FAF, KAF, SAF and WAF gear units	158
	6.14	Safety covers	160
	6.15	Technical data condition monitoring	166
7	Impor	tant information on selection tables and dimension drawings	172
	7.1	Information on the selection tables	172
	7.2	Dimension sheet information	174
8	R he	lical gear units	181
	8.1	Selection tables for adapters for mounting IEC/NEMA motors (AM)	181
	8.2	Selection tables for adapters with hydraulic start-up coupling (AT)	199
	8.3	Selection tables for input shaft assembly (AD)	206
	8.4	Dimension sheets for adapters for mounting IEC motors (AM)	219
	8.5	Dimension sheets for adapters for mounting NEMA motors (AM)	264
	8.6	Dimension sheets for adapters with slip clutch (AR)	266
	8.7	Dimension sheets for adapters with hydraulic start-up coupling (RAT)	268
	8.8	Dimension sheets for input shaft assembly (AD)	271
	8.9	Dimension sheets for input shaft assembly with motor platform (AD/P)	273
9	F pa	rallel-shaft helical gear units	275
	9.1	Selection tables for adapters for mounting IEC/NEMA motors (AM)	275
	9.2	Selection tables for adapters with hydraulic start-up coupling (AT)	291
	9.3	Selection tables for input shaft assembly (AD)	297
	9.4	Dimension sheets for adapters for mounting IEC motors (AM)	308
	9.5	Dimension sheets for adapters for mounting NEMA motors (AM)	380
	9.6	Dimension sheets for adapters with slip clutch (AR)	
	9.7	Dimension sheets for adapters with hydraulic start-up coupling (FAT)	384
	9.8	Dimension sheets for input shaft assembly (AD)	
	9.9	Dimension sheets for input shaft assembly with motor platform (AD/P)	389
10	K he	lical-bevel gear units	
	10.1	Selection tables for adapters for mounting IEC/NEMA motors (AM)	391
	10.2	Selection tables for adapters with hydraulic start-up coupling (AT)	410
	10.3	Selection tables for input shaft assembly (AD)	416
	10.4	Dimension sheets for adapters for mounting IEC motors (AM)	
	10.5	Dimension sheets for adapters for mounting NEMA motors (AM)	519
	10.6	Dimension sheets for adapters with slip clutch (AR)	521
	10.7	Dimension sheets for adapters with hydraulic start-up coupling (KAT)	523
	10.8	Dimension sheets for input shaft assembly (AD)	525
	10.9	Dimension sheets for input shaft assembly with motor platform (AD/P)	527
11	S he	lical-worm gear units	529
	11.1	Selection tables for adapters for mounting IEC/NEMA motors (AM)	529
	11 2	Selection tables for adapters with hydraulic start-up coupling (AT)	538

Table of contents

	Index		659
13	Addres	s directory SEW-EURODRIVE	639
	12.6	Dimension sheets for input shaft assembly (AD)	638
	12.5	Dimension sheets for adapters with slip clutch (AR)	637
	12.4	Dimension sheets for adapters for mounting NEMA motors (AM)	636
	12.3	Dimension sheets for adapters for mounting IEC motors (AM)	627
	12.2	Selection tables for input shaft assembly (AD)	624
	12.1	Selection tables for adapters for mounting IEC/NEMA motors (AM)	620
12	SPIRO	PLAN® W gear units	620
	11.16	Technical data of S., SF., SA., SAF 97	616
	11.15	Technical data of S., SF., SA., SAF 87	
	11.14	Technical data of S., SF., SA., SAF 77	608
	11.13	Technical data of S., SF., SA., SAF 67	604
	11.12	Technical data of S., SF., SA., SAF 57	600
	11.11	Technical data of S., SF., SA., SAF 47	596
	11.10	Technical data of S., SF., SA., SAF 37	592
	11.9	Dimension sheets for input shaft assembly with motor platform (AD/P)	591
	11.8	Dimension sheets for input shaft assembly (AD)	590
	11.7	Dimension sheets for adapters with hydraulic start-up coupling (SAT)	588
	11.6	Dimension sheets for adapters with slip clutch (AR)	586
	11.5	Dimension sheets for adapters for mounting NEMA motors (AM)	584
	11.4	Dimension sheets for adapters for mounting IEC motors (AM)	550
	11.3	Selection tables for input shaft assembly (AD)	543

1 Introduction

1.1 The SEW-EURODRIVE group of companies

1.1.1 Global presence

Driving the world – with innovative drive solutions for all industries and for every application. Products and systems from SEW-EURODRIVE are used all over the world. Be it in the automotive, building materials, food and beverage, or metal-processing industry – the decision to use drive technology "made by SEW-EURODRIVE" stands for reliable products with regard to functionality and investment.

Products and services from SEW-EURODRIVE are represented in all important industries of our time. We also show this presence with subsidiaries and production plants all over the world, as well as with our service, which we see as an integrative part of our portfolio that extends SEW-EURODRIVE's high quality standards.

1.1.2 Always the right drive solution

With the broad product range of SEW-EURODRIVE, which also includes mechatronic drive units, frequency inverters, controllers, software and communication in addition to the tried-and-tested modular system for gearmotors, it is possible to implement the perfect drive solution for every application.

Gear units and motors

Thanks to the modular system, gearmotors can be combined individually according to the required speed and torque ranges, the space requirements and the ambient conditions. Gear units and gearmotors offering a unique and finely tuned performance range and the best economic prerequisites to face any drive challenge.

Motors by SEW-EURODRIVE can be mounted directly or via adapter to SEW-EURODRIVE gear units. They meet all worldwide requirements regarding energy efficiency and technical regulations. A wide range of options and accessories ensures high flexibility for adjusting the motor to the requirements of the user and the application.

Inverter

The proven inverter series MOVITRAC®, MOVIDRIVE® and MOVIAXIS® enhance the gearmotors, forming a combination that blends in perfectly with the existing range of SEW-EURODRIVE systems.

Modular automation system

With its brand MOVI-C®, SEW-EURODRIVE launches a new generation of drive and automation technology. MOVI-C® is the modular automation system that allows for the highest level of system and machine automation. It comprises drive technology, motion control, control technology and visualization.

MOVIDRIVE® modular is the modular application inverter for all types of applications, ranging from simple open-loop speed control to servo drives with kinematic model. MOVIDRIVE® modular can be supplemented by connecting MOVIDRIVE® system single-axis units. These possess functionalities comparable to those of axis modules, but have their own line connection. Especially in the upper power range, MOVIDRIVE® system complements the modular application inverter.

MOVIDRIVE® modular and system are intended for operation at the MOVI-C® CONTROLLER, the controller from SEW-EURODRIVE. They offer a powerful clock-synchronous connection via the integrated EtherCAT®/SBusPLUS communication interface. Other EtherCAT® stations from SEW-EURODRIVE or other manufacturers can be controlled and diagnosed by the MOVI-C® CONTROLLER.

The MOVISUITE® engineering software, with its unique operating philosophy, controls all MOVI-C® hardware and software components. MOVISUITE® was developed with a focus on systematically shortening the startup time and covers the entire engineering process, from planning to diagnostics.

Decentralized drive technology

For economical, decentralized installations, SEW-EURODRIVE offers decentralized drive technology components, such as MOVIMOT®, the gearmotor with integrated frequency inverter or MOVI-SWITCH®, the gearmotor with integrated switching and protection function. SEW-EURODRIVE hybrid cables have been designed specifically to ensure cost-effective solutions, independent of the philosophy behind or the size of the system.

The decentralized drive technology portfolio is complemented by the DRC.. electronic motor, MOVIGEAR® mechatronic drive system, MOVIFIT® decentralized drive controller, MOVIPRO® decentralized drive, positioning, and application controller, as well as MOVITRANS® system components for contactless energy transfer.

The smart energy management system MOVI-DPS® enhances the modular product range of SEW-EURODRIVE. With MOVI-DPS®, SEW-EURODRIVE offers the perfect combination: Conserving resources. Reducing costs.

MOVI-DPS® allows for stable power grids, no power failures, and consequently reliable system availability. MOVI-DPS® is convincing in both, mobile and stationary applications. In addition, MOVI-DPS® can be combined with other systems such as the contactless energy transfer system MOVITRANS®, resulting in further important synergy effects.

Industrial gear units

Power, quality and sturdy design combined in one standard product: With high torque levels, industrial gear units from SEW-EURODRIVE realize major movements. The modular concept will once again provide optimum adaptation of industrial gear units to meet a wide range of different applications.

Individual system solutions with MAXOLUTION®

MAXOLUTION® from SEW-EURODRIVE provides individual application solutions in all areas of system and machine automation. From electromechanical drives, controllers and communication to visualization and the contactless energy transfer system MOVITRANS® up to a comprehensive service portfolio, MAXOLUTION® offers all modules required to design customer-specific solutions for machines and systems.

MAXOLUTION® combines individual products of the proven modular system with innovative system components to form individual solutions that perfectly match the requirements of the specific application – "powered by SEW-EURODRIVE".

Safe - flexible - effective: safetyDRIVE

Guaranteeing the safety of all employees and preventing work accidents while ensuring trouble-free production processes are demands placed on all production areas. safetyDRIVE, the comprehensive safety concept, allows you to implement your machines "safely," in accordance with the currently valid guidelines. With controllers that meet the respective requirement of safety categories or performance levels and that monitor instead of switching off.

All of our drive and frequency inverters provide the function that safely stops the electrical power to the motor (STO). The MOVISAFE® components complete the portfolio – integrated into the inverter as DFS..B or DCS..B option cards or modular as UCS..B safety monitors. The decentralized MOVIFIT® and MOVIPRO® drive technologies with integrated safety functions are ready for use in decentralized installations.

The functionally safe motor options allow for implementing safety functions in safety-related applications. Safety encoders are used to implement safety functions with respect to speed, direction of rotation, standstill, and relative position. Safety brakes can implement safety functions with respect to decelerating and stopping.

1.1.3 Your ideal partner

Its global presence, extensive product portfolio and broad spectrum of services make SEW-EURODRIVE the ideal partner for the machinery and plant construction industry when it comes to providing drive systems for demanding drive tasks in all industries and applications.

For detailed information on the entire SEW-EURODRIVE range of products, refer to our website www.sew-eurodrive.com where you can find out about components, system solutions, services and industries. Via the Online Support, you can access a large selection of documents and tools such as the product configurator and different selection guides as well as all documentation in different languages for download.

1.2 Documentation

1.2.1 Contents of this documentation

This "Gear Units" catalog describes the following product groups offered by SEW-FURODRIVE:

R., F., K., S., and SPIROPLAN® W gear units in combination with:

- AM adapter
- AT adapter
- AD input shaft assembly
- AR slip clutch

The descriptions include:

- Product descriptions
- · Overview of types
- Project planning notes
- Description of mounting positions
- Combination overviews and technical data
- · Dimension sheets

For details on motor options, refer to the AC Motors" catalog.

For information on R.., F.., K.., S.. and SPIROPLAN® W gear units in combination with the AQ adapter for mounting servomotors, refer to the "Servo Gear Units" catalog.

1.2.2 Additional documentation

In addition to this "Gear Units" catalog, you can order or download other documents on the SEW-EURODRIVE website. The complete range of technical documentation is available in various languages for download at our website **www.sew-eurodrive.com**.

Catalogs

- · Servo gear units
- AC motors
- DRS../DR2S.. gearmotors (IE1)
- DRE.. gearmotors (IE2)
- DRN.. gearmotors (IE3)
- DRU..J (IE4) and DRE..J (IE2) synchronous gearmotors
- (E)DRN.. gearmotors 60 Hz
- · Synchronous servomotors
- Synchronous servo gearmotors
- · Asynchronous servo gearmotors
- DRC.. gearmotors
- Gearmotors with single-phase motor
- · Gearmotors with BF../BT.. double brake
- Variable speed gearmotors
- · Pole-changing gearmotors
- · Geared torque motors
- Explosion-proof drives
- · Explosion-proof AC motors

Drive Engineering – Practical Implementation

For detailed documentation about the entire topic of electrical drive engineering, refer to the publications of the "Drive Engineering – Practical Implementation" series:

- Project planning manual Project Planning for Controlled and Non-Controlled Drives
- EMC in Drive Engineering Basic Theoretical Principles and EMC-Compliant Installation in Practice
- Efficient Plant Automation with Mechatronic Drive Solutions

1.3 Decimal separator in numerical values

In this document, a period is used to indicate the decimal separator.

Example: 30.5 kg

1.4 Product names and trademarks

All product names included in this documentation are trademarks or registered trademarks of the respective titleholders.

1.5 Copyright notice

© 2020 SEW-EURODRIVE. All rights reserved. Unauthorized reproduction, modification, distribution or any other use of the whole or any part of this documentation is strictly prohibited.

Product features

2 Product description

2.1 Product features

2.1.1 Operating temperatures

Gear units

The following standard temperature ranges are permitted for filling the gear units according to the lubricant table:

Gear units	Filled with	Permitted standard temperature range
K19, K29, K39, K49	CLP(PG) VG460	-20 °C to +40 °C
K37 , K47, K57– K187		
RX.57 – RX.107	CLP(CC) VG220	-15 °C to +40 °C
R.07 – R.167		
F27 – F157		
S37 – S97	CLP(PG) VG680	0 °C to +40 °C
W10 – W30, W37, W47	CLP(SEW-PG) VG460	-20 °C to +40 °C

The rated data of the gear units and gearmotors specified in the catalog refer to an ambient temperature of +25 $^{\circ}$ C.

INFORMATION

For information on churning losses and thermal rating, refer to chapter "Churning losses and thermal rating" (\rightarrow \bigcirc 47).

Gear units from SEW-EURODRIVE can be operated outside the standard temperature range if project planning is adapted to ambient temperatures from as low as up to -40 °C in the intensive cooling range until up to +60 °C. Project planning must take special operating conditions into account and adapt the drive to the ambient conditions by selecting suitable lubricants and seals.

SEW-EURODRIVE recommends thermal project planning for the drives in general and offers to perform the project planning.

Motors

Motors of the DRN.. product family are designed for use in a temperature range from -20 °C to +40 °C.

This expands the standardized temperature range required by IEC 60034.

Using the motors outside the above temperature range is possible with some special adjustments. Contact SEW-EURODRIVE in this case.

INFORMATION

If the drive is to be operated on a frequency inverter, you must also consider the project planning notes of the inverter and take into account the thermal effects of inverter operation.

2.1.2 Installation altitude

Due to the low air density at high installation altitudes, heat dissipation on the surface of motors and gear units decreases. The rated data listed in the catalog apply to a maximum installation altitude of 1000 m above sea level. Installation altitudes > 1000 m above sea level must be taken into account for the project planning of gear units and gearmotors.

2.1.3 Power and torque

The power and torque ratings refer to mounting position M1 and similar mounting positions in which the input stage is not completely submerged in oil. In addition, the gear-motors are assumed to be standard versions with standard lubrication and under normal ambient conditions.

2.1.4 Noise

The noise levels of all SEW-EURODRIVE gear units, motors and gearmotors are well within the maximum permitted noise levels set forth in the VDI guideline 2159 for gear units and IEC/EN 60034 for motors.

2.1.5 Painting

The gear units, motors and gearmotors from SEW-EURODRIVE are painted as follows:

Gear units	Painting	
R, F, K, S, W gear units	blue/gray RAL 7031	

Exception: SPIROPLAN® W..10DR2S5 gearmotors have an aluminum housing and are supplied unpainted as standard.

Special paintings are available on request.

2.1.6 Surface and anti-corrosion protection

If required, all gear units, motors and gearmotors from SEW-EURODRIVE can also be supplied with surface protection for applications in extremely humid and chemically aggressive environments.

2.1.7 Heat dissipation and accessibility

Make sure to maintain adequate distance from heat-sensitive components when installing gearmotors/geared brakemotors to the driven machine. The distance is necessary for air circulation for the heat dissipation, for maintenance of the brake and of the MOVIMOT® inverter, if installed.

Please also observe to the notes in the motor dimension sheets in the "AC Motors" catalog.

Please note that the weight information shown in the catalogs only apply to the gear units and gearmotors without lubricant. The weight varies according to gear unit design and gear unit size. The lubricant fill depends on the mounting position, which is the reason that no universally applicable information can be provided. For recommended lubricant fill quantities depending on the mounting position, refer to the chapter "Lubricant fill quantities" (\rightarrow 127). For the exact weight, refer to the quotation or the order confirmation.

2.1.9 Backlash reduction

Helical, parallel-shaft helical and helical-bevel gear units with reduced backlash (only K..7) are available as of gear unit size 37.

The rotational clearance of these gear units is considerably less than that of the standard designs so that positioning tasks can be solved with great precision. The rotational clearance is specified in angular minutes in the chapter "Geometrically possible combinations". The rotational clearance for the output shaft is specified without load (max. 1% of the rated output torque); the gear unit input side is blocked. The specified values have a tolerance of \pm 2 angular minutes. For further information, refer to the chapter "Reduced backlash gear unit design /R" (\rightarrow 133).

2.1.10 Multi-stage gearmotors

You can achieve particularly low output speeds by using compound gear units or compound gearmotors. This requires a helical gear unit on the input end as a second gear unit.

It may be necessary to limit the maximum motor torque to match the maximum permitted output torque of the gear unit.

2.1.11 Gear units and gearmotors for agitators and mixers

A special design variant of the helical gear, parallel-shaft and helical-bevel gear units are gear units and gearmotors equipped with an extended output bearing hub (RM../FM../FAM../KM.. and KAM..). These units are designed especially for agitator and mixer applications and allow for high bending moments as well as overhung and axial loads. The remaining data corresponds to that of standard gear units and gearmotors. For further information on gear unit and gearmotor designs for agitators and mixers, refer to chapter "Agitator designs" (\rightarrow \blacksquare 20).

2.1.12 SPIROPLAN® gearmotors

SPIROPLAN® right-angle gearmotors are robust, single- and two-stage right-angle gearmotors with SPIROPLAN® gearing. The difference to the helical-worm gear units is the material combination of the steel-on-steel gearing, the special tooth meshing relation and the aluminum housing. As a result, SPIROPLAN® right-angle gearmotors are wear-free and lightweight.

The particularly short design and the aluminum housing make for very compact and lightweight drive solutions.

The wear-free gearing and the life-long lubrication facilitate long periods of maintenance-free operation. The identical hole spacing in the foot and face as well as the same axle height to both makes for a number of mounting options.

On request, SPIROPLAN® gearmotors can be equipped with a torque arm.

2.1.13 Swing base

A swing base is a drive unit consisting of helical-bevel gear unit, hydraulic centrifugal coupling and electric motor. The complete arrangement is mounted to a rigid mounting rail.

Motor swings are available with the following optional accessories:

- Torque arm
- Mechanical thermal monitoring device
- Proximity-type thermal monitoring device

Contact SEW-EURODRIVE for additional information.

2.1.14 International markets

On request, SEW-EURODRIVE supplies motors that are certified or registered for the relevant market.

Marks	Meaning	
CE	CE mark to state compliance with European guidelines, such as the Low Voltage Directive	
ATEX mark to state compliance with the European Directive EC		
71 °	UR logo to confirm that UL (Underwriters Laboratory) is informed about the registered components; register number by UL: E337323	
CSA mark to confirm the Canadian Standard Association (C and the market conformity of AC motors		
rnr	EAC mark (EurAsian Conformity)	
EAC	Confirms compliance with the technical regulations of the Eurasion Economic/Customs Union	
CDC F	Ex EAC mark (EurAsian Conformity)	
thl Ex	Confirms compliance with the technical regulations of the Eurasian Economic/Customs Union	
	UA.TR (UkrSEPRO) mark (Ukrainian Certification of Products)	
013	Confirms compliance with the technical regulations of the country Ukraine	

2.2 Corrosion and surface protection

2.2.1 General information

For motor and gear unit operation in aggressive environments, SEW-EURODRIVE optionally offers the following preventive measure:

- KS corrosion protection for motors
- · Surface protection OS for motors and gear units

For motors, optimum protection is offered by a combination of KS corrosion protection and OS surface protection.

Optional preventive measures are also available for the output shafts.

2.2.2 OS surface protection

As an option for standard surface protection, motors and gear units are also available with surface protection OS1 to OS4. The special measure "Z" is also available in addition. Special measure "Z" means that large contour recesses are filled with rubber before painting.

Surface protection ¹⁾²⁾		Ambient conditions	Sample applications
Standard		Suitable for machines and systems in buildings and rooms indoors with neutral atmospheres. Based on corrosivity category ³⁾ : C1 (negligible)	 Machines and systems in the automotive industry Transport systems in logistics Conveyor belts at airports
OS1		Suitable for environments prone to condensation and atmospheres with low humidity or contamination, such as applications outdoors under roof or with protection device. Based on corrosivity category ³⁾ : C2 (low)	Systems in saw millsHall gatesAgitators and mixers
OS2		Suitable for environments with high humidity or moderate atmospheric contamination, such as applications outdoors subject to direct weathering. Based on corrosivity category ³⁾ : C3 (moderate)	 Applications in amusement parks Cable cars and chairlifts Applications in gravel plants Systems in nuclear power plants
OS3	49	Suitable for environments with high humidity and occasionally severe atmospheric and chemical contamination. Occasional acidic or caustic wet cleaning. Also for applications in coastal areas with moderate salt load. Based on corrosivity category ³⁾ : C4 (high)	Sewage treatment plantsPort cranesMining applications

Surface protection ¹⁾²⁾		Ambient conditions	Sample applications
OS4	*Syra	Suitable for environments with permanent humidity or severe atmospheric or chemical contamination. Regular acidic and caustic wet cleaning, also with chemical cleaning agents.	Drives in malting plantsWet areas in the beverage industryConveyor belts in the food industry
		Based on corrosivity category ³ : • C5-1 (very high)	

- 1) Motors/brakemotors in degree of protection IP56 or IP66 are only available with OS2, OS3, or OS4 surface protection.
- 2) Gearmotors with OS2 OS4 surface protection are only offered in combination with KS corrosion protection.
- 3) According to DIN EN ISO 12944-2, classification of ambient conditions

2.2.3 Special protection measures

Gearmotor output shafts can be treated with special optional protective measures for operation subject to severe environmental pollution or in particularly demanding applications.

Measure	Protection principle	Suitable for
FKM oil seal	High quality material	Drives subject to chemical contamination
Coating on output shaft end	Surface treatment on the contact surface of the oil seal	Severe environmental impact and in conjunction with fluorocarbon rubber oil seal
Output shaft made of stain- less steel	Surface protection with high-quality material	Particularly demanding applications in terms of surface protection

2.2.4 NOCO® fluid

As standard, SEW-EURODRIVE supplies NOCO® fluid corrosion protection and lubricant with every hollow shaft gear unit. Use NOCO® fluid when installing hollow shaft gear units. Using this fluid helps prevent contact corrosion and makes it easier to disassemble the drive at a later time. NOCO® fluid is also suitable for protecting machined metal surfaces that do not have corrosion protection, such as parts of shaft ends or flanges. You can also order NOCO® fluid in larger quantities from SEW-EURODRIVE.

Batch size	Packaging type	Part number
5.5 g	Sachet	09107819
100 g	Tube	03253147
1 kg	Tub	09107827

NOCO® fluid is a food grade substance according to NSF-H1. The food-grade NOCO® fluid has a corresponding NSF-H1 label on the packaging.

2.3 Extended storage

2.3.1 Design

SEW-EURODRIVE recommends the "extended storage" gear unit design for storage periods longer than 9 months. The lubricant of those gear units is then mixed with a VCI anti-corrosion agent (volatile corrosion inhibitors). Please note that this VCI anti-corrosion agent is only effective in a temperature range of -25 °C to +50 °C. The flange contact surfaces and shaft ends are also treated with an anti-corrosion agent. As standard, the gear unit with "extended storage" option will be supplied with OS1 surface protection. Instead of OS1, you can order OS2, OS3 or OS4.

INFORMATION

For SPIROPLAN® gear units, the extended storage option is not available yet.

INFORMATION

To prevent the VCI anti-corrosion agent from evaporating, the gear units in "extended storage" design must remain tightly sealed until startup.

The gear units come with the oil fill according to the specified mounting position (M1 – M6). Always check the oil level before you take the gear unit into operation.

2.3.2 Storage conditions

Observe the storage conditions specified in the following table for extended storage:

Climate zone	Packaging ¹⁾ .	Storage ²⁾ .	Storage duration
Temperate	 Packed in containers With desiccant and moisture indicator sealed in the plastic wrap 	 Under roof Protected against rain and snow Protected against shocks	Up to 3 years with regular inspection of the packaging and humidity indicator (rel. humidity < 50%)
(Europe, USA, Canada, China and Russia, ex- cluding tropical		• Under roof and enclosed at constant temperature and atmospheric humidity (5 °C < 9 < 50 °C, relative humidity < 50%)	2 years or more with regular inspectionsCheck for cleanness
zones)	Open	No sudden temperature variations	and mechanical
	•	Controlled ventilation with filter (free from dust and dirt)	damage during the inspection
		No aggressive vapors	Check corrosion protection
		No shocks	

2.4 Condition monitoring

2.4.1 /DUO10A oil aging sensor

The DUO10A diagnostic unit consists of a temperature sensor and the actual evaluation unit. The service life curves of the oil grades common in SEW-EURODRIVE gear units are stored in the evaluation unit. SEW-EURODRIVE can customize any oil grade in the diagnostic unit. Standard parameterization is performed directly on the evaluation unit. During operation, this unit analyzes the oil temperature to calculate the remaining service life in days until the next oil change. The remaining service life is displayed directly on the evaluation unit. When the service life is expired, a binary signal can be sent to a higher-level system and evaluated or visualized in the system.

Using the DUO10A diagnostic unit, the system operator no longer replaces the oil within predefined intervals, but can adapt the replacement interval individually to the actual load. The benefits are reduced maintenance and service costs and increased system availability.

For the technical data and part numbers of the DUO10A oil aging sensor, refer to chapter "Information on oil aging sensor /DUO10A" ($\rightarrow \mathbb{B}$ 166).

2.4.2 /DUV40A vibration monitoring system

The DUV40A vibration monitoring system is used to detect damage of gear units and gearmotors early (e.g. bearing damage or imbalances). For this, permanent broadband frequency-selective monitoring of the gearmotor is used. Apart from the vibration analysis, additional measured values of up to 3 signal encoders can be detected, re-

¹⁾ The packaging must be carried out by an experienced company using the packaging materials that have been explicitly specified for the particular application

²⁾ SEW-EURODRIVE recommends to store the gear units according to the mounting position

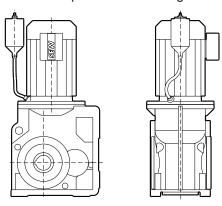
corded and analyzed. The additional signals can be used as reference values for signal analysis e.g. to trigger event-based measuring tasks. After the analysis and depending on alarm limits defined during rated operation of the drive (teach-in mode), the system can switch outputs and display the state using LEDs.

Configuration and visualization of the DUV40A system are realized via the SmartWeb software. If you use several DUV40A systems, you can control them via the SmartUtility Light software centrally from one PC.

If you use the SmartUtility software that is subject to a fee, you can analyze measurement data in the SmartUtility Viewer and download configurations or upload them onto other devices.

For information on the scope of delivery, part number and technical data, refer to chapter "Information on the /DUV40A vibration monitoring system" (\rightarrow 168).

2.5 Oil expansion tank


The oil fill level for gear units in mounting position M4 has technical reasons. In case of unfavorable circumstances, oil may leak from the breather valve of these gear units. Use an oil expansion tank to reliably avoid oil from leaking. The oil expansion tank provides additional space for the lubricant to expand.

In case of gear units and gearmotors of size 107 and larger, an oil expansion tank is always required for operation in mounting position M4.

SEW-EURODRIVE recommends using an oil expansion tank for gear units and gearmotors in mounting position M4, in the following cases:

- For input speeds > 2000 min⁻¹
- For sizes 77 97 and input speeds > 1800 min⁻¹

The following figure shows the oil expansion tank of a gearmotor.

9007204233922315

The oil expansion tank is delivered as assembly kit for mounting onto the gearmotor. In case of limited space or of gear units without motor, the oil expansion tank can also be mounted to nearby machine parts.

INFORMATION

Transverse acceleration is not permitted for gear units with expansion tank with fixed piping for third party motors and servomotors.

For further information, contact your SEW-EURODRIVE sales representative.

2.6 Agitator designs

All gear units in agitator design are equipped with an extended bearing hub especially suitable for mixing and agitating applications. Agitator gear units are based on 3 proven standard gear unit series by SEW-EURODRIVE. Almost any agitator, mixer, blender or kneader application in a whole range of different industries can be provided by using one of the agitator designs of the gear unit.

Advantages of agitator gear units:

- FEM-optimized housing and a special agitator flange for particularly high permitted overhung loads
- · No additional bearing required for the agitator shaft
- Shaft and flange dimensions are compatible with standard dimensions
- Many different options and design variants for optimum adaptation to the application
- Gear units/gearmotors also available in explosion-proof design
- · Global service provided by SEW-EURODRIVE

	RM series helical gear units (2 and 3 stages)	Parallel-shaft hel- ical gear units FM/FAM series (2 and 3 stages)	Helical-bevel gear units KM/KAM series (3 stages)
Sizes:	57 / 67 / 77 / 87 / 97 / 107 / 127 / 137 / 147 / 167	67 / 77 / 87 / 97 / 107 / 127 / 157	67 / 77 / 87 / 97 / 107 / 127 / 157
Gear ratio i:	4.29 – 289.74	3.87 – 281.71	5.20 – 197.37
Maximum output torque in Nm:	450 – 20000	820 – 20000	820 – 20000
Maximum permitted output overhung load in N:	4000 – 120000	35000 – 135000	20000 – 135000

Available options:

- Double oil seal on the output side for additional protection against leaks
- Grease nipple for further greasing of output shaft bearings
- The gear units use series housings and series gearing components.
 The special flange is bolted to the output side of the standard gear unit.
- Energy efficiency classes IE1 IE4 for gearmotors
- Motor power range of 0.12 200 kW
- Motor adapter AM.. for mounting IEC and NEMA motors

Also available for FM../FAM... and KM../KAM.. series:

- Reinforced bearings also opposite the output side. These increase the permitted overhung load, particularly for high output speeds and low gear ratios.
- Drywell design with leak sensor prevents the product from being contaminated by leaking lubricant.

2.7 **Explosion protection according to ATEX**

2.7.1 Area of application

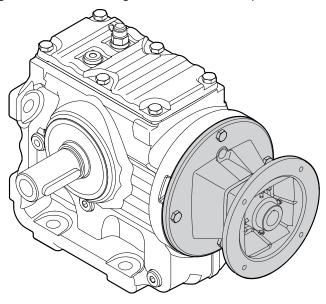
ATEX directive 2014/34/EU includes requirements for devices and protective systems for designated use in potentially explosive atmospheres for the European Economic Area. Other European countries, such as Switzerland, have since fallen in with this regulation.

2.7.2 Available designs according to ATEX

SEW-EURODRIVE supplies explosion-proof gear units, gearmotors, options and accessories in accordance with the EU Directive "ATEX" 2014/34/EU.

Depending on equipment and dimensioning, the following gear unit and motor designs are available:

- Gear units in II2GD design for use in zones 1, 2, 21 and 22
- Motors in II3GD design for use in zones 2 and 22
- Motors in II3G design for use in zone 2


2.7.3 Other documentation

For detailed information about explosion-protected SEW-EURODRIVE products, refer to the "Explosion-Protected DRN.. gearmotors (IE3) in ATEX and IECEx" catalog and the "Explosion-Protected AC Motors" catalog.

2.8 Components on the input end

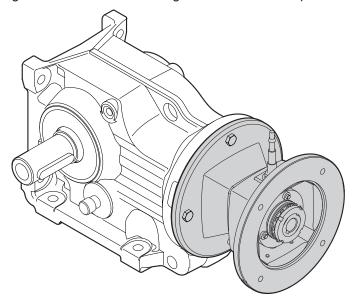
2.8.1 Gear units with IEC or NEMA adapter AM

The following figure shows a helical gear unit with AM adapter:

21431258123

AM adapters are used for mounting motors according to IEC standard or NEMA (type C or TC) to helical gear units, parallel-shaft helical gear units, helical-bevel gear units, helical-worm gear units, and SPIROPLAN® gear units from SEW-EURODRIVE.

Adapters are available for IEC motor sizes 63 to 280. Adapters are available for NEMA motor sizes 56 to 365.


The designation of the adapter size corresponds to the respective IEC or NEMA motor size.

Torque is transmitted between the motor and the gear unit via a positive and impact resistant claw coupling. Vibrations and shocks that occur during operation are effectively attenuated by an inserted polyurethane ring gear.

For more information, refer to the project planning chapter "Gear units with IEC or NEMA adapter AM" (\rightarrow \triangleq 58).

2.8.2 AR adapter with slip clutch

The following figure shows a helical-bevel gear unit with AR adapter:

21431290763

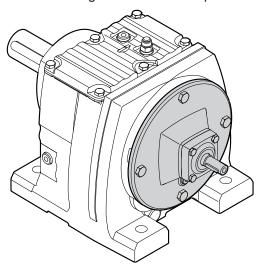

The torque is transmitted non-positive via friction linings. The slip torque of the coupling can be adjusted with a setting nut and cup springs. Different slip torques are possible depending on the thickness and arrangement of the cup springs. In the event of an overload, the coupling slips and interrupts the power flow between motor and gear unit. This prevents damages to the system and drive.

For more information, refer to the project planning chapter "AR adapter with slip clutch" (\rightarrow $\stackrel{\triangle}{=}$ 59).

2.8.3 AT adapter with hydraulic start-up coupling

The following figure shows a parallel-shaft gear unit with AT adapter:

21429584395


Helical, parallel-shaft helical, helical-bevel, helical-worm and SPIROPLAN® gear units can be combined with adapters and hydraulic start-up couplings for machines with high inertia starting (such as mixers, agitators, etc.). The hydraulic start-up coupling protects the motor and the driven machine against overload during the start-up phase and ensures that the machine starts up smoothly. The coupling is installed in a housing to prevent anyone from touching it. Ventilation openings in the housing ensure the cooling of the couplings. SEW-EURODRIVE motors of size 71 to 180 (0.37 to 22 kW) can be mounted.

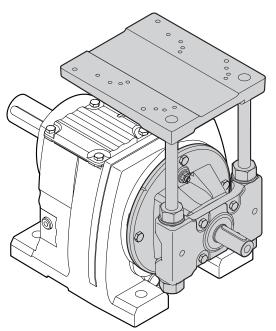
Preferred speeds are 1400 min⁻¹ and 2800 min⁻¹ for 4- or 2-pole attached motors. The noise level increases when using the 2-pole drive combination.

For more information, refer to the project planning chapter "AT adapter with hydraulic start-up coupling" (\rightarrow $\stackrel{\text{\tiny le}}{=}$ 65).

2.8.4 AD input shaft assembly

The following figure shows a helical gear unit with AD input shaft assembly:

21429589259


Helical, parallel-shaft helical, helical-bevel, helical-worm, and SPIROPLAN® gear units are equipped with an input shaft assembly for the drive via an exposed shaft extension. The dimensions of the drive shafts are given in metric units according to IEC standard (inch dimensions on request). The end of the input shaft has a center bore to standard 332 for mounting and attaching drive components.

The bearings of the input shaft are lubricated with grease. NBR oil seals and gap rings are used for sealing the cover. The solid output shaft bearings allows for high overhung loads.

For more information, refer to the chapter "AD input shaft assembly" ($\rightarrow \mathbb{B}$ 67).

Motor mounting platform AD.. /P

The following figure depicts a helical gear unit with input shaft assembly and motor platform AD../P:

21431255691

Belt drives are available with adjustable motor platform for space-saving installation. The motor platform is arranged parallel to the drive shaft and has tapped holes for IEC standard motors (also available without tapped holes on request). The distance from the input shaft can be adjusted using threaded columns.

3 Overview of types and type designations

3.1 Overview of gear units

3.1.1 Axially parallel gear units

Gear unit type		RX	R	F
Technical data:				
Figure				
Maximum continuous torque	M _{a_max}	69 – 830 Nm	50 – 20000 Nm	130 – 20000 Nm
Gear ratio range	i	1.3 – 8.65	3.21 – 289.74	3.77 – 281.71
Option with reduced backlash /R		_	X	X
Mechanical data:				
Hollow shaft		-	_	X
Foot mounting		Х	X	_
B5 flange		Х	Х	Х
B14 flange		_	X	Х

3.1.2 Right-angle gear units

Gear unit type		K7	K9	S	W
Technical data:					
Figure			C		
Maximum continuous torque	M _{a_max}	200 – 53000 Nm	300 – 500 Nm	92 – 4000 Nm	110 – 180 Nm
Gear ratio range	i	3.98 – 179.86	2.81 – 75.20	3.97 – 288.0	3.2 – 74.98
Option with reduced backlash /R		X	_	-	_
Mechanical data:					
Hollow shaft		Х	Х	Х	Х
Foot mounting		Х	Х	Х	Х
B5 flange		Х	Х	Х	Х
B14 flange		Х	_	Х	_

For information on all available options and variants, refer to the following chapters.

3.2 Designs and options – R, F, K, S, W gear units

Below an overview of type designations for R, F, K, S, and W gear units and their options.

3.2.1 Helical gear units

Designation	Description
RX	Single-stage foot-mounted design, output shaft with key
RXF	Single-stage B5 flange-mounted design, output shaft with key
R	Foot-mounted design, output shaft with key
RF	Foot- and B5 flange-mounted design, output shaft with key
RF	B5 flange-mounted design, output shaft with key
RZ	B14 flange-mounted design, output shaft with key
RM	B5 flange-mounted design with extended bearing hub, output shaft with key

3.2.2 Parallel-shaft helical gear units

Designation	Description
F	Foot-mounted design, output shaft with key
FAB	Foot-mounted design, hollow shaft with keyway
FHB	Foot-mounted design, hollow shaft with shrink disk
FVB	Foot-mounted design, splined hollow shaft to DIN 5480
FF	B5 flange-mounted design, output shaft with key
FAF	B5 flange-mounted design, hollow shaft with keyway
FHF	B5 flange-mounted design, hollow shaft with shrink disk
FVF	B5 flange-mounted design, splined hollow shaft to DIN 5480
FA	Hollow shaft with keyway
FH	Hollow shaft with shrink disk
FT	Hollow shaft with TorqLOC® hollow shaft mounting system
FV	Splined hollow shaft to DIN 5480
FZ	B14 flange-mounted design, output shaft with key
FAZ	B14 flange-mounted design, hollow shaft with keyway
FHZ	B14 flange-mounted design, hollow shaft with shrink disk
FVZ	B14 flange-mounted design, splined hollow shaft to DIN 5480
FM	B5 flange-mounted design with extended bearing hub, output shaft with key
FAM	B5 flange-mounted design with extended bearing hub, hollow shaft with keyway

Designation	
K	Foot-mounted design, output shaft with key
KAB	Foot-mounted design, hollow shaft with keyway
KAFB	B5 flange-mounted design, foot-mounted design, hollow shaft with keyway
KFB	B5 flange-mounted design, foot-mounted design, output shaft with key
KHB	Foot-mounted design, hollow shaft with shrink disk
KHFB	B5 flange-mounted design, foot-mounted design, hollow shaft with shrink disk
KVB	Foot-mounted design, splined hollow shaft to DIN 5480
KF	B5 flange-mounted design, output shaft with key
KAF	B5 flange-mounted design, hollow shaft with keyway
KHF	B5 flange-mounted design, hollow shaft with shrink disk
KVF	B5 flange-mounted design, splined hollow shaft to DIN 5480
KA	Hollow shaft with keyway
KH	Hollow shaft with shrink disk
KT	Hollow shaft with TorqLOC® hollow shaft mounting system
KV	Splined hollow shaft to DIN 5480
KZ	B14 flange-mounted design, output shaft with key
KAZ	B14 flange-mounted design, hollow shaft with keyway
KHZ	B14 flange-mounted design, hollow shaft with shrink disk
KVZ	B14 flange-mounted design, splined hollow shaft to DIN 5480
KM	B5 flange-mounted design with extended bearing hub, output shaft with key
KAM	B5 flange-mounted design with extended bearing hub, hollow shaft with keyway

3.2.4 Helical-worm gear units

Designation	Description
S	Foot-mounted design, output shaft with key
SF	B5 flange-mounted design, output shaft with key
SAF	B5 flange-mounted design and hollow shaft with keyway
SHF	B5 flange-mounted design and hollow shaft with shrink disk
SA	Hollow shaft with keyway
SH	Hollow shaft with shrink disk
ST	Hollow shaft with TorqLOC® hollow shaft mounting system
SAZ	B14 flange-mounted design and hollow shaft with keyway

Designation	Description
SHZ	B14 flange-mounted design and hollow shaft with shrink disk

3.2.5 SPIROPLAN® gear units

Designation	Description
W	Foot-mounted design, output shaft with key
WF	B5 flange-mounted design, output shaft with key
WAF	B5 flange-mounted design and hollow shaft with keyway
WA	Hollow shaft with keyway
WAB	Foot-mounted design and hollow shaft with keyway
WHB	Foot-mounted design and hollow shaft with shrink disk
WHF	B5 flange-mounted design and hollow shaft with shrink disk
WH	Hollow shaft with shrink disk
WT	Hollow shaft with TorqLOC® hollow shaft mounting system

3.2.6 Options

R, F and K gear units:

Designation	Description
/R	Reduced backlash

K, S and W gear units:

Designation	Description
/Т	With torque arm

F gear units:

Designation	Description
/G	With rubber buffer

3.2.7 Condition monitoring

Designation	Description
/DUO	Diagnostic Unit Oil = Oil aging sensor
/DUV	Diagnostic Unit Vibration = Vibration sensor

3.2.8 Adapters

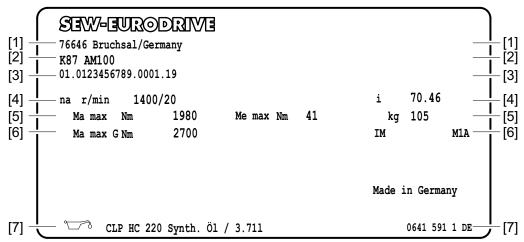
Designation	Option
AM	Adapter for mounting IEC/NEMA motors
AR	Adapter with slip clutch
AT	Adapter with hydraulic start-up coupling

29154650/EN - 03/2020

3.2.9 Adapter options

Designation	Option	
AM/RS	Adapter for mounting IEC/NEMA motors with backstop	
AR/W	Adapter with slip clutch and speed monitoring	
AR/WS	Adapter with slip clutch and slip monitoring	
AT/RS	Adapter with hydraulic start-up coupling and backstop	

3.2.10 Input shaft assembly


Designation	Option
AD	Input shaft assembly

3.2.11 Options for input shaft assembly

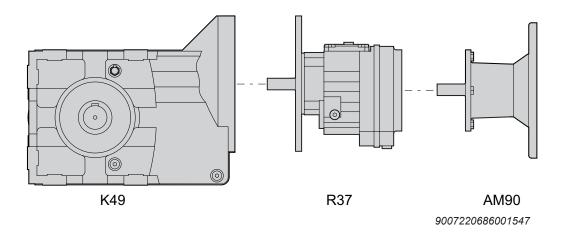
Designation	Option	
AD/P	Input shaft assembly with motor platform	
AD/RS	Input shaft assembly with backstop	
AD/ZR	Input shaft assembly with centering shoulder	

3.3 Gear unit nameplate

The following figure shows an example of a nameplate for a helical-bevel gear unit with input adapter:

9007219936788107

- [1] Manufacturer, address
- [2] Type designation
- [3] Serial number
- [4] Input speed / output speed
 - · Gear ratio
- [5] Maximum permitted output torque of the gear unit / adapter combination
 - · Maximum permitted input torque
 - Weight
- [6] Maximum permitted output torque of the open gear unit without additional component
 - · Mounting position
- [7] Oil type and oil fill volume


Explanation of the production number:

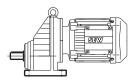
01.	0123456789.	0001.	19
Sales organization	Order number	Item number	Year of manu-facture

3.4 Type designation of a gear unit

The type designation of the gear unit starts from the component on the output side. For example, a helical-bevel compound gear unit with adapter for IEC motors has the following type designation:

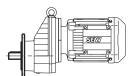
Example: K49R37AM90				
Gear unit type	K	1st gear unit		
Gear unit size	49			
Gear unit type	R	2nd gear unit		
Gear unit size	37			
Adapter for installation of IEC motors	AM	Gear unit component on the input side		
Adapter size	90			

3.5 Gear unit designs

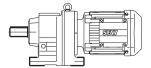

INFORMATION

The designs described in this chapter refer to DRN.. gearmotors from SEW-EURODRIVE. They also apply to gear units without motors.

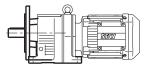
3.5.1 Helical gearmotors


The following designs of helical gearmotors are available:

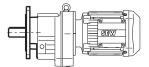
RX..DRN..


Single-stage, helical gearmotor in foot-mounted design

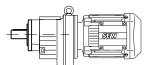
RXF..DRN..


Single-stage helical gearmotor in B5 flange-mounted design

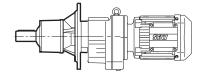
R..DRN..


Helical gearmotor in foot-mounted design

R..F DRN..

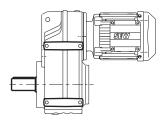

Helical gearmotor in foot-mounted and B5 flange-mounted design

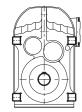
RF..DRN..


Helical gearmotor in B5 flange-mounted design

RZ..DRN..

Helical gearmotor in B14 flange-mounted design

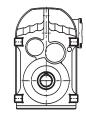



RM..DRN..

Helical gearmotor in B5 flange-mounted design with extended bearing hub

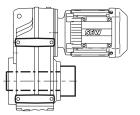
3.5.2 Parallel-shaft helical gearmotors

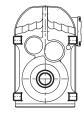
The following designs of parallel-shaft helical gearmotors are available:



F..DRN..

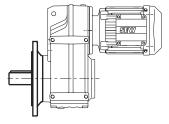
Parallel-shaft helical gearmotor in foot-mounted design

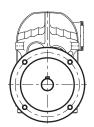



FA..B DRN..

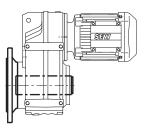
Parallel-shaft helical gearmotor in foot-mounted design with hollow shaft

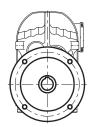
FV..B DRN..


Parallel-shaft helical gearmotor in foot-mounted design with splined hollow shaft to DIN 5480



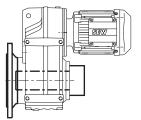
FH..B DRN..

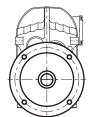

Parallel-shaft helical gearmotor in foot-mounted design with hollow shaft and shrink disk



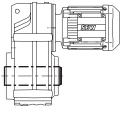
FF..DRN..

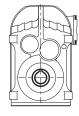
Parallel-shaft helical gearmotor in B5 flange-mounted design

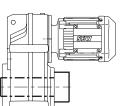


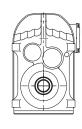

FAF..DRN..

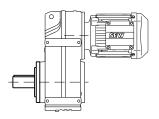
Parallel-shaft helical gearmotor in B5 flange-mounted design with hollow shaft

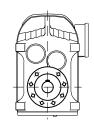

Parallel-shaft helical gearmotor in B5 flange-mounted design with splined hollow shaft to DIN 5480

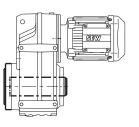


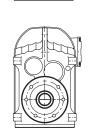


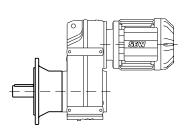

FHF..DRN..

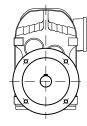

Parallel-shaft helical gearmotor in B5 flange-mounted design with hollow shaft and shrink disk











FA..DRN..

Parallel-shaft helical gearmotor with hollow shaft

FV..DRN..

Parallel-shaft helical gearmotor with splined hollow shaft according to DIN 5480

FH..DRN..

Parallel-shaft helical gearmotor with hollow shaft and shrink disk

FT..DRN..

Parallel-shaft helical gearmotor with hollow shaft and TorqLOC® hollow shaft mounting system

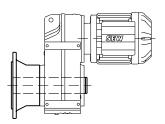
FZ..DRN..

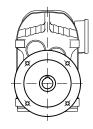
Parallel-shaft helical gearmotor in B14 flange-mounted design

FAZ..DRN..

Parallel-shaft helical gearmotor in B14 flange-mounted design with hollow shaft

FVZ..DRN..

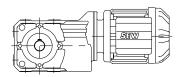

Parallel-shaft helical gearmotor in B14 flange-mounted design with splined hollow shaft to DIN 5480


FHZ..DRN..

Parallel-shaft helical gearmotor in B14 flange-mounted design with hollow shaft and shrink disk

FM.. DRN..

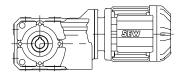
Parallel-shaft helical gearmotor in B5 flange-mounted design with extended bearing hub, output shaft with key



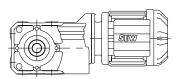
FAM.. DRN..

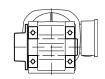
Parallel-shaft helical gearmotor in B5 flange-mounted design with extended bearing hub and hollow shaft

3.5.3 Helical-bevel gearmotors, gear unit sizes K..19 and K..29

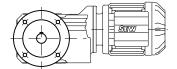

The following designs of helical-bevel gearmotors with gear units of size K..19 and K..29 are available:

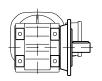
K19 DRN.., K29 DRN..


Helical-bevel gearmotor in foot-mounted design

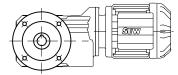


KA19B DRN.., KA29B DRN..

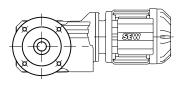

Foot-mounted helical-bevel gearmotor with hollow shaft

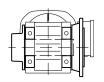


KH19B DRN.., KH29B DRN..

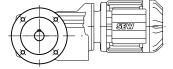

Helical-bevel gearmotor in foot-mounted design with hollow shaft and shrink disk

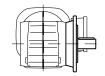
KF19B DRN.., KF29B DRN..


Helical-bevel gearmotor in B5 flange-mounted design in foot-mounted design

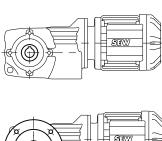


KAF19B DRN.., KAF29B DRN..

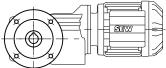

Helical-bevel gearmotor in B5 flange-mounted design with hollow shaft in foot-mounted design



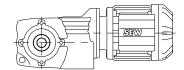
KHF19B DRN.., KHF29B DRN..

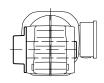

Helical-bevel gearmotor in B5 flange-mounted design with hollow shaft and shrink disk in foot-mounted design

KF19 DRN.., KF29 DRN..

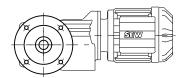

Helical-bevel gearmotor in B5 flange-mounted design

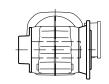
KA19 DRN.., KA29 DRN..


Helical-bevel gearmotor with hollow shaft



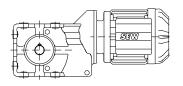
KAF19 DRN.., KAF29 DRN..


Helical-bevel gearmotor in B5 flange-mounted design with hollow shaft



KH19 DRN.., KH29 DRN..

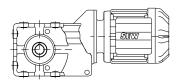
Helical-bevel gearmotor with hollow shaft and shrink disk



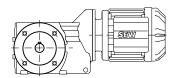
KHF19 DRN.., KHF29 DRN..

Helical-bevel gearmotor in B5 flange-mounted design with hollow shaft and shrink disk

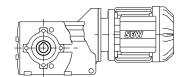
3.5.4 Helical-bevel gearmotors, gear unit sizes K..39 and K..49


The following designs of helical-bevel gearmotors with gear units of sizes K..39 and K..49 are available:

K39 DRN.., K49 DRN..


Helical-bevel gearmotor in foot-mounted design

KA39B DRN.., KA49B DRN..


Helical-bevel gearmotor in foot-mounted design

KF39 DRN.., KF49 DRN..

Helical-bevel gearmotor in B5 flange-mounted design

KA39 DRN.., KA49 DRN..

Helical-bevel gearmotor with hollow shaft

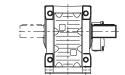
KAF39 DRN.., KAF49 DRN..

Helical-bevel gearmotor in B5 flange-mounted design with hollow shaft

KH39 DRN.., KH49 DRN..

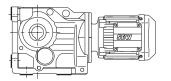
Helical-bevel gearmotor with hollow shaft and shrink disk

KHF39 DRN.., KHF49 DRN..


Helical-bevel gearmotor in B5 flange-mounted design with hollow shaft and shrink disk

KT39 DRN.., KT49 DRN..

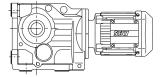
Helical-bevel gearmotor with hollow shaft and TorqLOC® hollow shaft mounting system


3.5.5 Helical-bevel gearmotors, gear unit sizes K..7

The following designs of helical-bevel gearmotors with gear units of size K..7 are available:

K..7 DRN..

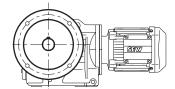
Helical-bevel gearmotor in foot-mounted design

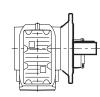


KA..7B DRN..

Helical-bevel gearmotor in foot-mounted design with hollow shaft

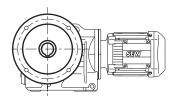
KV..7B DRN..


Foot-mounted helical-bevel gearmotor with splined hollow shaft according to DIN 5480

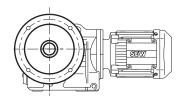


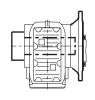
KH..7B DRN..

Helical-bevel gearmotor in foot-mounted design with hollow shaft and shrink disk

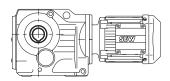


KF..7 DRN..


Helical-bevel gearmotor in B5 flange-mounted design



KAF..7 DRN..

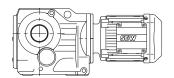

Helical-bevel gearmotor in B5 flange-mounted design with hollow shaft

KVF..7 DRN..

Helical-bevel gearmotor in B5 flange-mounted design with splined hollow shaft to DIN 5480

KHF..7 DRN..

Helical-bevel gearmotor in B5 flange-mounted design with hollow shaft and shrink disk

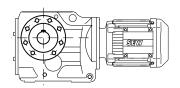


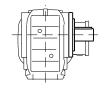
KA..7 DRN..

Helical-bevel gearmotor with hollow shaft

KV..7 DRN..

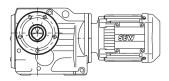
Helical-bevel gearmotor with hollow shaft and splined hollow shaft according to DIN 5480




KH...7 DRN...

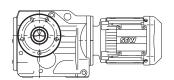
Helical-bevel gearmotor with hollow shaft and shrink disk

KT..7 DRN..


Helical-bevel gearmotor with hollow shaft and TorqLOC® hollow shaft mounting system

KZ..7 DRN..

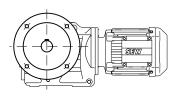
Helical-bevel gearmotor in B14 flange-mounted design

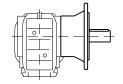


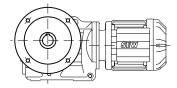
KAZ..7 DRN..

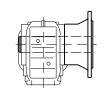
Helical-bevel gearmotor in B14 flange-mounted design with hollow shaft

KVZ..7 DRN..

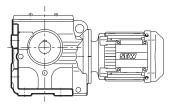

Helical-bevel gearmotor in B14 flange-mounted design with splined hollow shaft to DIN 5480

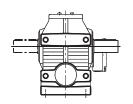



KHZ..7 DRN..


Helical-bevel gearmotor in B14 flange-mounted design with hollow shaft and shrink disk

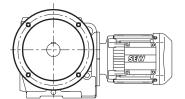
Helical-bevel gearmotor in B5 flange-mounted design with extended bearing hub, output shaft with key

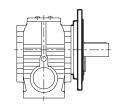

KAM..7 DRN..


KM..7 DRN..

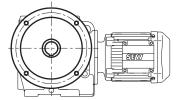
Helical-bevel gearmotor in B5 flange-mounted design with extended bearing hub and hollow shaft

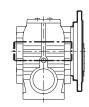
3.5.6 Helical-worm gearmotors


The following designs of helical-worm gearmotors are available:

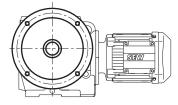


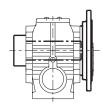
S..DRN..


Helical-worm gearmotor in foot-mounted design

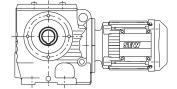


SF..DRN..

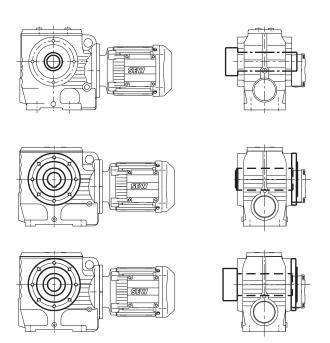

Helical-worm gearmotor in B5 flange-mounted design



SAF..DRN..


Helical-worm gearmotor in B5 flange-mounted design with hollow shaft

SHF..DRN..


Helical-worm gearmotor in B5 flange-mounted design with hollow shaft and shrink disk

SA..DRN..

Helical-worm gearmotor with hollow shaft

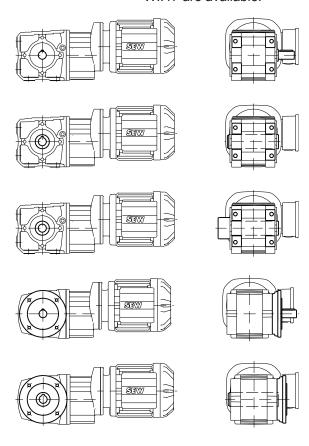
SH..DRN..

Helical-worm gearmotor with hollow shaft and shrink disk

ST..DRN..

Helical-worm gearmotor with hollow shaft and TorqLOC® hollow shaft mounting system

SAZ..DRN..


Helical-worm gearmotor in B14 flange-mounted design with hollow shaft

SHZ..DRN..

Helical-worm gearmotor in B14 flange-mounted design with hollow shaft and shrink disk

3.5.7 SPIROPLAN® gearmotors, gear unit sizes W..37 and W..47

The following designs of SPIROPLAN® gearmotors with gear units in sizes W..37 and W..47 are available:

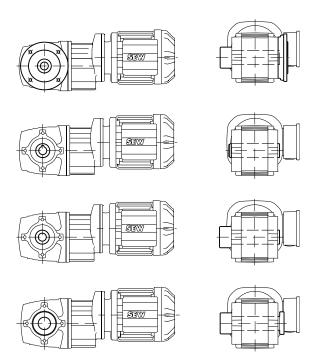
W37 DRN.., W47 DRN..

Foot-mounted SPIROPLAN® gearmotor

WA37B DRN.., WA47B DRN..

Foot-mounted SPIROPLAN® gearmotor with hollow shaft

WH37B DRN.., WH47B DRN..


Foot-mounted SPIROPLAN® gearmotor with hollow shaft and shrink disk

WF37 DRN.., WF47 DRN..

SPIROPLAN® gearmotor in B5 flange mounted design

WAF37 DRN.., WAF47 DRN..

SPIROPLAN® gearmotor in B5 flange-mounted design with hollow shaft

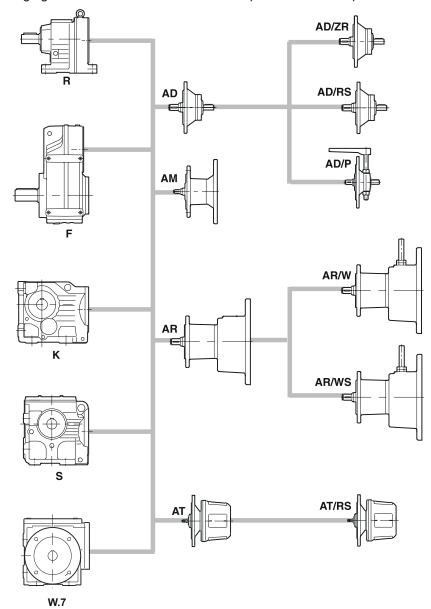
WHF37 DRN.., WHF47 DRN..

SPIROPLAN® gearmotor in B5 flange-mounted design with hollow shaft and shrink disk

WA37 DRN.., WA47 DRN..

SPIROPLAN® gearmotor with hollow shaft

WH37 DRN.., WH47 DRN..


SPIROPLAN® gearmotor with hollow shaft and shrink disk

WT37 DRN.., WT47 DRN..

SPIROPLAN® gearmotor with hollow shaft and TorqLOC® hollow shaft mounting system

3.6 Components on the input end

The following figure shows an overview of the components on the input side:

AD	Input shaft assembly	AR/WS ¹⁾	Adapter with slip clutch and slip monitoring
AD/ZR	Input shaft assembly with centering shoulder	/W	Speed monitor
AD/RS	Input shaft assembly with backstop	/WS	Slip monitor
AD/P	Input shaft assembly with motor platform	AT	Adapter with hydraulic start-up coupling
AM	Adapter for mounting IEC/ NEMA motors	AT/RS	Adapter with hydraulic start-up coupling and back- stop
AR	Adapter with slip clutch		
AR/W	Adapter with slip clutch and speed monitoring		

¹⁾ Only with VARIBLOC® variable-speed gear unit

4 Project planning for gear units

Project planning must be carried out for each gear unit. Adhere to the project planning specifications and notes provided in this chapter.

SEW-EURODRIVE will gladly carry out this project planning for you.

4.1 Drive and gear unit selection data

Determining application data

First, you require the data (mass, speed, setting range, etc.) of the machine to be driven to select the correct drive (see following table). These data help determine the required power, torque and speed. Refer to the documentation "Drive Engineering – Practical Implementation, Project Planning" or the SEW-Workbench project planning software for assistance.

Selecting the correct drive Calculate power, rotational speed, torque, and overhung load of the drive. Observe all mechanical requirements. The suitable drive can then be determined.

Servomotor data

As the dimensions of servomotors are not standardized, the following motor data must be known to select the appropriate adapter:

- Shaft diameter and length
- Flange dimensions (edge length, diameter, centering shoulder and hole circle)
- Maximum torque

Contact SEW-EURODRIVE if you have any questions on selection and project planning.

Application data required for project planning:

Designation	Meaning	Unit		
n _{G_min}	Minimum output speed	min ⁻¹		
$n_{G_{max}}$	Maximum output speed			
P _{a_nmin}	Output power at minimum output speed	kW		
P _{a nmax}	Output power at maximum output speed	kW		
M _{a nmin}	Output torque at minimum output speed	Nm		
M _{a_nmax}	Output torque at maximum output speed	Nm		
Fo	Axial load (tension and compression) on the output shaft	N		
F _{R_a}	Overhung load acting on the output shaft	N		
J_{L}	Mass moment of inertia to be driven	10 ⁻⁴ kgm ²		
R, F, K, S, W M1– M6	Mounting position and required gear unit type, see chapter "Gear unit mounting positions" (→ 🗎 74) and "Project planning notes R, F, K, S, W gear units" (→ 🖺 46)	-		
T _{amb}	Ambient temperature	°C		
h	Installation altitude	m above sea level (asl)		
S,% cdf	Duty type and cyclic duration factor cdf – the exact load cycle can be entered instead	-		
Z	Starting frequency – or exact load cycle can be specified	h ⁻¹		
M _{slip}	Slip torque (AR)			
M _{B req}	Required braking torque	Nm		

4.2 Project planning sequence

The following flow chart shows the steps for planning a project including a gear unit with a component on the input side.

Necessary information regarding the machine to be driven

- Technical data and environmental conditions
- Stopping accuracy
- Output speed
- Starting acceleration and deceleration
- Cyclic duration factor and starting frequency

Calculation of the relevant application data

- Static and dynamic power
- Rotational speeds
- Torques, power ratings
- Travel diagram, if required
- Determination of the required service factor f_B

Gear unit selection

- Definition of gear unit type, gear unit size, gear unit ratio, and gear unit design
- Checking the positioning accuracy
- Checking the service factor f_B

Selecting components on the input side

- Definition of component type and version
- Definition of component size
- Checking the component load

 \downarrow

Options

- Monitoring functions (monitoring devices and equipment)
- Brake for AT
- Backstop
- Centering shoulder
- Motor platform

Ensure that all requirements have been met.

INFORMATION

For thermal project planning of R, F, K, S, W gear units, contact SEW-EURODRIVE.

4.3 Project planning notes – R, F, K, S, W gear units

4.3.1 Efficiency of gear units

General information

The efficiency of the gear units is mainly determined by the gearing and bearing friction as well as by churning losses. Keep in mind that the starting efficiency of a gear unit is always less than its efficiency at operating speed. This factor is particularly true for helical-worm and SPIROPLAN® right-angle gear units.

INFORMATION

For information on churning losses and thermal rating, refer to chapter "Churning losses and thermal rating" (\rightarrow \bigcirc 47).

R, F, K gear units

Depending on the number of gear stages, the gearing efficiency of helical, parallel-shaft and helical-bevel gear units is up to 96% (3-stage), 97% (2-stage) and 98% (1-stage).

S and W gear units

The gearing in helical-worm and SPIROPLAN® gear units produces a high proportion of sliding friction. This is the reason why these gear units have higher tooth friction losses and lower efficiency than R, F or K gear units.

Other factors influencing the efficiency:

- Gear ratio of the helical-worm or SPIROPLAN® stage
- Input speed
- Ambient temperature

Helical-worm gear units from SEW-EURODRIVE are helical gear/worm combinations that are significantly more efficient than plain worm gear units; see chapter "Technical data of S.., SF.., SA.., SAF 37" (\rightarrow \bigcirc 592) and subsequent chapters.

The efficiency may reach η < 0.5 if the helical-worm gear stage has a very high gear ratio.

Self-locking

Retrodriving torque in helical-worm or SPIROPLAN® gear units produces an efficiency of $\eta'=2$ -1/ η , which is significantly less favorable than the forward efficiency. The helical-worm or SPIROPLAN® gear unit is statically self-locking if the forward efficiency η is ≤ 0.5 . SPIROPLAN® gear units W..10 - W..30 are dynamically self-locking to some extent (with highest ratios). Contact SEW-EURODRIVE if you want to make technical use of the braking effect of self-locking characteristics.

INFORMATION

Note that the self-locking effect of helical-worm and SPIROPLAN® gear units is not permitted as the sole safety function for hoists.

Run-in phase

The tooth flanks of new helical-worm and SPIROPLAN® gear units are not yet completely smooth. This makes for a greater friction angle and less efficiency during the run-in phase than during later operation. This effect intensifies with increasing gear unit ratio.

During the running-in phase, the nominal efficiency of the gear unit is reduced by the respective value in the following tables.

	Worm			
	i range	η reduction		
1-start	About 50 – 280	Approx. 12%		
2-start	Approx. 20 – 75	Approx. 6%		
3-start	Approx. 20 – 90	Approx. 3%		
5-start	Approx. 6 – 25	Approx. 3%		
6-start	Approx. 7 – 25	Approx. 2%		

SPIROPLAN® W10 to W30					
i range	η reduction				
Approx. 35 – 75	Approx. 15%				
Approx. 20 – 35	Approx. 10%				
Approx. 10 – 20	Approx. 8%				
Approx. 8	Approx. 5%				
Approx. 6	Approx. 3%				

	•				
SPIROPLAN® W37 to W47					
i range	η reduction				
_	_				
_	_				
Approx. 30 – 70	Approx. 8%				
Approx. 10 – 30	Approx. 5%				
Approx. 3 – 10	Approx. 3%				

The run-in phase usually lasts 48 hours. Helical-worm and SPIROPLAN® gear units achieve their nominal efficiency values when the following conditions have been met:

- The gear unit has been completely run-in.
- The gear unit has reached nominal operating temperature.
- The recommended lubricant has been filled.
- The gear unit is operating in the nominal load range.

4.3.2 Churning losses and thermal rating

Churning losses may occur with the following conditions. They must be considered during thermal check:

- A mounting position where the first gear unit stage is fully immersed in the lubricant. The respective mounting positions of the gear units are indicated with a * in chapter "Mounting position sheets" ($\rightarrow \mathbb{B}$ 79).
- A high mean input speed and thus a high circumferential velocity of the gear wheels of the input gear stage.

If one or both requirements are met, determine the requirements of the application and the corresponding operating conditions (see chapter "Data for calculating the thermal rating" (→ 🖺 48)) and contact SEW-EURODRIVE. SEW-EURODRIVE can calculate the thermal rating based on the actual operating conditions. The thermal rating of the gear unit can be increased by appropriate measure e.g. by using a synthetic lubricant with higher thermal endurance properties.

INFORMATION

To reduce churning losses to a minimum, use gear units preferably in M1 mounting position.

Data for calculating the thermal rating

The following information is required for calculating the thermal rating:

Gear unit type and design:

- Gear unit ratio i
- Mean input speed n

 _{Mot} or mean output speed n

 _G in min⁻¹
- Effective motor torque M_{Mot eff} in Nm
- Input motor power P_{Mot} in kW
- Mounting position M1 M6 or pivoting angle

Installation site:

- Ambient temperature T_{amb} in °C
- Installation altitude
- In small, closed rooms or in large rooms (halls) or outdoors

Installation on site:

- Space-critical or well ventilated
- · Steel base or concrete base

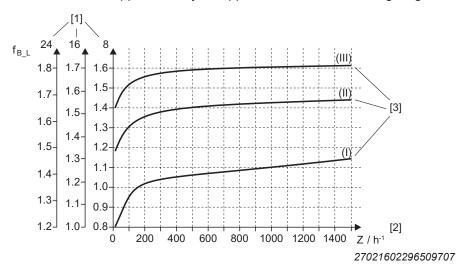
4.4 Service factor

4.4.1 Service factor f_B

The method for determining the maximum permitted continuous torque M_{a_max} and using this value to derive the service factor $f_B = M_{a_max}/M_a$ is not defined in a standard and varies greatly from manufacturer to manufacturer. With a service factor $f_B = 1$, gear units by SEW-EURODRIVE in any case offer an extremely high level of safety and reliability in the fatigue strength range (with exception of: Low temperatures and wear of the worm gear with helical-worm gear units). The service factor may differ from specifications of other gear unit manufacturers. If in doubt, contact SEW-EURODRIVE.

For the service factor, refer to the order confirmation and the selection tables in the gearmotor catalogs from SEW-EURODRIVE .

4.4.2 Required service factor f_{B req}


The operating conditions are considered in order to determine the required service factor f_{B_req} for the gearmotor selection. Decisive factors are the requirements of the driven machine, as well as the ambient temperature and gear unit type, if applicable.

The service factor f_{B_req} results from other service factors described in the following chapters.

4.4.3 Application service factor

The effect of the driven machine on the gear unit is taken into account to a sufficient level of accuracy using the application service factor f_{B_L} . The service factor is determined according to the daily operating time and the switching frequency Z. Three load classifications are taken into account depending on the mass acceleration factor. You can read the service factor applicable to your application from the following diagram.

- [1] Service factor $f_{B L}$ in relation to the daily operating time in hours/day
- [2] Switching frequency Z: The cycles include all starting and braking procedures as well as changeovers from low to high speed and vice versa.
- [3] Curves for load classification I, II and III

Definition of the load classification

The following 3 load classifications are distinguished:

- Load classification I: Uniform, almost no shock load, permitted mass acceleration factor ≤ 0.2
- Load classification II: Non-uniform, moderate shock load, permitted mass acceleration factor ≤ 3
- Load classification III: Very non-uniform, severe shock load, permitted mass acceleration factor ≤ 10

Mass moment of inertia ratio

The mass moment of inertia ratio is calculated as follows:

$$f_a = \frac{J_X}{J_{Mot}}$$

9007223243041803

f_a = Mass moment of inertia ratio

J_x = Load moment of inertia, reduced to motor shaft

 $[J_{Lx}] = kgm^2$

 J_{mot} = Motor moment of inertia

 $[J_{Mot}] = kgm^2$

The motor moment of inertia J_{Mot} is the mass moment of inertia of the motor and, if installed, the brake and the flywheel fan (Z fan).

The load moment of inertia J_x includes the mass moments of inertia of the driven machine and the gear unit, reduced to the motor shaft.

Project planning for gear units

Reducing the mass moment of inertia to the motor shaft

The calculation for scaling down to motor speed is performed using the following formula:

$$J_{X} = J_{L} \times \left(\frac{1}{i_{G}}\right)^{2}$$

9007223243044747

 J_x = Load moment of inertia, reduced to motor shaft

 $[J_{Lx}] = kgm^2$

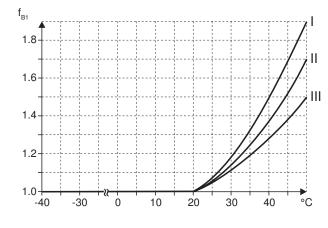
J_L = Mass moment of inertia with reference to the output speed of the gear unit

 $[J_L] = kgm^2$

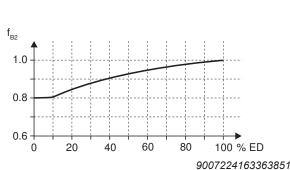
i_G = Gear unit ratio

Service factors $f_{B_L} > 1.8$ may be required with large mass acceleration factors (> 10), high levels of backlash in the transmission elements or large overhung loads. Contact SEW-EURODRIVE in such cases.

4.4.4 Service factor at low temperatures


At an ambient temperature of < -30 $^{\circ}$ C, observe the additional service factor $f_{B3} = 1.2$.

4.4.5 Service factors for helical-worm gear units


In case of helical-worm gear units, the following 2 service factors must be observed:

- f_{B1} = Service factor based on ambient temperature
- f_{B2} = Service factor from cyclic duration factor

The additional service factors f_{B1} and f_{B2} can be determined by referring to the diagram below. For f_{B1} , the load classification is taken into account in the same way as for $f_{B_{\perp}}$. The following diagram shows the additional service factors f_{B1} and f_{B2} :

ED

Cyclic duration factor

$$ED = \frac{t_L}{60} \times 100$$

27021602297443083

= Cyclic duration factor = Time under load

 $[t_{L_{tot}}] = \min h^{-1}$

4.4.6 Conditions for selecting gear units based on the service factor

The determined required service factor $f_{B_{req}}$ must be smaller than or equal to the service factor according to the selection tables.

$$f_{B_req} \le f_B$$
 $F_{B_L} \times [f_{B1} \times f_{B2} \times f_{B3}] \le f_B$
or
 $M_a \times \le f_{B_req} \le M_{a_max}$
 $M_a \times F_{B_L} \times [f_{B1} \times f_{B2} \times f_{B3}] \le M_a \quad max$

The service factors in square brackets are only taken into account for specific conditions regarding the application and ambient conditions. Else, the value is 1.

 f_B = Service factor

 $f_{B_{req}}$ = Required service factor

f_{B_L} = Application service factor based on load classification and switching frequency

 f_{B3} = Low temperature service factor, only applies to ambient temperatures of < -30 °C

 f_{B1} = Service factor for helical-worm gear units only, based on ambient temperature

f_{B2} = Service factor for helical-worm gear units only, based on cdf

 M_a = Gearmotor output torque ($M_{Mot} \times i_G$)

 $[M_a] = Nm$

 $M_{a max}$ = Maximum permitted output torque

 $[M_{a \text{ max}}] = Nm$

4.4.7 Examples

If the gearmotor is intended for operation at -35 °C, the following applies:

$$f_{B \text{ req}} = f_{B \text{ L}} \times f_{B3} = 1.5 \times 1.2 = 1.8$$

The gearmotor to be selected now requires an f_B value of ≥ 1.8 .

The gearmotor with service factor f_{B_L} = 1.5 of the previous example is to be a helical-worm gearmotor, and the ambient temperature is 40 °C:

$$\rightarrow$$
 f_{B1} = 1.36 (read off at load classification II (\rightarrow \bigcirc 50))

Time under load = 40 min/h \rightarrow cdf = 66.67% \rightarrow f_{B2} = 0.95

The required service factor is:

$$f_{B \text{ req}} = f_{B \text{ L}} \times f_{B1} \times f_{B2} = 1.5 \times 1.36 \times 0.95 = 1.94$$

The selected helical-worm gearmotor requires a service factor $f_B \ge 1.94$.

4.5 Overhung and axial loads – R, F, K, S, and W gear units

4.5.1 Determining the overhung load

When determining the resulting overhung load, the type of transmission element mounted on the shaft end must be considered. The following transmission element factors f_Z must be considered for various transmission elements.

Transmission element	Transmission element factor f _z	Comments
Gear wheels	1.15	< 17 teeth
Sprockets	1.40	< 13 teeth
Sprockets	1.25	< 20 teeth
Narrow V-belt pulleys	1.75	Consider influence of pre- tension force
Flat belt pulleys	2.50	Consider influence of pre- tension force
Toothed belt pulleys	1.50	Consider influence of pre- tension force
Gear rack pinion, pretensioned	2.00	Consider influence of pre- tension force
Gear rack pinion, not pretensioned	1.15	< 17 teeth

Transmission element factor at low temperatures For temperatures < -30 °C, observe a transmission element factor f_{z_1} = 1.2.

The overhung load exerted on the motor or gear shaft is calculated as follows:

$$F_R = \frac{M_{G_{-}max} \times 2000}{d_{FR}} \times f_Z \times f_{Z1}$$

18014403021887499

 F_R = Overhung load

 $[F_R] = N$

 $M_{G max} = Torque$

 $[M_{G max}] = Nm$

f₇ = Transmission element factor

= A transmission element factor of 1.2 for ambient temperatures

< -30 °C.

For ambient temperatures \geq -30 °C observe $f_{71} = 1$

d_{FR} = Overhung load determined by diameter of installed transmission element

[d] = mm

4.5.2 Permitted overhung load F_{Ra}

The following important information refers to the overhung load value F_{R_a} in the relevant tables of this catalog:

 F_{R_a} is calculated from the nominal bearing service life L_{10h} (according to ISO 281). For special operating conditions, the permitted overhung loads can be determined based on the modified bearing service life L_{na} . Consult SEW-EURODRIVE in this case.

The permitted overhung load is influenced by the direction of rotation and the force application angle. The values F_{R_a} listed in the catalog are based on the least favorable conditions.

The permitted overhung loads F_{R_a} for the output shafts of foot-mounted gear units with a solid shaft are listed in the selection tables for gearmotors. For other designs, please contact SEW-EURODRIVE.

The overhung load data refers to a force application at the center of the output shaft $0.5 \times I$. With right-angle gear units, the application point is assumed to be at the A-side.

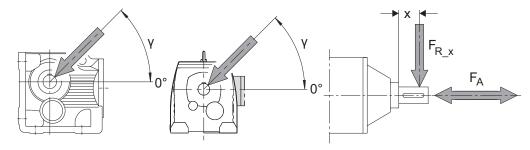
For gear units with hollow shaft and key (shaft-mounted design), the values refer to force application to the front end of the hollow shaft.

Reduced permitted overhung load

The following table lists the cases that require the overhung load to be limited:

Mounting surface		Gear unit	Mount- ing po- sition	Restriction
M1	M1	K37 – K157 S37 – S97	M1	Maximally 50% of the overhung load $F_{R,a}$ specified in the selection tables is permitted in the case of mounting at the front-end (grayshaded surfaces).
M1	M2			No reduction when the unit is mounted using the gray- shaded feet.
M3	M4	K167 K187	M1 M2 M3 M4	A maximum of 50% of the overhung load F_{R_a} specified in the selection tables is permitted in the case of deviating mounting.
M5	M6	K167 K187	M5 M6	No reduction when the unit is mounted using the gray- shaded feet. In case of deviating mounting, contact SEW-EURODRIVE.
M1 M2 M3	M4 M5 M6	R07F – R87F	M1 – M6	In case of all foot- mounted/flange- mounted gear units (RF) with torque transmission via the flange connection, maximally 50% of the overhung load F _{R_a} specified in the selection tables is permitted.

4.5.3 Higher permitted overhung loads


Exactly considering the force application angle γ and the direction of rotation makes it possible to achieve a higher overhung load than listed in the selection tables.

Furthermore, higher output shaft loads are permitted if heavy duty bearings are installed, especially with R, F and K gear units.

Contact SEW-EURODRIVE in such cases.

4.5.4 Definition of the force application

Force application is defined according to the following figure:

γ = Force application angle

 F_{Rx} = Permitted overhung load at distance x

F₀ = Permitted axial force

 $[\gamma] = ^{\circ}$

 $[F_{R_x}] = N$

 $[F_A] = N$

4.5.5 Permitted axial forces

If there is no overhung load, then an axial load $F_{\scriptscriptstyle A}$ (tension or compression) amounting to 50% of the overhung load given in the selection tables is permitted. This condition applies to the following gearmotors:

- Helical gearmotors except for R..127.. to R..167..
- Parallel-shaft helical and helical-bevel gearmotors with solid shaft except for F97...
- · Helical-worm gearmotors with solid shaft

INFORMATION

Contact SEW-EURODRIVE for all other gear unit designs and in the event of significantly greater axial loads or combinations of overhung load and axial load.

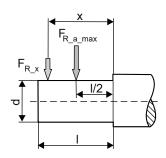
4.5.6 Input side: Overhung load conversion for off-center force application

INFORMATION

i

Contact SEW-EURODRIVE with regard to the project planning of gear units with input shaft assemblies and off-center force application.

4.5.7 Output side: Overhung load conversion for off-center force application


The permitted overhung loads must be calculated according to the selection tables using the following formulas in the event of force application to areas other than the center of the shaft end. The smaller of the two values $F_{R_{\underline{x}\underline{b}}}$ (according to bearing service life) and $F_{R_{\underline{x}\underline{w}}}$ (according to shaft strength) is the permitted value for the overhung load at distance x. Note that the calculations apply to M_{a_max} . The permitted overhung load values $F_{R_a_max}$ specified in the data table are valid for force application at $0.5\times I$ (solid shaft).

The following conditions must be met:

 $F_{R_{per_b}}$ according to bearing service life: $F_{R_per_b} = F_{R_a_max} \times \frac{a}{b+x}$

 $F_{R_{per_w}}$ according to shaft strength: $F_{R_{per_w}} = \frac{c}{f + x}$

Permitted overhung load at distance x in N $[F_{Rx}] = N$ F_{Rx} Permitted overhung load in N $[F_{R \text{ a max}}] = N$ F_{R a max} Х Distance from the shaft shoulder to the force applica-[x] = mmtion point in mm a, b, f Gear unit constants for overhung load conversion in [a, b, f] = 1С Gear unit constant for overhung load conversion in [c] = 1Nmm

Gear unit constants for overhung load conversion

Gear unit	а	b	С	f	d	I
type	mm	mm	Nmm	mm	mm	mm
RX57	43.5	23.5	1.51 × 10 ⁵	34.2	20	40
RX67	52.5	27.5	2.42 × 10 ⁵	39.7	25	50
RX77	60.5	30.5	1.95 × 10⁵	0	30	60

Gear unit	а	b	С	f	d	I
type	mm	mm	Nmm	mm	mm	mm
RX87	73.5	33.5	7.69 × 10⁵	48.9	40	80
RX97	86.5	36.5	1.43 × 10 ⁶	53.9	50	100
RX107	102.5	42.5	2.47 × 10 ⁶	62.3	60	120
R07	72.0	52.0	4.67 × 10 ⁴	11	20	40
R17	88.5	68.5	6.53 × 10⁴	17	20	40
R27	106.5	81.5	1.56 × 10 ⁵	11.8	25	50
R37	118	93	1.24 × 10 ⁵	0	25	50
R47	137	107	2.44 × 10 ⁵	15	30	60
R57	147.5	112.5	3.77 × 10 ⁵	18	35	70
R67	168.5	133.5	2.65 × 10⁵	0	35	70
R77	173.7	133.7	3.97 × 10 ⁵	0	40	80
R87	216.7	166.7	8.47 × 10 ⁵	0	50	100
R97	255.5	195.5	1.06 × 10 ⁶	0	60	120
R107	285.5	215.5	2.06 × 10 ⁶	0	70	140
R127	311	226	4.93 x 10 ⁶	0	90	170
R137	343.5	258.5	4.58 × 10 ⁶	0	90	170
R147	402	297	8.65 × 10 ⁶	33	110	210
R167	450	345	1.26 × 10 ⁷	0	120	210
F27	109.5	84.5	1.13 × 10⁵	0	25	50
F37	123.5	98.5	1.07 × 10 ⁵	0	25	50
F47	153.5	123.5	1.40 × 10 ⁵	0	30	60
F57	170.7	135.7	2.70 × 10 ⁵	0	35	70
F67	181.3	141.3	4.12 × 10 ⁵	0	40	80
F77	215.8	165.8	7.87 × 10 ⁵	0	50	100
F87	263	203	1.06 × 10 ⁶	0	60	120
F97	350	280	2.09 × 10 ⁶	0	70	140
F107	373.5	288.5	4.23 × 10 ⁶	0	90	170
F127	442.5	337.5	9.45 × 10 ⁶	0	110	210
F157	512	407	1.05 × 10 ⁷	0	120	210
K19	103.7	83.7	8.66 × 10 ⁴	0	20	40
K29	124.5	99.5	1.26 × 10 ⁵	0	25	50
K37	123.5	98.5	1.30 × 10 ⁵	0	25	50
K39	155.5	125.5	2.25 × 10 ⁵	0	30	60
K47	153.5	123.5	1.40 × 10 ⁵	0	30	60
K49	183.5	148.5	2.63 × 10 ⁵	0	35	70
K57	169.7	134.7	2.70 × 10 ⁵	0	35	70

Gear unit	а	b	С	f	d	I
type	mm	mm	Nmm	mm	mm	mm
K67	181.3	141.3	4.12 × 10 ⁵	0	40	80
K77	215.8	165.8	7.69 × 10 ⁵	0	50	100
K87	252	192	1.64 × 10 ⁶	0	60	120
K97	319	249	2.80 × 10 ⁶	0	70	140
K107	373.5	288.5	5.53 × 10 ⁶	0	90	170
K127	443.5	338.5	8.31 × 10 ⁶	0	110	210
K157	509	404	1.18 × 10 ⁷	0	120	210
K167	621.5	496.5	1.88 × 10 ⁷	0	160	250
K187	720.5	560.5	3.04 × 10 ⁷	0	190	320
S37	118.5	98.5	6.0 × 10 ⁴	0	20	40
S47	130	105	1.33 × 10 ⁵	0	25	50
S57	150	120	2.14 × 10 ⁵	0	30	60
S67	184	149	3.04 × 10 ⁵	0	35	70
S77	224	179	5.26 × 10 ⁵	0	45	90
S87	281.5	221.5	1.68 × 10 ⁶	0	60	120
S97	326.3	256.3	2.54 × 10 ⁶	0	70	140
W10	84.8	64.8	3.6 × 10⁴	0	16	40
W20	98.5	78.5	4.4 × 10 ⁴	0	20	40
W30	109.5	89.5	6.0 × 10 ⁴	0	20	40
W37	121.1	101.1	6.95 × 10⁴	0	20	40
W47	145.5	115.5	4.26 x 10 ⁵	35.6	30	60

Values for designs not listed are available on request.

4.6 Project planning for components on the input end

4.6.1 Gear units with IEC or NEMA adapter AM

Permissible power ratings and mass moments of inertia

Adapte	er type	P _{Mot} 1)	J_{AM}
IEC	NEMA	kW	kg × m²
AM63	_	0.25	0.44 × 10 ⁻⁴
AM71	AM56	0.37	0.44 × 10 ⁻⁴
AM80	AM143	0.75	1.9 × 10 ⁻⁴
AM90	AM145	1.5	1.9 × 10 ⁻⁴
AM100	AM182	3	5.2 × 10 ⁻⁴
AM112	AM184	4	5.2 × 10 ⁻⁴
AM132S/M	AM213/215	7.5	19 × 10 ⁻⁴
AM132ML	_	9.2	19 × 10⁻⁴
AM160	AM254/256	15	91 × 10 ⁻⁴
AM180	AM284/286	22	90 × 10 ⁻⁴
AM200	AM324/326	30	174 × 10 ⁻⁴
AM225	AM364/365	45	174 × 10 ⁻⁴
AM250	_	55	173 × 10 ⁻⁴
AM280	_	90	685 × 10 ⁻⁴

¹⁾ Maximum rated power of the attached standard electric motor at 1400 1/min

Selecting the gear unit

Follow the steps in the diagram to select a matching gear unit:

Determine the gear unit type
↓
Determine the gear unit size in the selection tables for gear units with AM adapter by means of the following parameters:
Maximum output torque (M _{a_max})
Gear ratio (i)
\downarrow
Check the maximum permitted overhung load value on the output (F _{R_a})
↓
Check the maximum permitted input power at the adapter (P _{Mot})
(see the chapter "Permissible power ratings and mass moments of inertia" (\rightarrow $\ $ 1 58))
\downarrow
Is the required adapter size available?
↓
Is the required combination feasible?

Checking the input power at the gear unit (P_{Mot})

The values in the selection tables refer to an input speed of n_{Mot} = 1400 min⁻¹. The input power at the gear unit corresponds to a maximum torque at the input side. If the speed differs, convert the input power by means of the maximum torque.

Backstop AM../RS

If the application permits only one direction of rotation, the AM adapter can be equipped with a backstop. Backstops with centrifugal lift-off sprags are used. The advantage of this design is that the sprags move around inside the backstop without making contact above a certain speed (lift-off speed). This means the backstops operate wear-free, without losses, maintenance-free and are suited for high speeds.

Dimensions:

The backstop is completely integrated in the adapter. The dimensions are the same for adapters with and without backstop (see the dimension sheets in the chapters for AM adapters)

Locking torques:

Туре	Maximum locking torque of the backstop	Minimum lift-off speed		
	Nm	min ⁻¹		
AM80/90/RS,	65	820		
AM143/145/RS	05	820		
AM100/112/RS,	425	620		
AM182/184/RS	425	020		
AM132/RS,	850	5 20		
AM213/215/RS	650	530		
AM160/180/RS,	1450	490		
AM254/286/RS	1450	480		
AM200/225/RS,	1950	450		
AM324-365/RS	1900	450		
AM250/280/RS	1950	450		

4.6.2 AR adapter with slip clutch

Double gear unit with adapter and slip clutch

In combination with compound gear units, the adapter with slip clutch is preferably installed between the two gear units. Please contact SEW-EURODRIVE if required.

Selecting the gear unit

The type sizes of the AR adapter with slip clutch correspond to those of the AM adapter for IEC motors.

This means you can select the gear unit using the selection tables for AM adapters. In this case, substitute the type designation AM with AR and determine the required slip torque.

Determining the slip torque

The slip torque should be about 1.5 times the rated torque of the drive. When determining the slip torque, bear in mind the maximum permitted output torque of the gear unit as well as the variations in the slip torque of the clutch (\pm 20%) depending on the design.

When you order a gear unit with adapter and slip clutch, you have to specify the required slip torque of the coupling.

If you do not specify the slip torque, it will be set according to the maximum permitted output torque of the gear unit.

Torques, slip torques

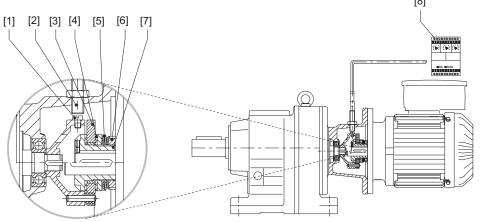
The following table shows an overview of torques and slip torques sorted by adapter:

Туре	P _{Mot} ¹⁾	M _{slip} ²⁾ . M _{slip} ²⁾		M _{slip} ²⁾	Heavier than AM adapter by
	kW	Nm	Nm	Nm	kg
AR71	0.37	1 – 6	_	_	2
AR80	0.75	1 – 6	6.1 – 16	_	2
AR90	1.5	1 – 6	6.1 – 16	17 – 32	2
AR100	3.0	5 – 13	14 – 80	_	3
AR112	4.0	5 – 13	14 – 80	_	3
AR132S/M	7.5	15 – 130	_	_	7
AR132ML	9.2	15 – 130	_	_	7
AR160	15	30 – 85	86 – 200	_	14
AR180	22	30 – 85	86 – 300	-	14

¹⁾ Maximum rated power of the attached standard electric motor at 1400 1/min

²⁾ Slip torque can be set based on the cup springs installed

Speed monitor option /W


Part number 19139438

We recommend monitoring the speed of the coupling using a speed monitor to avoid uncontrolled slippage of the coupling and the associated wear to the friction ring pads.

The speed of the output end coupling half of the slip clutch is detected in a proximity-type method using a trigger cam and an inductive encoder. The speed monitor compares the pulses with a defined reference speed. The output relay (NC or NO contact) trips when the speed drops below the specified speed (overload). The monitor is equipped with a start bypass to suppress error messages during the startup phase. The start bypass can be set within a time window of 0.5 to 15 seconds.

Reference speed, start bypass and switching hysteresis can be set on the speed monitor.

The following figure shows the adapter with slip clutch and speed monitor /W:

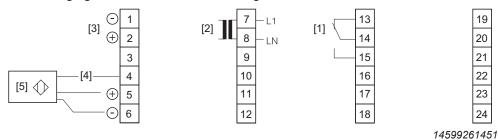
4513827211

- [1] Trip cam
- [2] Incremental encoder (adapter)
- [3] Driving disk
- [4] Friction lining
- [5] Cup spring
- [6] Slotted nut
- [7] Friction hub
- [8] Speed monitor

Connection /W

The encoder is connected to the slip monitor using a two or three-core cable (depending on the encoder type).

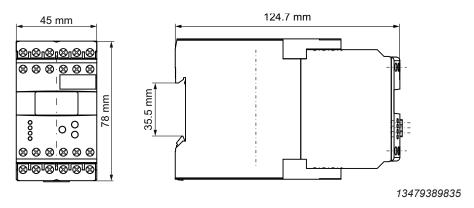
- Maximum cable length: 500 m with a line cross section of 1.5 mm²
- Standard supply cable: 3-core/2 m
- Route the signal lines separately (not in multi-conductor cables) and shield them, if necessary.
- Degree of protection: IP40 (terminals IP20)
- Operating voltage: AC 110 240 V or DC 24 V
- Maximum switching capacity of the output relay: 6 A (AC 250 V)


Project planning for gear units

Project planning for components on the input end

Terminal assignment /W

The following figure shows the terminal assignment /W:



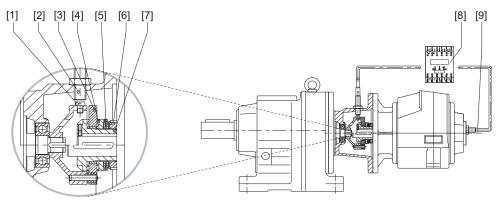
[1] Relay output

- [4] Signal (pnp)
- [2] AC 110 240 V connection voltage (47 63 Hz)
- [5] Encoder
- [3] DC 24 V connection voltage

Dimensions /W

The following figure shows the dimensions for /W:

Slip monitor option /WS


Part number: 01649493

The following figure shows the slip monitor option /WS:

In conjunction with VARIBLOC® variable speed gear units (see "Variable Speed Gear Units" catalog), the speed monitor is replaced by a slip monitor for monitoring the speed difference between the input and output halves of the coupling.

Depending on the size of the variable speed gear unit, signals are detected using two incremental encoders or an incremental encoder and an AC encoder.

The following figure shows the adapter with slip clutch and slip monitor /WS:

4513831563

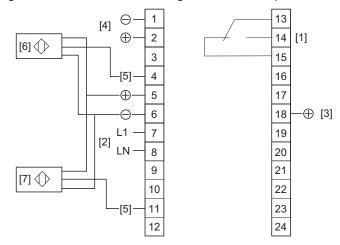
- [1] Trigger cam
- [2] Incremental encoder (adapter)
- [3] Carrier disk
- [4] Friction lining
- [5] Cup spring

- [6] Slotted nut
- [7] Friction hub
- [8] Slip monitor /WS
- [9] Encoder IG

Connection /WS

The IG voltage encoder is connected to the WS slip monitor via a 2 or 3-core cable depending on the type.

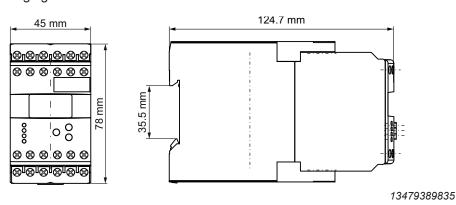
- Maximum cable length: 500 m with a cable cross section of 1.5 mm²
- Standard supply cable: 3-core (2 m)
- Route the signal lines separately (not in multicore cables) and shield them, if necessary
- Degree of protection: IP40 (terminals IP20)
- Operating voltage: AC 110 V 240 V or DC 24 V
- Maximum switching capacity of the output relay: 6 A (AC 250 V)


Project planning for gear units

Project planning for components on the input end

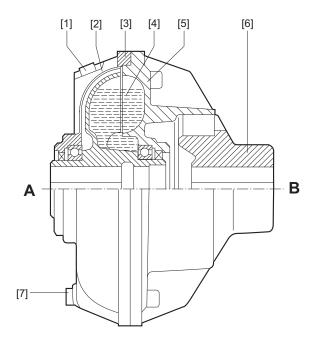
Terminal assignment /WS

The following figure shows the terminal assignment of the slip monitor /WS:


4569288075

- [1] Relay output
- [2] AC 230 V, 47 Hz 63 Hz connection voltage
- [3] External slip reset
- [4] DC 24 V connection voltage

- [5] Signal
- [6] Encoder 1
- [7] Encoder 2

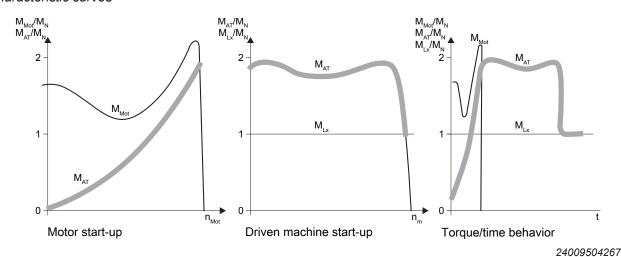

Dimensions /WS

The following figure shows the dimensions /WS:

4.6.3 AT adapter with hydraulic start-up coupling

Start-up coupling

4513847051


- [1] Filling plug
- [2] Turbine wheel
- [3] Coupling half
- [4] Operating fluid (hydraulic oil)
- [5] Pump wheel

- [6] Flexible connecting coupling
- [7] Fusible screw plug
- [A] Gear unit side
- [B] Motor side

The power which the coupling can transmit depends significantly on the speed. A distinction is made between startup phase and stationary operation. During the startup phase, the motor starts without load until the coupling transmits torque. During this phase, the machine is accelerated slowly and smoothly. Once the stationary operating condition has been reached, a level of operating slip is established between the motor and the gear unit which is determined by the functional principle of the coupling. The motor now only has to supply the load torque demand of the machine. Load peaks are absorbed by the coupling.

The hydraulic start-up coupling is equipped with fusible safety plugs that allow the operating fluid to be evacuated in the event of excessive temperature (excessive overload, blockage). In this way the coupling and system are protected from damage.

Characteristic curves

 M_{Mot} Motor torque M_N Nominal torque M_{AT} Coupling torque Load torque M_{1x} n_{Mot} Motor speed n_{m}

 $[M_{AT}] = Nm$ $[M_{1x}] = Nm$ $[n_{Mot}] = min^{-1}$ Driven machine speed $[n_m] = min^{-1}$

Selecting the gear unit

Follow the steps in the diagram to select a matching gear unit:

Determine the gear unit type

 $[M_{Mot}] = Nm$

 $[M_N] = Nm$

Determine the gear unit size using the selection tables for gear units with AM.. adapter by means of the following parameters:

- Maximum output torque (Ma max)
- Gear ratio (i)

Determine the adapter type using the selection tables for AT.. adapters by means of the following parameters:

- Motor speed (n_{Mot})
- Gear unit size
- Nominal power of the driving motor (P_{Mot})

Backstop option AT../RS

If the application permits only one direction of rotation, the hydraulic start-up coupling can be equipped with a backstop. Backstops with centrifugal lift-off sprags are used. The advantage of this design is that the sprags move around in the backstop without making contact above a certain speed. This means the backstops operate wear-free, without losses, maintenance-free and are suited for high speeds.

Dimensions

The dimensions of the hydraulic start-up coupling with backstop AT../RS are identical to those of the hydraulic start-up coupling AT.. (see dimension sheets in the chapter for hydraulic start-up couplings AT..).

Locking torques

Туре	Maximum locking torque of the backstop	Lift-off speed
	Nm	min ⁻¹
AT311/RS – AT322/RS	425	620
AT421/RS – AT422/RS	850	530
AT522/RS – AT542/RS	1450	480

4.6.4 AD input shaft assembly

Selecting the gear unit

Follow the steps in the diagram to select a matching gear unit:

Determine the gear unit type					
↓					
Determine the gear unit size using the selection tables for gear units mit AD input shaft assembly by means of the following parameters:					
Maximum output torque (M _{a_max})					
Gear ratio (i)					
When selecting AD/P, please observe the "selection notes" (\rightarrow \triangleq 69).					
\downarrow					
Check the maximum permitted overhung load value on the output (F _{R_a}).					
↓					
Check the maximum permitted input power at the gear unit (P_{Mot}) by taking account of the thermal limit rating, see the chapter "Thermal limit rating for gear units with input shaft assembly" (\rightarrow \blacksquare 68).					
\downarrow					
Check the overhung load at the input (F _{R_e}).					
\downarrow					
Please contact SEW-EURODRIVE if the requirements are more demanding (e.g. higher overhung load on input end).					

Thermal limit rating for gear units with input shaft assembly

The power values given in the selection tables for gear units with input shaft assemblies are mechanical limit powers. However, gear units might become thermally overloaded before they reach the mechanical power limit depending on the mounting position and gear ratio. If a gear ratio in the selection tables is marked with a footnote, observe the chapter "Churning losses and thermal rating" (\rightarrow 3 47).

R107, n	_{10t} = 1400 ı	min ⁻¹ , M _a	_{max} /Nm									4300 Nm
i	n _G	M _{a_max_G}	F _{R_a} 1)	φ _(/R)		AM						
	min ⁻¹	Nm	N	•	100	112	132S/M	132ML	160	180	200	225
	∂§ 2											
4.922)	285	2900	11300	9	430	900	1070	2020	2020			
[1]												

24010249739

[1] For gear ratios with a footnote, refer to the chapter "Churning losses and thermal rating" (\rightarrow \bigcirc 47).

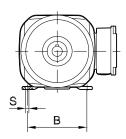
Centering shoulder AD../ZR

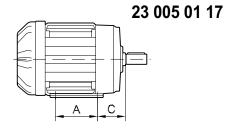
The input shaft assembly can optionally be configured with a centering shoulder. In this way, a customer's application can be attached to the cover centrally in relation to the input shaft side.

Backstop AD../RS

The input shaft assembly can be supplied with a backstop if the application permits only one direction of rotation. Backstops with centrifugal lift-off sprags are used. The advantage of this design is that the sprags move around inside the backstop without making contact above a certain speed (lift-off speed). This means the backstops operate wear-free, without losses, maintenance-free and are suited for high speeds.

The backstop is completely integrated in the cover. This means there is no difference in dimensions between an input shaft assembly with or without backstop (see dimension sheets in the Input shaft assembly AD chapters).

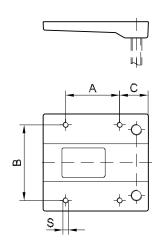

Locking torques:


Туре	Maximum locking torque of the backstop	Minimum lift-off speed
	Nm	min ⁻¹
AD2/RS	65	820
AD3/RS	425	620
AD4/RS	850	530
AD5/RS	1450)	480
AD6/RS	1950	450
AD7/RS	1950	450
AD8/RS	1950	450

Motor platform AD../P

Available combinations

The following table shows motor dimensions and available input shaft assemblies with motor platform:


9007220623691531

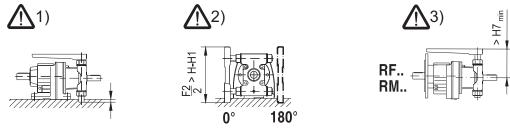
Motor	Α	В	С	S	Cover	
	mm	mm	mm	mm		
DRN71MS	90	112	45	7		
DRN71M	90	112	45	7		
DRN80MK	100	125	50	10	4 D2/D	
DRN80M	100	125	50	10	AD2/P	
DRN90S	100	140	45	10		
DRN90L	125	140	56	10		
DRN100LS	140	160	63	12		
DRN100L	140	160	63	12	AD3/P	
DRN100LM	140	160	63	12	AD3/F	
DRN112M	140	190	70	12		
DRN132S	178	216	89	12		
DRN132M	178	216	89	13	AD4/P	
DRN132L	178	216	89	13		
DRN160M	254	254	108	14.5		
DRN160L	254	254	108	14.5	AD5/P	
DRN180M	279	279	121	14.5	AD3/F	
DRN180L	279	279	121	14.5		
DRN200L	305	316	133	18.5		
DRN225S	286	356	149	18.5	AD6/P	
DRN225M	311	356	149	18.5		
DRN250M	349	406	168	24.5		
DRN250ME	349	406	168	24.5	AD7/P	
DRN280S	419	457	190	24.5	ADIIF	
DRN280M	419	457	190	24.5		

If the required combination of gear unit cover (motor platform) and motor is not listed, contact SEW-EURODRIVE. You find available combinations of gear units and motors in the chapters for dimension sheets for input shaft assemblies with motor platform.

Bore dimensions and weight

The following table shows bore dimensions and weight information of the motor platform. The motor platform is also available without bores.

23 006 00 17


9007220625288075

Cover	Α	В	С	S	Weight P
	mm	mm	mm		kg
	90	112	42	M6	
AD2/P	100	125	47	M8	5.5
AU2/P	100	140	53	M8	5.5
	125	140	53	M8	
	100	140	52	M8	
AD3/P	125	140	52	M8	11
AD3/P	140	160	59	M10	
	140	190	66	M10	
	140	216	86	M10	
AD4/P	178	216	86	M12	23
	210	254	105	M12	
	210	254	105	M12	
AD5/P	254	254	105	M12	41
AD9/F	241	279	118	M12	41
	279	279	118	M12	

Cover	Α	В	С	S	Weight P
	mm	mm	mm		kg
	305	318	129	M16	
AD6/P	286	356	145	M16	62
	311	356	145	M16	
	349	406	166	M20	
AD7/P	368	457	188	M20	103
	419	457	188	M20	

Risks of collision

The following critical cases can occur when using gear units with input shaft assembly and motor platform:

4531208203

- 1. The column might protrude beyond the foot mounting surface depending on the adjustment.
- 2. The motor platform protrudes beyond the foot mounting surface.
- 3. The motor platform might collide with the gear unit flange depending on the adjustment.

These cases are indicated in the right column of the dimension tables.

4.7 Multi-stage gearmotors

4.7.1 General information

You can achieve particularly low output speeds by using compound gear units or compound gearmotors. This means an additional second gear unit, usually a helical gear unit, is installed in front of the gear unit or between gear unit and motor.

The resulting total reduction ratio might make protecting the gear unit from high output torques necessary.

4.7.2 Limiting the motor power

Reduce the maximum output motor power according to the maximum permitted output torque on the gear unit (M_{a_max}). For this purpose you first have to determine the maximum permitted motor torque ($M_{Mot\ max}$).

You can calculate the maximum permitted motor torque as follows:

Maximum permitted motor torque

$$M_{Mot_max} = \frac{M_{a_max}}{i_{tot} \times \eta_{tot}}$$

 M_{Mot_max} Maximum permitted motor torque $[M_{Mot_max}] = Nm$ M_{a_max} Maximum permitted output torque $[M_{a_max}] = Nm$ i_{tot} Total gear unit ratio $[i_{tot}] = 1$ n_{tot} Overall efficiency $[n_{tot}] = \%$

Use this maximum permitted motor torque $M_{\text{Mot_max}}$ and the load diagram of the motor to determine the associated value for the motor current.

Take appropriate measures to prevent the continuous current consumption of the motor from exceeding the pre-determined value for the motor torque $M_{\text{Mot_max}}$. An appropriate measure would be to set the tripping current of the motor protection switch to this maximum current value. A motor protection switch offers the option to compensate for a brief overload, for example during the startup phase of the motor. A suitable measure for inverter drives is to limit the output current of the inverter according to the determined motor current.

4.7.3 Checking brake torques

If you use a multi-stage brakemotor, you have to limit the braking torque (M_B) according to the maximum permitted motor torque M_{Mot_max} . The maximum permitted braking torque is 200% M_{Mot_max} .

Maximum braking torque

$$M_{B_{max}} \le 200\% M_{Mot_{max}}$$

M_{B max} Maximum braking torque in Nm

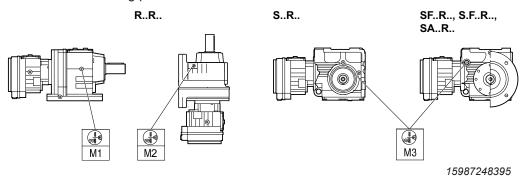
M_{Mot max} Maximum permitted motor torque in Nm

If you have questions regarding the permitted switching frequency of multi-stage brakemotors, please contact SEW-EURODRIVE.

4.7.4 Preventing blocking

Blockage on the output side of the double gear unit or multi-stage gearmotor is not permitted. The reason is that indeterminable torques and uncontrolled overhung and axial loads may occur. The gear units may suffer irreparable damage as a result.

INFORMATION

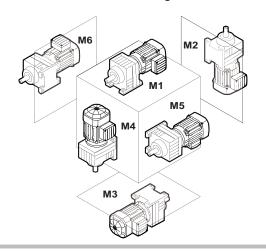

Contact SEW-EURODRIVE if blockages of the double gear unit or multi-stage gearmotor cannot be avoided due to the application.

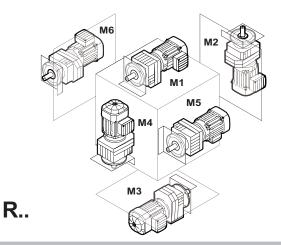
4.7.5 Position of the oil level plug of compound gear units

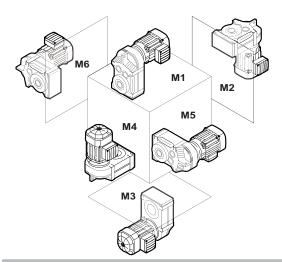
To ensure sufficient lubrication of the first gear unit (larger gear unit) in case of compound gear units, the following gear units have a higher oil level in the specified mounting positions:

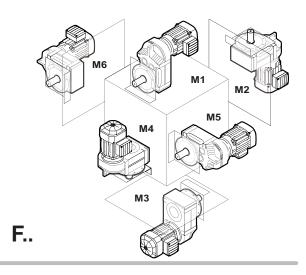
- Helical gear unit type R..R in mounting position M1 and M2
- Helical-worm gear unit type S..R in mounting position M3

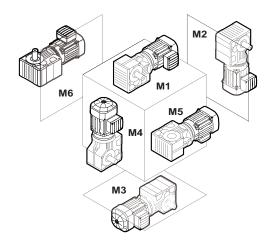
The oil level plugs are located at the following positions, deviating from the specifications on the mounting position sheets:




Icon	Meaning
	Oil level plug


5 Gear unit mounting positions and order information


5.1 General mounting position information – R, F, K, S, W gear units


The following illustration shows the SEW-EURODRIVE mounting positions M1 – M6:

15649312267

5.1.1 Change of mounting position

Make sure to read the following information when you operate the gearmotor in a mounting position other than the one indicated in the order:

- Adjust the lubricant fill quantity to the changed mounting position.
- · Adjust the position of the breather valve.
- When changing the mounting position to M4: Contact SEW-EURODRIVE. Depending on the drive's operating mode, an oil expansion tank might be necessary (see chapter "Oil expansion tank" (→ 1 19)).
- For helical-bevel gearmotors: Contact SEW-EURODRIVE if you want to change to mounting position M5 or M6, independent of the initial mounting position.
- For helical-worm gearmotors: Contact SEW-EURODRIVE when changing to mounting position M2 or M3.
- For helical gearmotors: Contact SEW-EURODRIVE when changing to mounting position M2.
- If you change the mounting position to a mounting position that requires more oil, SEW-EURODRIVE recommends to perform a thermal check/project planning again.

5.1.2 Mounting position MX

Mounting position MX is available for all gear units of the sizes R..7, F..7, K..7, K..9, S..7 and SPIROPLAN® W..7.

For mounting position MX, the gear units are delivered with the maximally possible amount of oil and are sealed with oil screw plugs. A breather valve is included with each drive. The oil fill volume must be adapted according to the mounting position of the gear unit (see chapter "Lubricant fill quantities" (\rightarrow 127)). Customers will also have to mount the enclosed breather valve at the proper location depending on the mounting position, see chapter Mounting position sheets.

Before startup, always check that the oil level is correct.

Compound gear units in MX mounting position

In MX mounting position, both gear units (primary and subsequent gear unit) are in the same mounting position.

5.1.3 Position of the breather valve/oil drain plug in the adapter flange

As shown in the mounting position sheets in chapter Mounting position sheets, the position of the breather valve and oil drain plug depends on the mounting position of the gear unit.

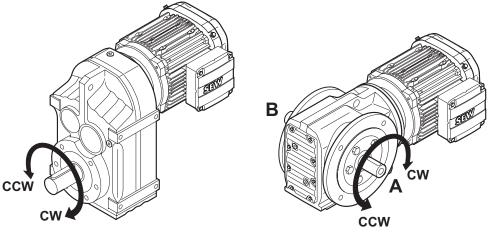
The following table shows the position of the breather valve or oil drain plug depending on the mounting position:

Mounting position	Breather valve position	Oil drain plug position	
M1, M3, M5, M6	In the gear unit housing	In the gear unit housing	
M4	In the adapter flange	In the gear unit housing	
M2	In the gear unit housing	In the adapter flange	

5.2 Order information

INFORMATION

The following order information is required for R, F, K, S, and W gear units or gearmotors in addition to the mounting position to exactly determine the drive design.


This information is also required for gearmotors that do not depend on a particular mounting position.

5.2.1 Output direction of rotation with backstop

The purpose of a backstop is to prevent unwanted directions of rotation. During operation, the backstop permits rotation only in the specified direction. If the drive has an RS backstop, you have to indicate the direction of rotation of the output for the drive.

The direction of rotation is specified as viewed onto the output shaft (LSS):

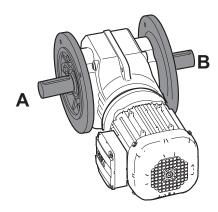
- · CW rotation
- · CCW rotation

4579708555

In right-angle gear units, you also have to indicate whether the direction of rotation is given looking onto the A or B-side.

The permitted direction of rotation is indicated by a direction arrow on the housing:

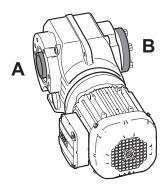
15985405835


A replacement label is enclosed for the customer.

5.2.2 Position of the output shaft and the output flange

In right-angle gear units, you also have to indicate the position of the output shaft and the output flange:

A or B or AB



4579723275

5.2.3 Position of the output end in right-angle gear units

In shaft mounted right-angle gear units with a shrink disk, you also have to indicate whether the A- or B-side is the output side. In the figure below, the A-side is the output side. The shrink disk is located opposite the output side.

In shaft-mounted right-angle gear units, the designation "output side" is equivalent to the designation "position of the output shaft" used for right-angle gear units with solid shaft.

4579730955

INFORMATION

For the permitted mounting surfaces (= hatched area), refer to the mounting position sheets (see chapter Mounting position sheets).

5.2.4 Position of motor terminal box and cable entry

The position of the motor terminal box has so far been indicated with 0°, 90°, 180° or 270° as viewed onto the fan guard (= B-side), see also the following figure. A change in the standard DIN EN 60034 specifies that the following designations will have to be used for terminal box positions for foot-mounted motors in the future:

- As viewed onto the output shaft = A-side
- Designation as R (right), B (bottom), L (left) and T (top)

This new designation applies to foot-mounted motors without a gear unit in mounting position B3 (= M1). For gearmotors, the previous designation is maintained. The following figure shows both designations. Where the mounting position of the motor changes, R, B, L and T are rotated accordingly. In motor mounting position B8 (= M3), T is at the bottom.

The position of the cable entry can be selected as well. "X" (= normal position), "1", "2" or "3" are possible, as shown in following figure.

3975310859

Unless indicated otherwise, you will receive the terminal box type 0° with "X" cable entry. SEW-EURODRIVE recommends selecting cable entry "2" with mounting position M3.

INFORMATION

i

Only cable entries "X" and "2" are possible for DR2S56.. and DRN63.. motors. Exception: This limitation does not apply with IS plug connectors.

INFORMATION

When the **terminal box is in the 90° (B) position**, check to see if the gearmotor has to be supported.

Software support

Not all cable entry positions X, 1, 2, 3 and terminal box positions $0^{\circ}(R)$, $90^{\circ}(B)$, $180^{\circ}(L)$, $270^{\circ}(T)$ are possible in any case. Some additional features for the motor require a connection inside the terminal box, which means this terminal box is larger than the standard terminal box due to the normative air gaps and creepage distances. The dimension sheets only depict the standard terminal box.

Dimensions not listed in the dimension sheets are available on the SEW-EURODRIVE website via the respective CAD data.

5.2.5 Sample orders

Examples	Mount- ing posi- tion	Shaft position	Flange position	Connection side	Shrink disk position	Output di- rection of rotation
K47AM71/RS	M2	Α	-	-	-	Right
SF77AT312DRN80M4	M6	AB	AB	-	-	-
KA97AM184	M4	-	-	В	-	-
KH107AD4	M1	-	-	Α	В	_

5.3 Mounting position sheets

5.3.1 Key to the mounting position sheets

INFORMATION

i

The positions of the breather valve, oil level plug, and oil drain plug specified in the mounting position sheets are binding and comply with the assembly specifications.

The motors are only depicted symbolically on the mounting position sheets.

INFORMATION

i

For gear units with solid shaft: The displayed shaft is always on the A end.

For shaft-mounted gear units: The shaft with dashed lines represents the customer shaft. The output end (= output shaft position) is always shown on the A-side.

INFORMATION

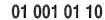
i

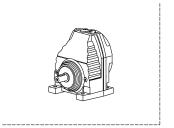
SPIROPLAN® gearmotors do not depend on the mounting position. An exception are W..37 and W..47 gearmotors in M4 mounting position. However, mounting positions M1 to M6 are also shown for SPIROPLAN® gearmotors to assist you in working with this documentation.

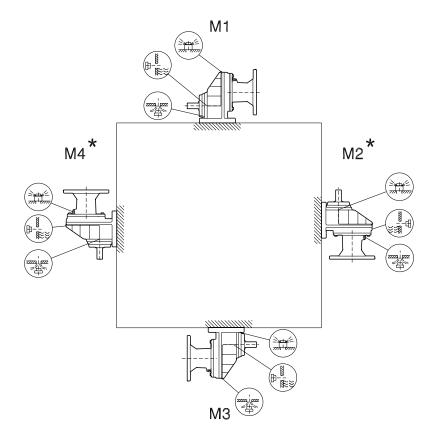
INFORMATION

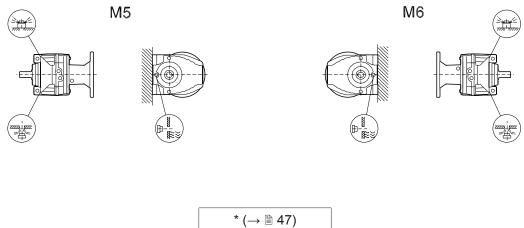
SPIROPLAN® gearmotors W..37 and W..47 are equipped with breather valves in mounting position M4 and with oil drain plugs in mounting position M2.

Symbols used

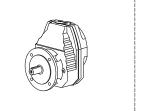

The following table shows the icons used in the mounting position sheets.

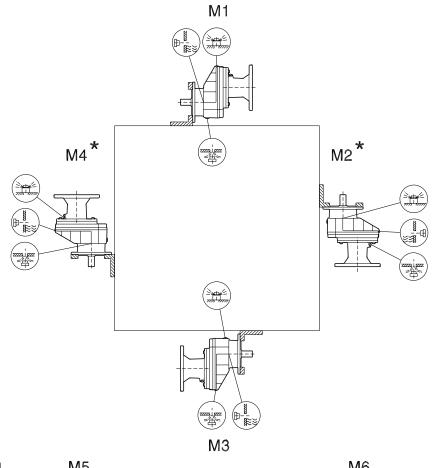

Icon	Meaning
(marrian)	Breather valve
	Oil level plug 1)
	Oil drain plug

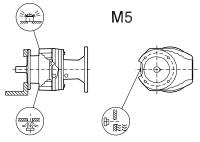

¹⁾ Does not apply to the 1st gear unit (large gear unit) of compound gear units. See chapter "Position of the oil level plug of compound gear units".

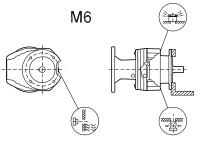

5.3.2 Mounting positions of helical gear units

RX57 - RX107

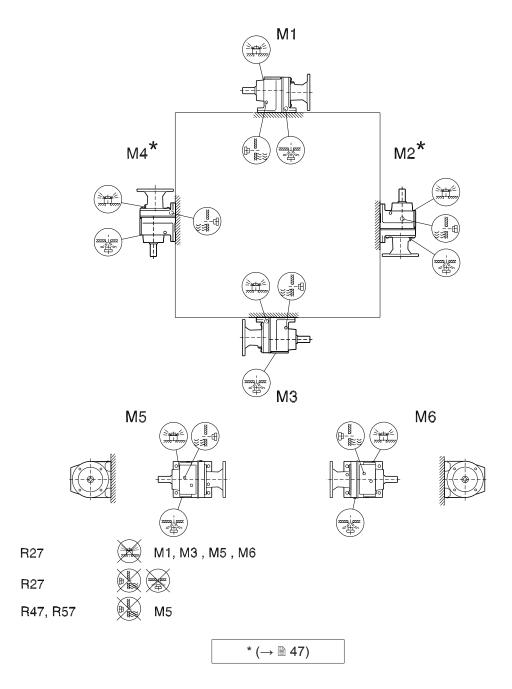







RXF57 - RXF107

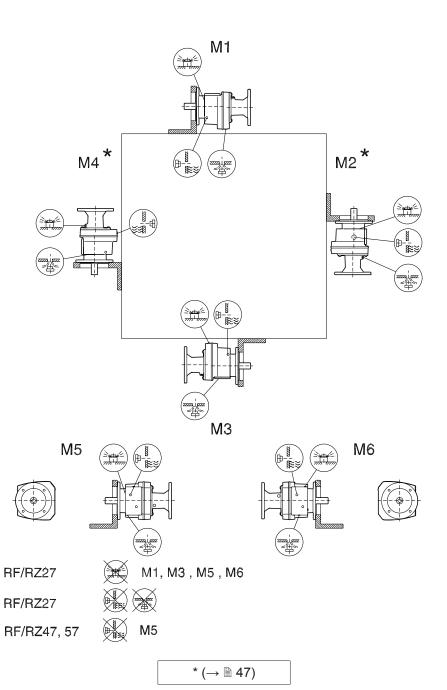
01 002 01 10



* (→ 🖺 47)

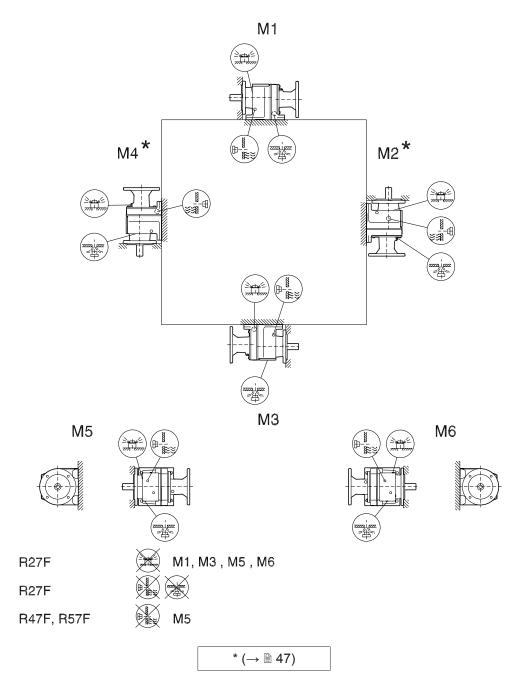
R07 - R167

01 003 01 10


Observe the information in chapter "Overhung and axial loads – R, F, K, S, and W gear units" (\rightarrow $\$ 52).

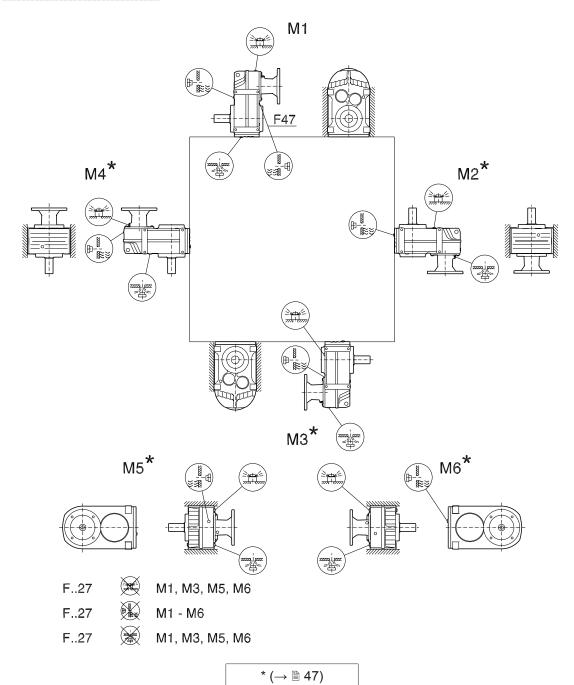
RF07 - RF167, RZ07 - RZ87, RM57 - RM167

01 004 01 10



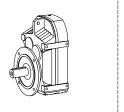
R07F - R87F

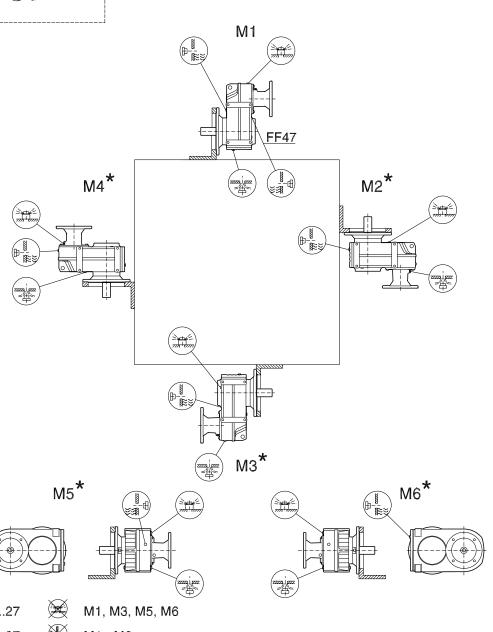
01 005 01 10


Observe the information in chapter "Overhung and axial loads – R, F, K, S, and W gear units" ($\rightarrow \mathbb{B}$ 52).

5.3.3 Mounting positions of parallel-shaft helical gear units

F/FA..B/FH27B-157B, FV27B-107B


42 002 01 10



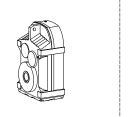
FF/FAF/FHF/FZ/FAZ/FHZ27-157, FVF/FVZ27-107, FM/FAM67-157

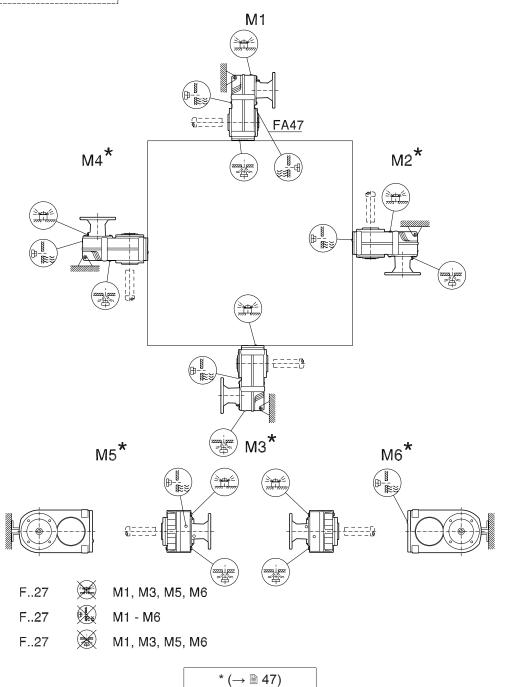
42 003 01 10

F..27

M1 - M6

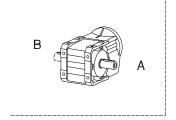
F..27

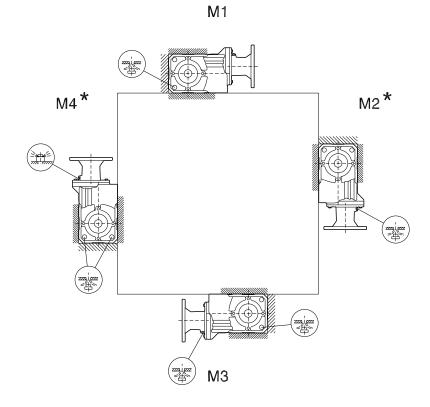

M1, M3, M5, M6

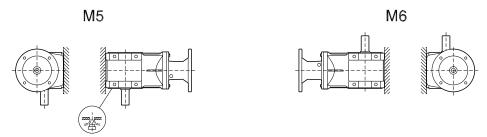

* (→ 🖺 47)

FA/FH27-157, FV27-107, FT37-97

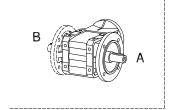
42 004 01 10

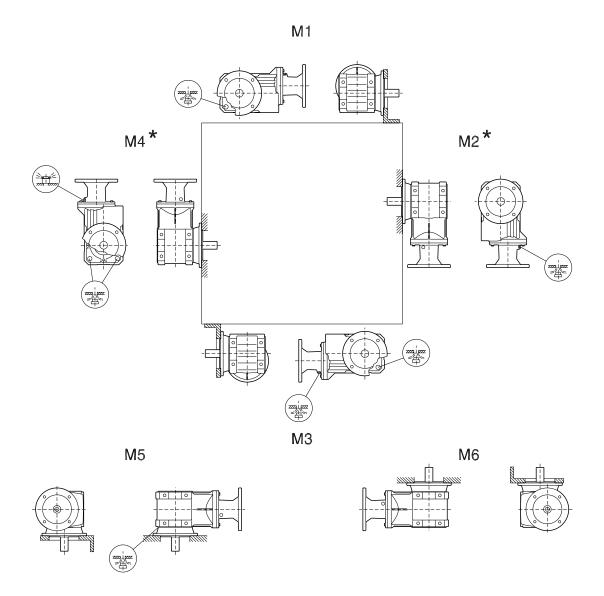





5.3.4 Mounting positions of helical-bevel gear units

K/KA..B/KH19B-29B

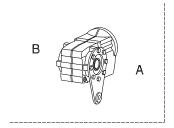


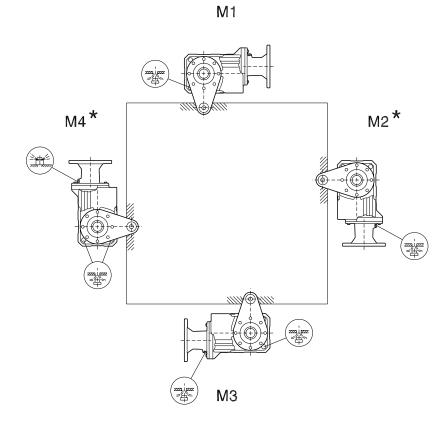

* (→ 🖺 47)

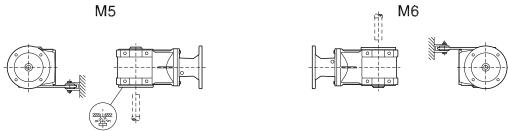
Observe the information in chapter "Overhung and axial loads – R, F, K, S, and W gear units" ($\rightarrow \mathbb{B}$ 52).

KF..B/KAF..B/KHF19B-29B

33 245 00 17

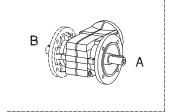

29154650/EN - 03/2020

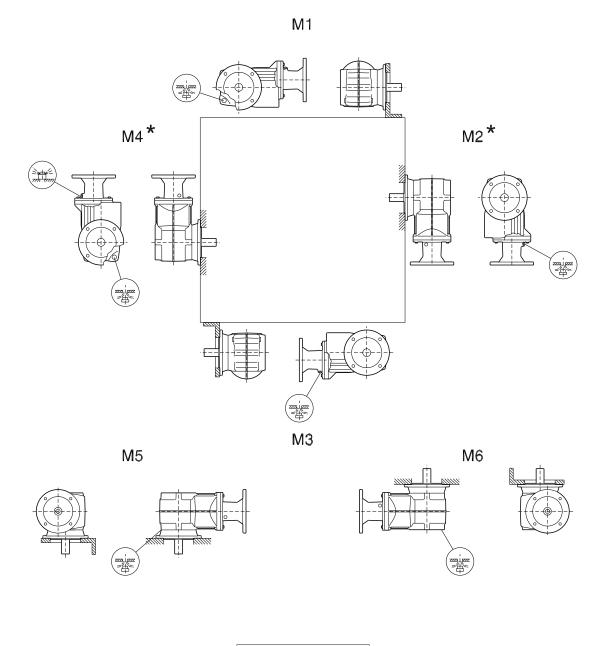



Observe the information in chapter "Overhung and axial loads – R, F, K, S, and W gear units" ($\rightarrow \mathbb{B}$ 52).

KA..B/KH19B-29B

33 246 00 17^L

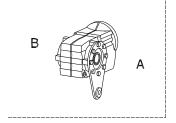


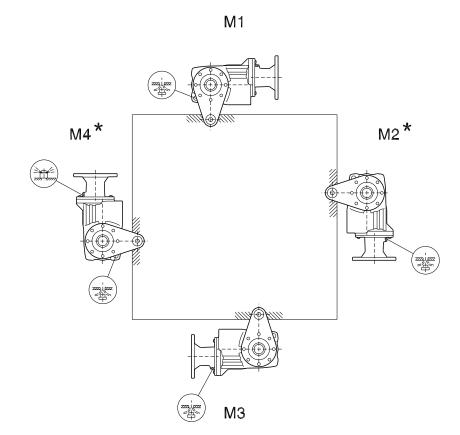

* (→ 🖺 47)

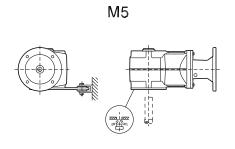
Observe the information in chapter "Overhung and axial loads – R, F, K, S, and W gear units" (\rightarrow \bigcirc 52).

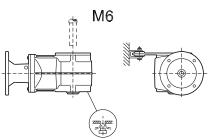
KF/KAF/KHF19-29

33 247 00 17

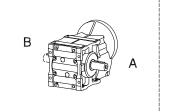


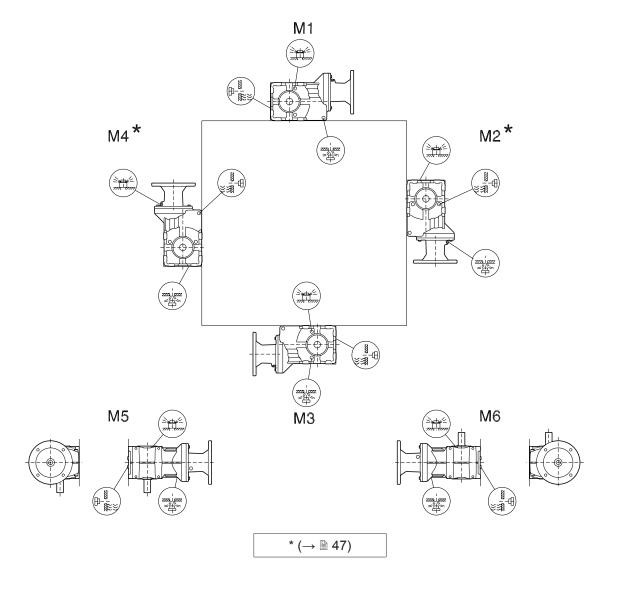

* (→ 🖺 47)

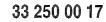

Observe the information in chapter "Overhung and axial loads – R, F, K, S, and W gear units" ($\rightarrow \mathbb{B}$ 52).

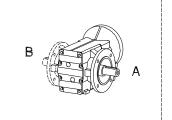

KA/KH19-29

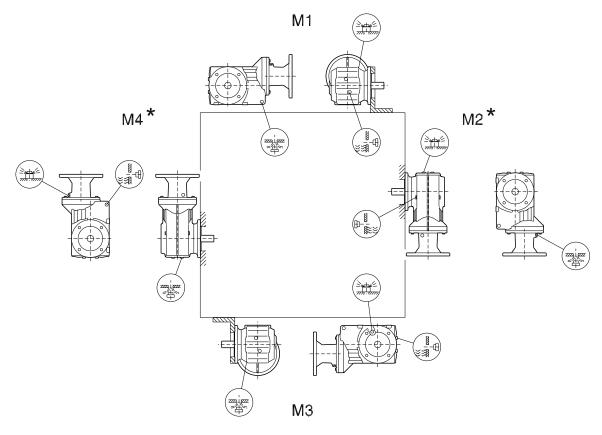
33 248 00 17

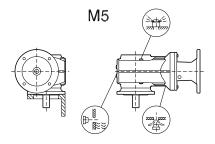


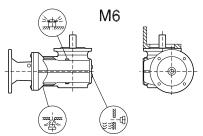

* (→ 🖺 47)

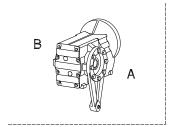

K/KA..B39-49

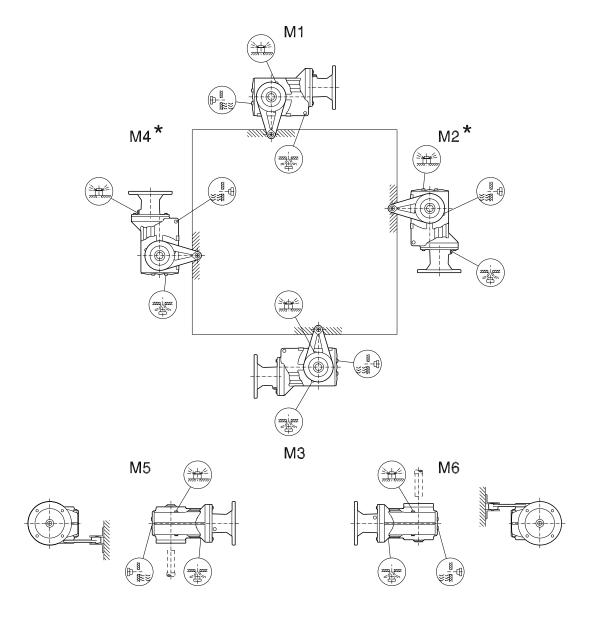


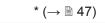

33 249 01 17




KF/KAF/KHF39-49

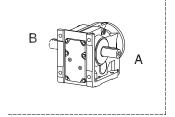


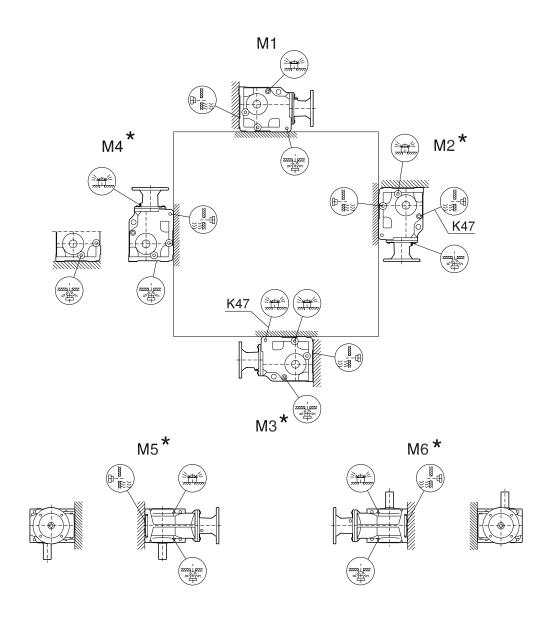

* (→ 🖺 47)



KA/KH/KT39-49

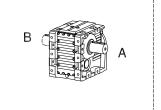
33 251 00 15

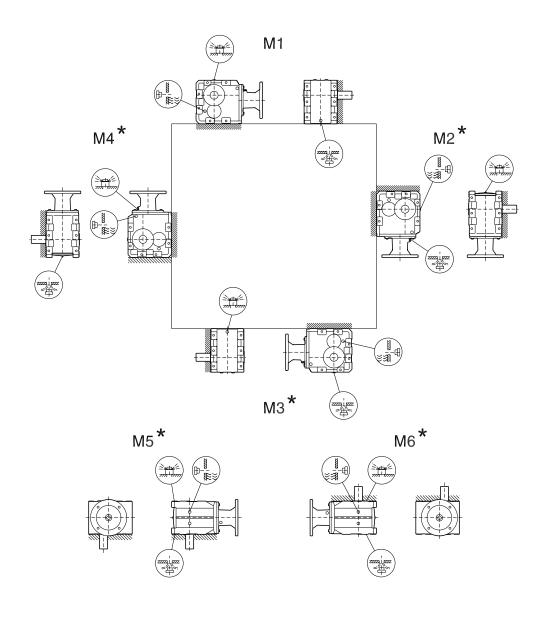




K/KA..B/KH47B-157B, KV47B-107B

33 001 01 10

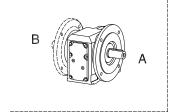


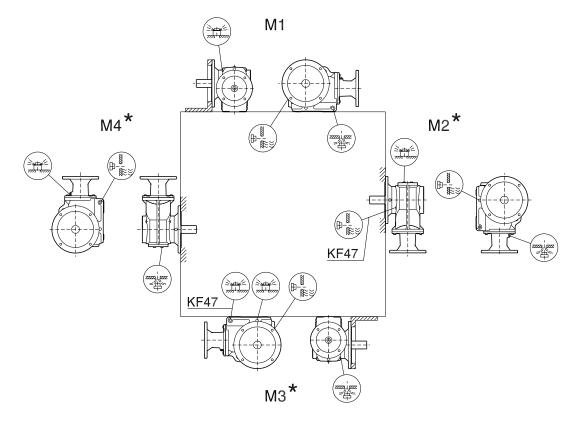

* (→ 🖺 47)

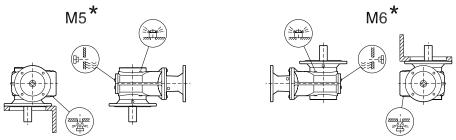
Observe the information in chapter "Overhung and axial loads – R, F, K, S, and W gear units" (\rightarrow \bigcirc 52).

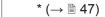
K167-187, KH167B-187B

33 002 01 10

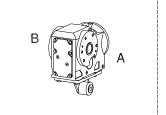


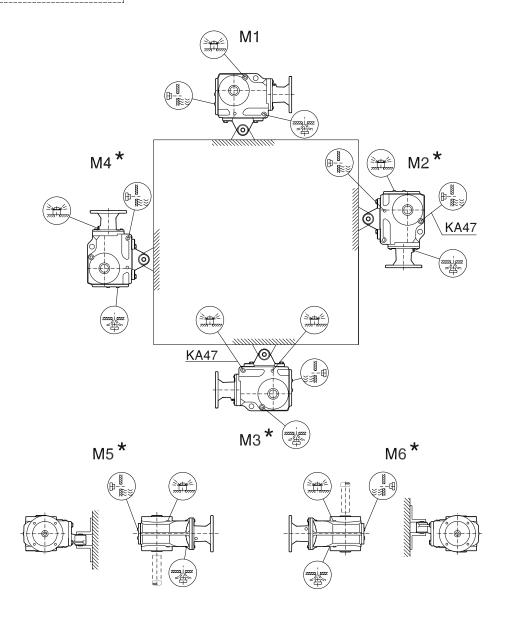



Observe the information in chapter "Overhung and axial loads – R, F, K, S, and W gear units" ($\rightarrow \mathbb{B}$ 52).


KF/KAF/KHF/KZ/KAZ/KHZ37-157, KVF/KVZ37-107, KM/KAM67-157

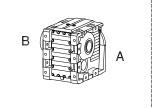
33 003 01 10

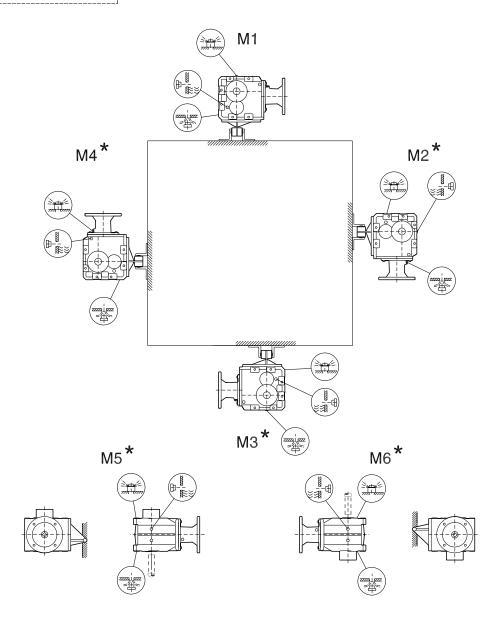




KA/KH37-157, KV37-107, KT37-97

33 004 01 10

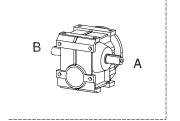


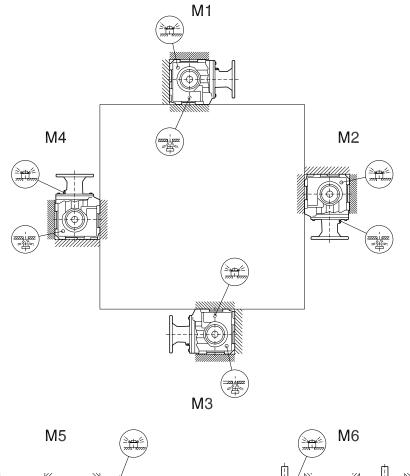

Gear unit mounting positions and order information

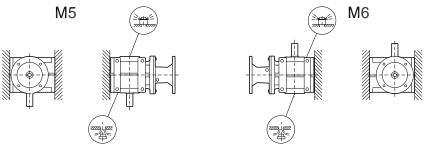
Mounting position sheets

KH167-187

33 005 01 10

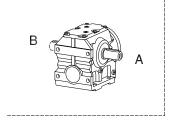

* (→ 🖺 47)

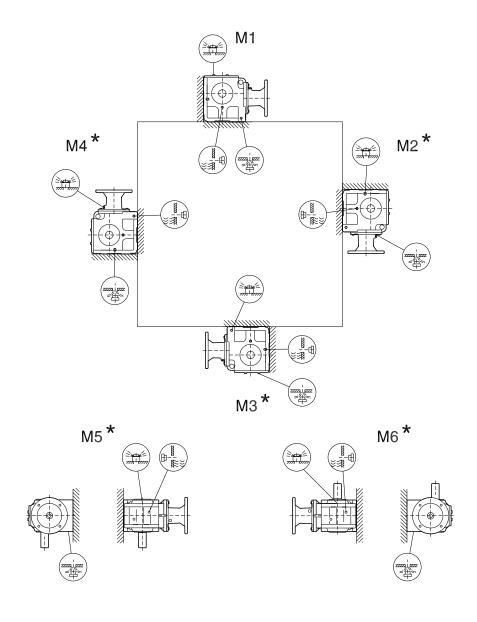



5.3.5 Mounting positions of helical-worm gear units

S37

02 001 01 10

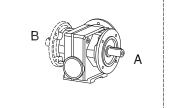


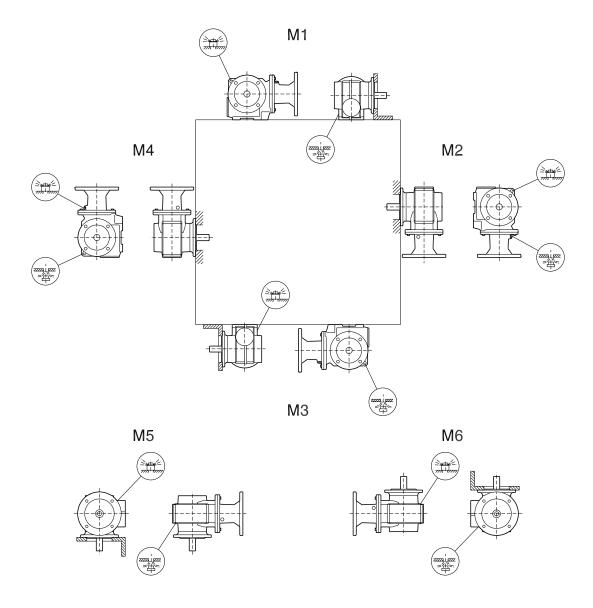


Observe the notes in chapter "Overhung and axial loads – R, F, K, S, and W gear units" ($\rightarrow \mathbb{B}$ 52).

S47-S97

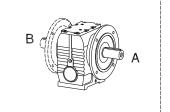
02 002 01 10

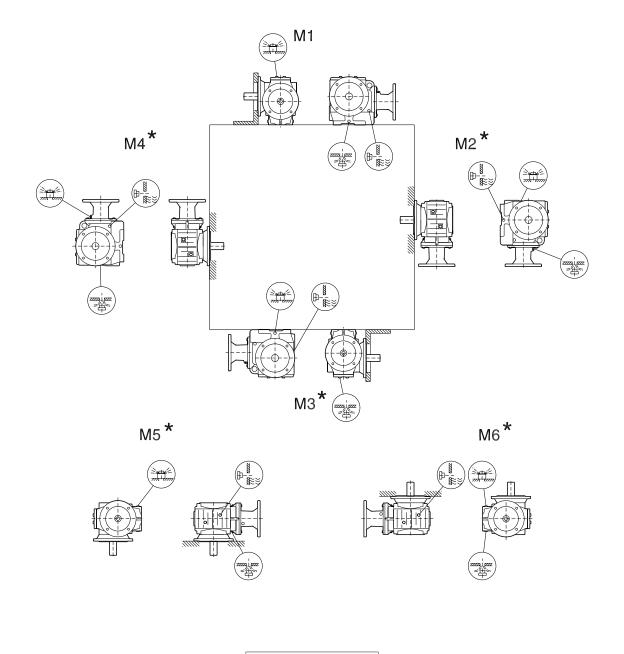



* (→ 🖺 47)

Observe the notes in chapter "Overhung and axial loads – R, F, K, S, and W gear units" (\rightarrow $\$ 52).

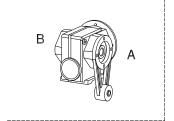
SF/SAF/SHF37

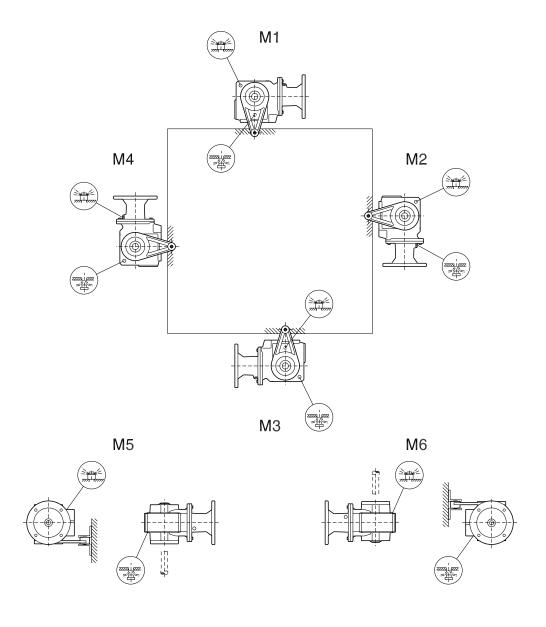

02 003 01 10



SF/SAF/SHF/SAZ/SHZ47-97

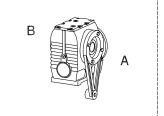
02 004 01 10

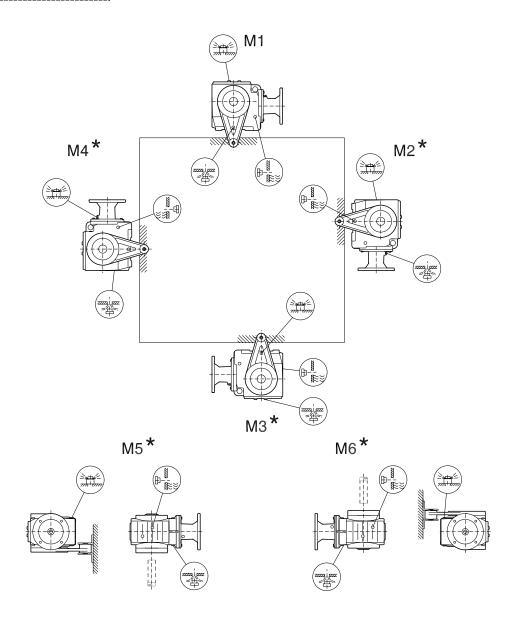




* (→ 🖺 47)

SA/SH/ST37

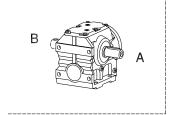

02 005 01 10

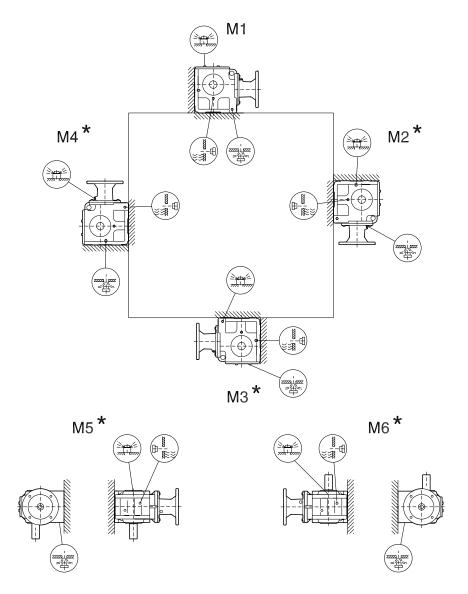


Gear unit mounting positions and order information

SA/SH/ST47-97

02 006 01 10

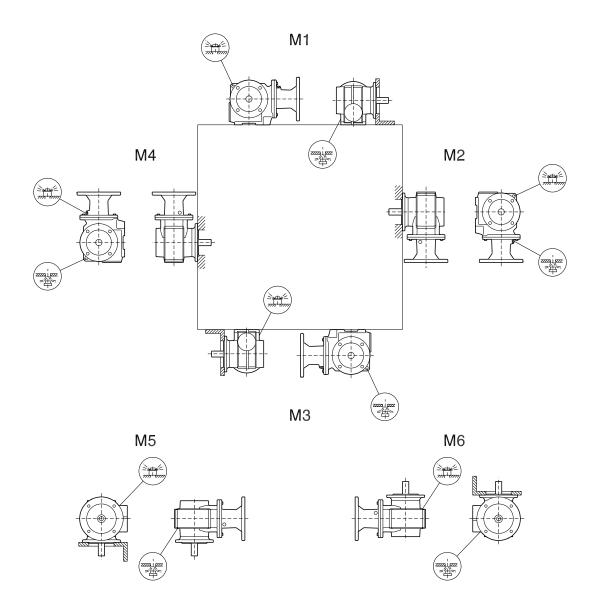




5.3.6 Mounting positions of SPIROPLAN® gearmotors

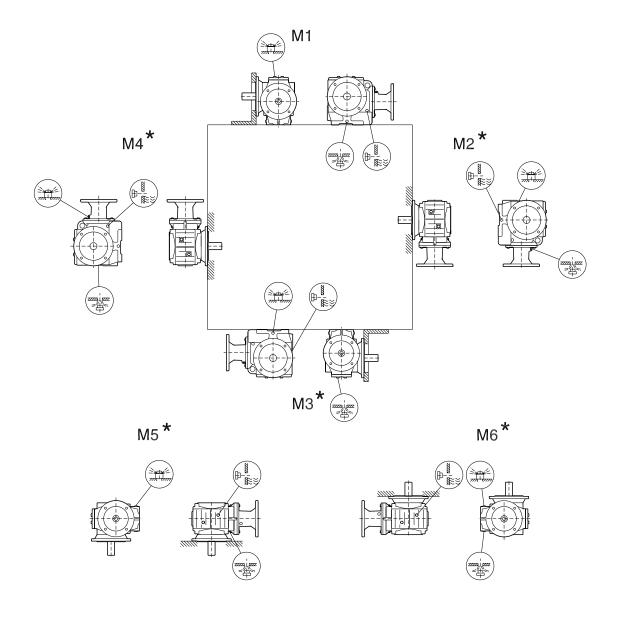
W/WA..B/WH37B-47B

02 002 01 10



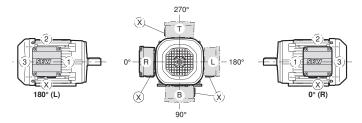
WF/WAF/WHF37-47

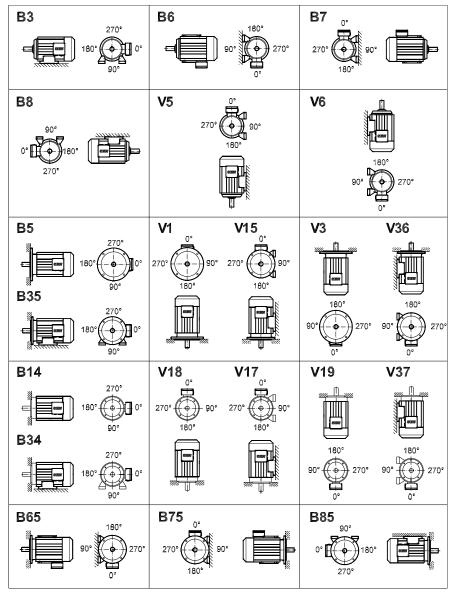
02 003 01 10



WA/WH/WT37-47

02 004 01 10




5.4 Mounting positions of AC motors

5.4.1 Motor terminal box position and cable entry

8670476811

5.4.2 Mounting positions

18014402484795531

0.4

6

6.1 Lubricants

Unless a special arrangement is made, SEW-EURODRIVE supplies the drives with a lubricant fill adapted for the specific gear unit and mounting position. The decisive factor is the mounting position specified when ordering the drive. If you change the mounting position later, you must adapt the lubricant fill quantity accordingly.

6.1.1 SEW GearOil - Premium lubricant for gear units

Design and operating notes

With decades of experience in gear unit development and construction, as well as numerous customer applications, SEW-EURODRIVE has extensive tribological knowledge. Based on this knowledge and the results of long-term testing, SEW-EURODRIVE has developed a special formulation for our own premium gear unit oil – SEW GearOil. It provides the perfect protection for gear units from SEW-EURODRIVE.

By using high-quality base materials and additives as well as the appropriate logistics, SEW-EURODRIVE ensures the highest level of quality.

SEW GearOil increases the performance of all gear units, that is of standard, servo and industrial gear units. The premium gear oil reduces the friction between gears by creating a very good lubrication film. This increases the service life of lubricant and wear parts, such as seals and bearings. The high damage load stage of the SEW GearOil Base mineral lubricant (damage load stage 14) improves protection from fretting on the gearing. At the same time, SEW GearOil increases the efficiency of the gear unit and protects it from corrosion and damaging oil foaming. The "self-cleaning" properties of the lubricants prevent deposits as they bind water and dirt particles.

As an option, SEW GearOil can be selected as initial filling for gear units and gearmotors. The premium gear oil can be ordered in cans or barrels for service and maintenance purposes. In an unopened packing unit, SEW GearOil can be stored for up to 6 years.

Refer to the following table for the amounts available to order and the respective part numbers:

		Part nu	ımbers	
SEW GearOil	5 liter can	20 liter can	205 liter barrel	1000 liter IBC
Base 150 E1	_	03287866	03287742	03096750
Base 220 E1	_	03287858	03287734	03096688
Base 320 E1	_	03287831	03287726	03096742
Base 460 E1	_	03287823	03287718	03096734
Base 680 E1	_	03287815	03287696	03096726
Base 680 S E1	_	03287807	03287688	03096718
Poly 460 W E1	03096599	03287750	03287645	03096696
Poly 460 H1 E1	03287076	03288099	03287068	_

For additional information on using SEW GearOil lubricants and on the most important technical properties, refer to the lubricant tables in the chapter "Lubrication table (017511804)" (\rightarrow 113). Technical data sheets and safety data sheets are available from SEW-EURODRIVE on request.

6.1.2 **Bearing greases**

The gear unit rolling bearings are given a factory-fill with the greases listed below. SEW-EURODRIVE recommends re-greasing the rolling bearings with a grease filling at the same time as changing the oil.

The table shows the lubricants recommended by SEW-EURODRIVE:

Area of operation	Ambient temperature	Manufactur- er	Туре
Standard	-40 °C to +80 °C	Fuchs	Renolit CX-TOM 15 ¹⁾
Standard	-40 °C to +80 °C	Klüber	Petamo GHY 133 N
2)	-40 °C to +40 °C	Bremer & Leguil	Cassida Grease GTS 2
3 3)	-20 °C to +40 °C	Fuchs	Plantogel 2S

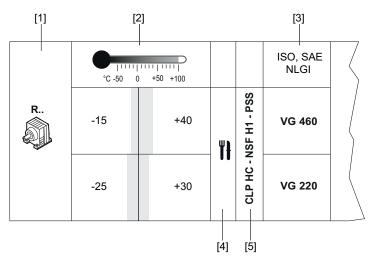
- 1) Bearing grease based on semi-synthetic base oil
- 2) Lubricant for the food processing industry
- 3) Easily biodegradable lubricant for environmentally sensitive areas

INFORMATION

The following grease quantities are required:

- For fast-running bearings (gear unit input side): Fill the cavities between the rolling elements one-third full with grease.
- For slow-running bearings (gear unit output side): Fill the cavities between the rolling elements two-thirds full with grease.

6.1.3 Lubrication table (017511804)


NOTICE

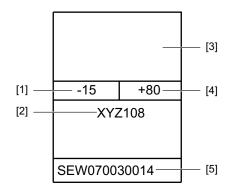
Damage to the gear unit due to improper lubricants.

Possible damage to property.

- The oil viscosity and type (mineral/synthetic) to be used are determined by SEW-EURODRIVE specifically for each order. This information is noted in the order confirmation and on the gear unit's nameplate. If you use other lubricants for the gear units and/or use the lubricants at temperatures outside the recommended temperature range, SEW-EURODRIVE does not assume liability.
- The lubricant recommendation in the lubricant table in no way represents a guarantee regarding the quality of the lubricant delivered by each respective supplier. Each lubricant manufacturer is responsible for the quality of their product.
- · Do not mix synthetic lubricants.
- Do not mix synthetic lubricants and mineral lubricants.
- Oils of the same viscosity class from different manufacturers do not have the same characteristics. In particular, the minimally and maximally permitted oil bath temperatures are manufacturer-specific. These temperatures are specified in the lubricant tables.
- The values specified in the lubricant tables apply as of the time of printing of this
 document. The data of the lubricants is subject to dynamic change on the part of
 the lubricant manufacturers. For the latest information about the lubricants, visit:
 www.sew-eurodrive.de/lubricants.

Information on table structure

18014416412986635


- [1] Gear unit type
- [2] Ambient temperature range
- [3] Viscosity class
- [4] Note on special approvals
- [5] Lubricant type

6

The specified ambient temperatures are guide values for selecting a suitable lubricant. The exact upper and lower temperature limits for project planning are specified in the table with the respective trade name. Bear in mind during project planning that the viscosity increases at low temperatures and that this might influence the starting behavior.

Information on the various lubricants

- [1] Lowest oil sump temperature in °C, going below this value during operation is not permitted
- [2] Trade name
- [3] Manufacturer
- [4] Highest oil sump temperature in °C. The service life will be considerably reduced when this temperature is exceeded. Adhere to the lubricant change intervals in chapter "Current lubricant change intervals" in the operating instructions.
- [5] Approvals regarding compatibility of the lubricant with approved oil seals

Lubricant compatibility with oil seal

Approval	Explanation
SEW0700413:	A lubricant especially recommended with regard to compatibility with the approved oil seals. The lubricant exceeds the state-of-the-art requirements regarding elastomer compatibility.

Approved application temperature range of the oil seals

In the low temperature range, oil seals can withstand shaft deflections (e. g. through overhung load) only to a limited extent. Especially avoid or limit pulsating or changing radial displacements of the shaft. Contact SEW-EURODRIVE, if required.

Oil seal	Permitted
material class	oil sump temperature
NBR	-40 °C to +80 °C
FKM	-25 °C to +115 °C
FKM-PSS	-25 °C to +115 °C

Limitations of use of oil seals with the specific lubricant are described in the following table:

	Mat	erial class		Manufacturer		Material
	1	NBR	1	Freudenberg		72 NBR 902
	'	NDIX	2	Trelleborg		4NV11
S			4	Freudenberg	1	75 FKM 585
	2	FKM	1	Freudenberg	2	75 FKM 170055
			2	Trelleborg	1	VCBVR

Examples:

- **\$11**: Only the elastomer 72NBR902 of the Freudenberg company meets the requirements of the approval in conjunction with the specific lubricant.
- **S2**: Only the elastomer FKM meets the requirements of the approval in conjunction with the specific lubricant.

Key

The following table shows the abbreviations and symbols used in the lubricant table and explains what they mean:

Abbrevi- ation/ symbol	Meaning
	Synthetic lubricant (marked gray)
	Mineral lubricant
CLP	Mineral oil
CLP PG	Polyglycol (PG)
CLP HC	Synthetic hydrocarbons – polyalphaolefin (PAO)
Е	Ester-based oil
Th	Lubricant for the food processing industry and feed industry. Oils are NSF-H1 registered and compliant according to FDA 21 CFR § 178.3570
	Easily biodegradable oil for environmentally sensitive areas
⟨£x⟩	Lubricant suitable for ATEX environment.
1)	Helical-worm gear units with CLP-PG: Contact SEW-EURODRIVE
2)	Low-viscosity grease
3)	With appropriate measures, the gear units can be operated at ambient temperatures as low as -40 °C. Contact SEW-EURODRIVE.
RWDR	Oil seal
PSS	Oil seal type Premium Sine Seal (PSS). The addendum "PSS" for the lubricant type indicates compatibility with the sealing system.

Lubricant table for R.., F.., and K..7 gear units

The lubricant table is valid on the day this document is published. Refer to www.sew-eurodrive.de/lubricants for the latest tables.

Observe the thermal limit of the oil seal material, see chapter "Lubricant compatibility with oil seal" (\rightarrow 114).

Toral	-15 +80	Cater EP 220		-20 +80	Cater EP 150							
Shell	-15 +80	Shell Omala SG 220		-20 +80	Shell Omala SG 150							
KLUBER LUBRKATTON	-15 +80	Klüberoil GEM 1-220 N		-20 +80	Klüberoil GEM 1-150 N							
Mobil®	-15 +80	Mobilgear 600 XP 220	SEW070040313	-20 +80	Mobilgear 600 XP 150	SEW070040313						
FUCHS	-15 +80	Renolin CLP 220 Plus	SEW070040313	-20 +80	Renolin CLP150 Plus	SEW070040313						
(Castrol	-15 +80	Optigear BM 220		-20 +80	Optigear BM 150							
U bremer & leguit												
SEW	-15 +80	SEW GearOil Base 220 E1 / US1	SEW070040313	-20 +80	SEW GearOil Base 150 E1 / US1	SEW070040313	-15 +80	SEW GearOil Base 220 E1 / US1	SEW0700400313	-20 +80	SEW GearOil Base 150 E1/ US1	SEW070040313
ISO,SAE NLGI		VG 220			VG 150			VG 220			VG 150	
[2]			ď	10				s	Sd	ď	СГ	
Ξ				_						_		
[3]		-15 +40			+30			+40			+30	
09- D.	[7]	<u> </u>			-20		[7	E			-20	
~; ¦	מ ע	K7 KES	¥:	ш)			

- [1] Note on special approvals
- [2] Oil type

- [3] Ambient temperature range
- [4] Standard

Observe the thermal limit of the oil seal material, see chapter "Lubricant compatibility with oil seal" ($\rightarrow \mathbb{B}$ 114).

ToraL	-25 +115	Cater SY 220																			
Shell	-25 +115	Shell Omala S4 WE 220																			
KLOBER	-25 +115	Klübersyth GH 6-220		-30 +115	Klübersyth UH1-150		-25 +115	Klübersyth GH 6-220		-30 +115	Klübersyth UH1 6 - 150		-25 +95	Klübersyth UH1 6 - 220		-20 +115	Klübersyth UH1 6 - 460		-30 +80	Klübersyth UH1 6 - 150	
Mobil®	-25 +115	Mobil GLyoyle 220																			,
FUCHS																					
© Castrol	-25 +115	Optigear Synthetic 800/220																			
bremer & leguil																					
SEW	-25 +115	SEW GearOil Poly 220 E1	SEW0700400313	-30 +115	SEW GearOil Poly 150 E1	SEW070040313	-25 +115	SEW GearOil Poly 220 E1	SEW0700400313	-30a +115	SEW GearOil Poly 150 E1	SEW0700400313	-25 +95	SEW GearOil Poly 220 H1 E1	SEW070040313	-20 +115	SEW GearOil Polv 460 H1 E1	SEW070040313	-30 +80	SEW GearOil Poly 150 H1 E1	SEW070040313
ISO,SAE NLGI		VG 220			VG 150			VG 220			VG 150			VG 220			VG 460			VG 150	
[2]		5	Ы	dП	o			SS	3 6)d	СГР			(SS9	-)	ιH	ASF		CLP I		
Ξ			Q	3					Ĺ	3)					F			ĺ	3		
[3] 		2 +80			+20			2 +80			+70			+40			0 +80			+30	
-l 09- 0.	[7]	-25			-30			-72 -72		L	-30		_	-25			-20			-30	_
			α	. U	K.7	KES	¥	止 (8	3	, (>						

- [1] Note on special approvals
- [2] Oil type

- [3] Ambient temperature range
- [4] Standard

Observe the thermal limit of the oil seal material, see chapter "Lubricant compatibility with oil seal" (\rightarrow \bigcirc 114).

Torat	-25 +110 Cater SH 220	-30 +95 Cater SH 150		40 +50		
Shell	25 +110 Shell Omala S4 GX 220	-30 +100 Shell Omala S4 GX 150	-40 +75 Shell Omala S4 GX 68			
KI CHER KI CHER LUBRICATION	-25 +110 Klübersynth GEM 4-220 N	-30 +100 Klübersynth GEM 4-150 N				
FUCHS Mobil®	-25 +110 Mobil SHC 630	-30 +100 Mobil SHC 629	-40 +75 Mobil SHC 626	-40 +50 Mobil SHC 624	-25 +110 Mobil SHC 630	-30 +100 Mobil SHC 629
FUCHS	Renolin Unisyn CLP220	-30 +95 Renolin Unisyn CLP150	-35 +75 Renolin Unisyn CLP68	-40 +50 Renolin Unisyn OL32		
(Castrol						
() bremer & leguil						
SEW	SEW GearOil Synth 220 E1	-30 +100 SEW GearOil Synth 150 E1			-25 +110 SEW GearOil Synth 220 E1 SEW070040313	-30 +100 SEW GearOil Synth 150 E1
ISO,SAE NLGI	3) VG 220	3) VG 150	VG 68	VG 32	3) VG 220	3) VG 150
[2]			СГР		SSG - C	
[1]		(<u>)</u>	1	Ú	
[3]	09+	+50	+20	0	09+	+20
09-0	[4]	-30	-35	40	[4] -25	-30
	R RES	К7 КЕЅ НК.:				

- [1] Note on special approvals
- [2] Oil type

- [3] Ambient temperature range
- [4] Standard

Observe the thermal limit of the oil seal material, see chapter "Lubricant compatibility with oil seal" ($\rightarrow \mathbb{B}$ 114).

_							
Toral							
She							
KAUBER	-15 +105 Klüberoil 4UH1-460 N	-25 +80 Klüberoil 4UH1-220 N	-35 +50 Klüberoil 4UH1-68 N	40 +30 KlüberSummit HySynFG32			-20 +80 Klüberbio CA2-460
FUCHS Mobil®							
FUCHS	-15 +100 Cassida Fluid GL 460	-25 +80 Cassida Fluid GL 220	-40 +50 Cassida Fluid HF 68	40 +30 Cassida Fluid HF 32			-20 +80 Plantogear 460 S
(= Castrol	-15 +100 Optileb GT 460	-25 +80 Optileb GT 220	-35 +50 Optileb HY 68	40 +30 Optileb HY 32	-15 +100 Optileb GT 460 SEW070040013	-25 +80 Optileb GT 220 SEW070040013	
🕟 bremer & leguil	-15 +100 Cassida Fluid GL 460	-25 +80 Cassida Fluid GL 220	-40 +50 Cassida Fluid HF 68	-40 +30 Cassida Fluid HF 32			
SEW							
ISO,SAE NLGI	VG 460	VG 220	VG 68	VG 32	VG 460	VG 220	VG 460
[1]		NSF H1	- он аго		SE H1 - PSS	СГР НС - И	3
		((3)	=	(3) %
[3]	+40	+30	0	-10	+40	+30	+40
09-0°	[4]	-25	-35	-40	[4]	-25	-20
	R RES	Ж КЕЗ Т.: Т				>	

- [1] Note on special approvals
- [2] Oil type

- [3] Ambient temperature range
- [4] Standard

Lubricant table for K..9 gear units

The lubricant table is valid on the day this document is published. Refer to www.sew-eurodrive.de/lubricants for the latest tables.

Observe the thermal limit of the oil seal material, see chapter "Lubricant compatibility with oil seal" (\rightarrow 114).

Total								
Shell								
	-20 +95 Klübersynth GH 6-460	Klübersynth GH 6-680	-25 +70 Klübersynth GH 6-220	-30 +60 Klübersynth GH 6-150	-20 +95 Klübersynth UH1 6-460	-15 +115 Klübersynth UH1 6-680	-25 +70 Klübersynth UH1 6-220	-30 +60 Klübersynth UH1 6-150
FUCHS Mobil®								
FUCHS								
(=Castrol								
() bremer & leguil								
	-20 +95 SEW GearOil Poly 460 E1 SEW 070040313		-25 +70 SEW GearOil Poly 220 E1 SEW 070040313	-30 +60 SEW GearOil Poly 150 E1 SEW 070040313	-20 +95 SEW GearOil Poly 460 H1 E1 SEW 070040313		-25 +70 SEW GearOii Poly 220 H1 E1 SEW 070040313	-30 +60 SEW GearOil Poly 150 H1 E1 SEW 070040313
ISO, SAE NLGI	VG 460	VG 680	VG 220 VG 150 VG 680		VG 220	VG 150		
[2]		(SSG-)	СГР РБ		(s	S4-) IH 4		10
[]			₩				3	
[3]	09+	+80	+40	+30	09+	+80	+40	+30
05- 0°	[4]	-15	-25	-30	[4]	-15	-25	-30
			K.9					

- [1] Note on special approvals
- [2] Oil type

- [3] Ambient temperature range
- [4] Standard

Lubricant table for S.. gear units

The lubricant table is valid on the day this document is published. Refer to **www.sew-eurodrive.de/lubricants** for the latest tables.

Observe the thermal limit of the oil seal material, see chapter "Lubricant compatibility with oil seal" ($\rightarrow \mathbb{B}$ 114).

	(3]	[3] 	[1]	[2]	[2] ISO,SAE	SEW	🕟 bremer & leguil	(Castrol	FUCHS	FUCHS Mobil®	KA CBER	Shell	TOTAL
	;					0 +80		0 +80	0 +80	08+ 0	0 +80	0 +80	0 +80
	0	+40		d	VG 680	SEW GearOil Base 680 S E1		Optigear BM 680	Renolin CLP 680 Plus	Mobilegear 600 XP 680	Klüberoil GEM 1-680 N	Shell Omala SG 680	Carter EP 680
ď				٦٥		SEW070040313			SEW070040313	SEW070040313			
; <u>4</u>				—		-20 +65		-20 +65	-20 +65	-20 +65	-20 +65	-20 +65	-20 +65
	-20	+25			VG 150	SEW GearOil Base 150 E1 / US1		Optigear BM150	Renolin CLP 150 Plus	Mobilegear 600 XP 150	Klüberoil GEM 1-150 N	Shell Omala SG 150	Carter EP 150
						SEW070040313			SEW070040313	SEW070040313			
\$\frac{1}{2}\tag{2}	[7]					0 +80							
>	Ē	+40		SS	VG 680	SEW GearOil Base 680 S E1							
				d -		SEW070040313							
				ď		-20 +65							
	-20	+25		CC	VG 150	SEW GearOil Base 150 E1 / US1							
						SEW070040313							

- [1] Note on special approvals
- [2] Oil type

- [3] Ambient temperature range
- [4] Standard

Observe the thermal limit of the oil seal material, see chapter "Lubricant compatibility with oil seal" (\rightarrow 114).

ii ocai (/ 🗀 11								
TOTAL		-25 +90 Caeter SY 220							
Shell		-25 +90 Shell Omala S4 WE 220							
KL DBER LUBRICATION	-20 +115 Klübersyth GH 6-460	-25 +100 Klübersyth GH 6-220	-30 +85 Klübersyth GH 6-150	-20 +115 Klübersyth GH 6-460	-25 +100 Klübersyth GH 6-220	افقا	-20 +110 Klübersyth UH1 6-460	-25 +80 Klübersyth UH1 6-220	-30 +65 Klübersyth UH1 6-150
Mobil®		-25 +100 Mobile Glygoyle 220							
FUCHS		-25 +95 Renolin PG 220							
(=Castrol		-25 +90 Optigear Synthetic 800/220							
🕟 bremer & leguil									
SEW	-20 +115 SEW GearOil Poly 460 E1 SEW070040313	-25 +100 SEW GearOil Poly 220 E1 SEW070040313	SEW G Poly 1	20 +115 SEW GearOil Poly 460 E1 SEW070040313	25 +100 SEW GearOil Poly 220 E1 SEW070040313	SEW G Poly 1	SEW Ge Poly 460 SEW0700	25 +80 SEW GearOil Poly 220 H1 E1 SEW070040313	-30 +65 SEW GearOil Poly 150 H1 E1 SEW070040313
ISO,SAE NLGI	VG 460 ¹⁾	VG 220 ¹⁾	VG 150 ¹⁾	VG 460 ¹⁾	VG 220 ¹⁾	VG 150 ¹⁾	VG 460 ¹⁾	VG 220 ¹⁾	VG 150 ¹⁾
[2]		5LP PG			289 - 29 q		(SS4	3 - NSF H1 (-	СГР Р(
[1]		(3)			(3)		(X3)	=	
[3]	+80	09+	+40	+80	09+	+40	+70	+40	+20
l 09-09-09-09-09-09-09-09-09-09-09-09-09-0	[4] -20	-25	-30	[4] -20	-25	-30	[4] -20	-25	-30
S. S									

- [1] Note on special approvals
- [2] Oil type

- [3] Ambient temperature range
- [4] Standard

Observe the thermal limit of the oil seal material, see chapter "Lubricant compatibility with oil seal" (\rightarrow \bigcirc 114).

Total	-15 +105 Carter SH 460	-30 +70		-40 +30		
Shell	-15 +105 Shell Omala S4 GX 460	-30 +75 Shell Omala S4 GX 150	Shell Omala S4 GX 68			
KLUBER	-15 +105 Klübersynth GEM 4-460 N	-30 +70 Klübersynth GEM 4-150 N				
Mobil®	-20 +105 Mobil SHC 634	-30 +75 Mobil SHC 629	40 +55 Mobil SHC 626	40 +30 Mobil SHC 624	-20 +105 Mobil SHC 634	-30 +75 Mobil SHC 629
FUCHS	Renolin Unisyn CLP 460	-30 +70 Renolin Unisyn CLP 150	-35 +50 Renolin Unisyn CLP 68	-40 +30 Renolin Unisyn OL 32		
(=Castrol						
(j) bremer & leguil						
SEW						
ISO,SAE NLGI	VG 460	3) VG 150	VG 68	VG 32	VG 460	3) VG 150
[2]		нс	СГР		ssa - c	СГР Н
[1]		()		Q	3
[3]	09+	+30	+20	0	+60	+30
l	[4] -15	909	-40	40	[4]	-30
		S.: HS::				

- [1] Note on special approvals
- [2] Oil type

- [3] Ambient temperature range
- [4] Standard

Observe the thermal limit of the oil seal material, see chapter "Lubricant compatibility with oil seal" (\rightarrow \bigcirc 114).

Shell Total							
KLÜBBER LUBBICATION	-15 +90 Klüberoil 4UH1-460 N	-25 +70 Klüberoil 4UH1-220 N	-35 +25 Klüberoil 4UH1-68 N	40 +25 KlüberSummit HySyn FG 32			Klüberbio
Mobil®							
FUCHS							-20 +80 Plantogear 460 S
(=Castrol	Optileb	SEW070040013 -25 +70 -25 +70 -25 CT 220 SEW070040013	-35 +40 Optileb HY 68	-40 +20 Optileb HY 32	-15 +90 Optileb GT 460 SEW070040013	-15 +90 Optileb GT 220 SEW070040013	
🕟 bremer & leguit	-15 +85 Cassida Fluid GL 460	-25 +75 Cassida Fluid GL 220	-35 +40 Cassida Fluid HF 68	40 +25 Cassida Fluid HF 32			
SEW							
ISO,SAE NLGI	VG 460	VG 220	VG 68	VG 32	VG 460	VG 220	VG 460
[2]			- он ато			СГЬ НС - ИЗ	E
[1]		_ 🗯	<u>=</u>		(3)	=	₩
[3]	-15 +40	+30	+10	-10	-15 +40	+30	-20 +40
05- 08	4	-25	[4]	4	4	-25	ή,
		s Fs		>			

- [1] Note on special approvals
- [2] Oil type

- [3] Ambient temperature range
- [4] Standard

Lubricant table for W.. gear units

The lubricant table is valid on the day this document is published. Refer to **www.sew-eurodrive.de/lubricants** for the latest tables.

Observe the thermal limit of the oil seal material, see chapter "Lubricant compatibility with oil seal" ($\rightarrow \mathbb{B}$ 114).

_ =				
Potak				
Shell				
KLUBER WBRKATON		-20 +115 Klübersynth UH1 6-460	-30 +65 Klübersynth UH1 6-150	
FUCHS Mobil®				Mobil Synth Gear Oil 75 W90
FUCHS				
(= Castrol				
() bremer & leguil				
SEV	-20 +115 SEW GearOil Poly 460 W E1 SEW070040313	SEW GearOil Poly 460 H1 E1 SEW070040313	-30 +65 SEW GearOil Poly 1510 H1 E1 SEW070040313	
[1] [2] ISO,SAE	VG 460	VG 460	VG 150 ¹⁾	SAE 75W90 (~VG 100)
[2]	CLP PG	-	CLP PG NS	GL5
Ξ	(3)	(X)	=	(X3)
[3]	09+	09+	+20	+10
09- D	[4]	-20	-30	-40
	W.:			

- [1] Note on special approvals
- [2] Oil type

- [3] Ambient temperature range
- [4] Standard

6.1.4 Lubricant fill quantities

INFORMATION

The specified fill quantities are **guide values**. The exact values vary depending on the number of gear stages and gear ratio. Check the **oil level plug for the exact oil quantity**.

INFORMATION

Unless a special arrangement is made, SEW-EURODRIVE supplies the drives with a lubricant fill adapted for the specific mounting position. The mounting position (see chapter "Gear unit mounting positions and order information" (\rightarrow \bigcirc 74)) must therefore be specified in the drive order.

When the mounting position is changed, the lubricant fill quantity must be adapted accordingly (see the following chapters). Consequently, a mounting position may only be **changed** after consultation with SEW-EURODRIVE, **otherwise your rights to claim under limited warranty no longer apply.**

The following tables show guide values for lubricant fill quantities in relation to the mounting position M1 - M6.

Helical (R) gear units

R.., R..F

Gear unit			Fill quanti	ity in liters		
	M1¹)	M2	M3	M4	M5	M6
R07	0.12			0.20		
R17	0.25	0.55	0.35	0.55	0.35	0.40
R27	0.25/0.40	0.70	0.50	0.70	0.	50
R37	0.30/0.95	0.85	0.95	1.05	0.75	0.95
R47	0.70/1.50	1.60	1.50	1.65	1.50	
R57	0.80/1.70	1.90	1.70	2.10	1.	70
R67	1.10/2.30	2.40	2.80	2.90	1.80	2.00
R77	1.20/3.00	3.30	3.60	3.80	2.50	3.40
R87	2.30/6.0	6.4	7	.2	6.3	6.5
R97	4.60/9.8	11	1.7	13.4	11.3	11.7
R107	6.0/13.7	16.3	16.9	19.2	13.2	15.9
R127	6.4/17	18.3	18.2	22.0	16.8	17.9
R137	10.0/25.0	28.0	29.5	31.5	25.0	
R147	15.4/40.0	46.5	48.0	52.0	39.5	41.0
R167	27.0/70.0	82.0	78.0	88.0	66.0	69.0

¹⁾ The larger gear unit of compound gear units must be filled with the larger oil volume.

RF.., RM.., RZ..

Gear unit	Fill quantity in liters									
	M1¹)	M2	М3	M4	M5	М6				
RF07	0.12			0.20		•				
RF17	0.25	0.55	0.35	0.55	0.35	0.40				
RF27	0.25/0.40	0.70	0.50	0.70	0.	50				
RF37	0.35/0.95	0.90	0.95	1.05	0.75	0.95				
RF47	0.65/1.50	1.60	1.50	1.65	1.50					
RF57	0.80/1.70	1.80	1.70	2.00	1.	70				
RF67	1.20/2.50	2.50	2.70	2.80	1.90	2.10				
RF77	1.20/2.60	3.10	3.30	3.60	2.40	3.00				
RF87	2.40/6.0	6.4	7.1	7.2	6.3	6.4				
RF97	5.1/10.2	11.9	11.2	14.0	11.2	11.8				
RF107	6.3/14.9	15.9	17.0	19.2	13.1	15.9				
RF127	6.6/16.0	18.3	18.2	21.4	15.9	17.0				
RF137	9.5/25.0	27.0	29.0	32.5	25.0					
RF147	16.4/42.0	47.0	48.0	52.0	42.0	42.0				
RF167	26.0/70.0	82.0	78.0	88.0	65.0	71.0				

¹⁾ The larger gear unit of compound gear units must be filled with the larger oil volume.

RX..

Gear unit			Fill quant	ity in liters		
Gear unit	M1	M2	M3	M4	M5	М6
RX57	0.60	0.80	1.30		0.90	
RX67	0.	80	1.70 1.90		1.10	
RX77	1.10	1.50	2.60	2.70	1.6	30
RX87	1.70	2.50	4.	80	2.90	
RX97	2.10	3.40	7.4	7.0	4.80	
RX107	3.90	5.6	11.6	11.9	7.7	

RXF..

Gear unit		Fill quantity in liters						
	M1	M2	М3	M4	M5	М6		
RXF57	0.50	0.80	1.10		0.70			
RXF67	0.70	0.80	1.50 1.40 1.00		00			

Lubricants

Gear unit	Fill quantity in liters							
	M1	M2	М3	M4	M5 M6			
RXF77	0.90	1.30	2.40	2.00	1.60			
RXF87	1.60	1.95	4.90	3.95	2.90			
RXF97	2.10	3.70	7.1	6.3	4.80			
RXF107	3.10	5.7	11.2	9.3	7.2			

Parallel shaft helical (F) gear units

F.., FA..B, FH..B, FV..B

Gear unit			Fill quanti	ty in liters		
	M1	M2	М3	M4	M5	M6
F27	0.60	0.80	0.65	0.70	0.60	0.60
F37	0.95	1.25	0.70	1.25	1.00	1.10
F47	1.50	1.80	1.10	1.90	1.50	1.70
F57	2.25	3.15	1.65	3.15	2.40	2.50
F67	2.70	3.80	1.90	3.80	2.90	3.20
F77	5.90	7.30	4.30	8.00	6.00	6.30
F87	10.8	13.0	7.70	13.8	10.8	11.0
F97	18.5	22.5	12.6	25.2	18.5	20.0
F107	24.5	32.0	19.5	37.5	27.0	27.0
F127	39.5	51.7	31.5	60.1	45.6	44.2
F157	69.0	104.0	63.0	105.0	86.0	78.0

FF..

Gear unit		Fill quantity in liters							
	M1	M2	М3	M4	M5	M6			
FF27	0.60	0.80	0.65	0.70	0.60	0.60			
FF37	1.00	1.25	0.70	1.30	1.00	1.10			
FF47	1.60	1.85	1.10	1.90	1.50	1.70			
FF57	2.30	3.10	1.70	3.10	2.30	2.40			
FF67	2.70	3.80	1.90	3.80	2.90	3.20			
FF77	5.90	7.30	4.30	8.10	6.00	6.30			
FF87	10.8	13.2	7.80	14.1	11.0	11.2			
FF97	19.0	22.5	12.6	25.6	18.9	20.5			
FF107	25.5	32.0	19.5	38.5	27.5	28.0			
FF127	40.6	51.6	31.5	61.2	46.3	44.9			
FF157	72.0	105.0	64.0	106.0	87.0	79.0			

FA., FH., FV., FAF., FAZ., FHF., FZ., FHZ., FVF., FVZ., FT., FM., FAM.

Gear unit		Fill quantity in liters								
	M1	M2	М3	M4	M5	М6				
F27	0.60	0.80	0.65	0.70	0.60	0.60				
F37	0.95	1.25	0.70	1.25	1.00	1.10				
F47	1.50	1.80	1.10	1.90	1.50	1.70				
F57	2.40	3.10	1.70	3.15	2.40	2.50				
F67	2.70	3.80	1.90	3.80	2.90	3.20				
F77	5.90	7.30	4.30	8.00	6.00	6.30				
F87	10.8	13.0	7.70	13.8	10.8	11.0				
F97	18.5	22.5	12.6	25.2	18.5	20.0				
F107	24.5	32.0	19.5	37.5	27.0	27.0				
F127	38.3	50.9	31.5	59.7	44.7	43.3				
F157	68.0	103.0	62.0	104.0	85.0	77.0				

Helical-bevel (K) gear units

INFORMATION

i

All K..19 and K..29 gear units have a universal mounting position, which means that K..19 and K..29 gear units of the same design are filled with the same oil quantity independent of the mounting position. An exception to this is the M4 mounting position.

K.., KA..B, KH..B, KV..B

Gear unit			Fill quanti	ty in liters		
	M1	M2	М3	M4	M5	М6
K19		0.40		0.45	0.	40
K29		0.70		0.85	0.	70
K39	0.90	1.70	1.55	1.9	1.55	1.30
K49	1.70	3.40	2.80	4.20	3.15	2.80
K37	0.50	1.	00	1.25	0.	95
K47	0.80	1.30	1.50	2.00	1.60	
K57	1.10	2.	20	2.80	2.30 2.10	
K67	1.10	2.40	2.60	3.45	2.	60
K77	2.20	4.10	4.40	5.80	4.20	4.40
K87	3.70	8.0	8.70	10.90	8	.0
K97	7.0	14.0	15.70	20.0	15.70	15.50
K107	10.0	21.0	25.50	33.50	24	1.0
K127	21.0	41.50	44.0	54.0	40.0	41.0
K157	31.0	65.0	68.0	90.0	62.0	63.0
K167	33.0	97.0	109.0	127.0	89.0	86.0
K187	53.0	156.0	174.0	207.0	150.0	147.0

KF..

Gear unit	Fill quantity in liters									
	M1	M2	M3	M4	M5	М6				
KF19		0.40 0.45 0.4				40				
KF29		0.70		0.85	0.	70				
KF39	0.90	1.70	1.55	1.9	1.55 1.30					
KF49	1.70	3.40	2.80	4.20	3.15	2.80				
KF37	0.50	1.	10	1.50	1.00					
KF47	0.80	1.30	1.70	2.20	1.60					
KF57	1.20	2.20	2.40	3.15	2.50	2.30				
KF67	1.10	2.40	2.80	3.70	2.	70				
KF77	2.10	4.10	4.40	5.90	4.	50				
KF87	3.70	8.20	9.0	11.90	8.4	40				
KF97	7.0	14.70	17.30	21.50	15.70	16.50				
KF107	10.0	21.80	25.80	35.10	25.20					
KF127	21.0	41.50	46.0	55.0	41.0					
KF157	31.0	66.0	69.0	92.0	62.0	63.0				

KA.., KH.., KV.., KAF.., KHF.., KVF.., KZ.., KAZ.., KHZ.., KVZ.., KT.., KM.., KAM..

Gear unit			Fill quanti	ty in liters			
	M1	M2	М3	M3 M4		М6	
K19		0.40		0.45	0.40		
K29		0.70			0.70		
K39	0.90	1.70	1.55	1.9	1.55	1.30	
K49	1.70	3.40	2.80	4.20	3.15	2.80	
K37	0.50	1.	00	1.40	1.00		
K47	0.80	1.30	1.60	2.15	1.60		
K57	1.20	2.20	2.40	3.15	2.70 2.40		

Gear unit			Fill quanti	ty in liters			
	M1	M2	М3	M4	M5	M6	
K67	1.10	2.40	2.70	3.70	2.60		
K77	2.10	4.10	4.60	5.90	4.40		
K87	3.70	8.20	8.80	11.10	8.0		
K97	7.0	14.70	15.70	20.0	15.70		
K107	10.0	20.50	24.0	32.40	24	.0	
K127	21.0	41.50	43.0	52.0	40	0.0	
K157	31.0	65.0	68.0	90.0	62.0	63.0	
K167	33.0	97.0	109.0	127.0	89.0	86.0	
K187	53.0	156.0	174.0	207.0	150.0	147.0	

Helical-worm (S) gear units

S..

Gear unit			Fill quanti	ty in liters			
	M1	M2 M3 ¹⁾ M4 N		M5	M6		
S37	0.25	0.40	0.50	0.55	0.40		
S47	0.35	0.80	0.70/0.90	1.03	0.80		
S57	0.50	1.20	1.00/1.20	1.43	1.30		
S67	1.00	2.00	2.20/3.10	3.10	2.60	2.60	
S77	1.90	4.20	3.70/5.4	5.9	4.40		
S87	3.30	8.1	6.9/10.4	11.3	8.4		
S97	6.8	15.0	13.4/18.0	21.8	17	.0	

1) The larger gear unit of multi-stage gear units must be filled with the larger oil volume.

SF..

Gear unit			Fill qu	uantity in lite	ers		
	M1	M2	M3 ¹⁾	N	//4	M5	M6
				Output A or B	Output A + B		
SF37	0.25	0.40	0.50	0.55	0.6	0.	40
SF47	0.40	0.90	0.90/1.05	1.08	1.13	1.	00
SF57	0.50	1.20	1.00/1.50	1.48	1.53	1.	40
SF67	1.00	2.20	2.30/3.00	3.20	3.5	2.	70
SF77	1.90	4.10	3.90/5.8	6.5	7.2	4.	90
SF87	3.80	8.0	7.1/10.1	12.0	13.2	9	.1
SF97	7.4	15.0	13.8/18.8	23.1	25.2	18	3.0

1) The larger gear unit of multi-stage gear units must be filled with the larger oil volume.

SA.., SH.., SAF.., SHZ.., SAZ.., SHF.., ST..

Gear unit			Fill quanti	ty in liters			
	M1	M2	M3 ¹⁾	M4	M5	M6	
S37	0.25	0.40	0.	50	0.40		
S47	0.40	0.80	0.70/0.90	1.03	0.80		
S57	0.50	1.10	1.00/1.50	1.43	1.20		
S67	1.00	2.00	1.80/2.60	2.90	2.	50	
S77	1.80	3.90	3.60/5.0	5.8	4.	50	
S87	3.80	7.4	6.0/8.7	10.8	8.0		
S97	7.0	14.0	11.4/16.0	21.0	15	5.7	

1) The larger gear unit of multi-stage gear units must be filled with the larger oil volume.

Gear unit venting

SPIROPLAN® (W) gear units

INFORMATION

SPIROPLAN® gear units W..10 to W..30 have a universal mounting position, which means that gear units of the same design are filled with the same oil quantity independent of the mounting position.

The oil fill quantity of SPIROPLAN® gear units W..37 and W..47 in mounting position M4 is different from that of the other mounting positions.

W.., WA..B, WH..B

Gear unit	Fill quantity in liters								
	M1	M2	M3	M4	M5	M6			
W10			0.	16					
W20		0.24							
W30			0.	40					
W37		0.50 0.70 0.50							
W47		0.90		1.40	0.	90			

WF..

Gear unit		Fill quantity in liters									
	M1	M2	М3	M4	M5	M6					
WF10		0.16									
WF20		0.24									
WF30			0.	40							
WF37		0.50			0.50						
WF47		0.90		1.55	0.	90					

WA.., WAF.., WH.., WT.., WHF..

Gear unit			Fill quanti	ty in liters					
	M1	M2	M3	M4	M5	M6			
W10			0.	16					
W20		0.24							
W30			0.	40					
W37		0.50		0.70	0.	50			
W47		0.80		1.40	0.	80			

6.2 Gear unit venting

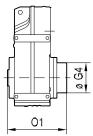
INFORMATION

The function of breather valves can be impaired by dirt and dust in the environment. If necessary, contact SEW-EURODRIVE to discuss alternative venting systems.

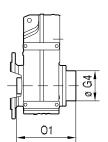
6.3 Reduced backlash gear unit design /R

Helical, parallel-shaft helical and helical-bevel gear units with reduced backlash are available as of gear unit size 37. The rotational clearance of these gear units is considerably less than that of the standard designs so that positioning tasks can be solved with great precision. The rotational clearance is specified in angular minutes in the chapter "Geometrically possible combinations". The rotational clearance for the output shaft is specified without load (max. 1% of the rated output torque); the gear unit input side is blocked. The specified values have a tolerance of ± 2 angular minutes.

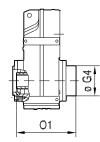
The reduced backlash design is available for the following gear units:

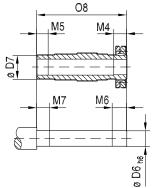

- Helical gear units (R), sizes 37 to 167
- Parallel-shaft helical gear units (F), sizes 37 to 157
- Helical-bevel gear units (only K..7) in gear unit sizes 37 to 187

The dimensions of the reduced backlash variants correspond to the dimensions of the standard designs, except for parallel-shaft helical gear units FH.87 and FH.97 with reduced backlash.


The following figure shows the dimensions of the FH.87 and FH.97 gear units with reduced backlash:

42 020 00 09


FH./R FH..B/R



FHF../R

FHZ../R

9007205899247883

Tuna				Dim	ensions in	mm			
Туре	D6	D7	G4	M4	M5	M6	М7	01	08
FH.87/R	Ø 65 _{h6}	Ø 85	Ø 163	41	40	46	45	312.5	299.5
FH.97/R	Ø 75 _{h6}	Ø 95	Ø 184	55	50	60	55	382.5	367

29154650/EN – 03/2020

6.4 Assembly/disassembly of gear units with hollow shaft and key

INFORMATION

Use the supplied NOCO® fluid for mounting. The fluid prevents contact corrosion and facilitates subsequent disassembly.

INFORMATION

The key dimension L12 is specified for the customer and depends on the application requirements and the used materials.

See figure "Customer shaft with [A] and without [B] contact shoulder".

INFORMATION

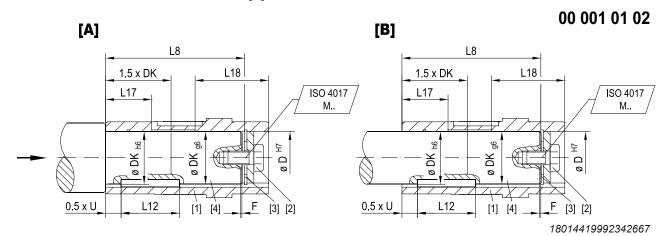
For the dimensioning of the keyed connection, observe that the hollow shaft of the gear unit (hub) is made of the material C45R(1.1201).

SEW-EURODRIVE recommends **2 options for mounting** gear units with hollow shaft and key onto the input shaft of the driven machine (= customer shaft):

- · Mounting using supplied fastening parts
- Mounting/dismounting with SEW-EURODRIVE assembly and disassembly kit

The following sections describe the two options.

6.4.1 Assembly using supplied fastening parts


The following fastening parts are provided as standard:

- · Retaining screw with washer [2]
- Retaining ring [3]

Note the following information concerning the customer shaft:

- The installation length of the customer shaft with contact shoulder [A] must be "L8" - 1 mm.
- The installation length of the customer shaft without contact shoulder [B] must equal "L8".

The following figure shows the customer shaft with contact shoulder [A] and without contact shoulder [B].

D Hollow shaft diameter

DK Diameter of customer shaft

Shaft end chamfer F

L8 Customer shaft length

L12 Key length

Cylinder section length with dimension H7 L17

L18 Cylinder section length with dimension H7

U Key width

[1] Hollow shaft

[2] Retaining screw with washer

Retaining ring [3]

Customer shaft [4]

Dimensions and tightening torques MS for retaining screw [2] for standard gear units:

Gear unit type	D ^{H7}	DK	L17	L18	F	L8	MS	U	ISO 4017
	mm	mm	mm	mm	mm	mm	Nm	mm	M
WA10	1	6	24	24	0.5	69	8	5	M5 × 12
WA20	1	8	27	27	1	84	8	6	M6 × 16
WA20	20		26	30	1	84	8	6	M6 × 16
KA19	2	0	28	30	1	92	8	6	M6 × 16
FA27	2	5	30	30	1	89	20	8	M10 × 25
KA29	2	5	30	38	1	107	20	8	M10 × 25
KA29	3	0	35	35	1	107	20	8	M10 × 25
WA30	2	0	30	30	1	105	8	6	M6 × 16
SA37	2	0	40	40	1	104	8	6	M6 × 16
WA37	2	0	28	30	1	105	8	6	M6 × 16
WA37	2	5	40	40	1	105	20	8	M10 × 25
FA37, KA37	3	0	39	45	1	105	20	8	M10 × 25
KA39	3	0	35	45	1	137	20	8	M10 × 25
KA39	3	5	35	45	1	137	20	10	M12 × 30
KA49	3	5	35	45	1	160	20	10	M12 × 30
KA49	4	0	35	45	1	154	40	12	M16 × 40
SA47	2	5	38	38	1	105	20	8	M10 × 25
SA47	3	0	39	45	1	105	20	8	M10 × 25
FA47, KA47	3	5	45	52	1	132	20	10	M12 × 30

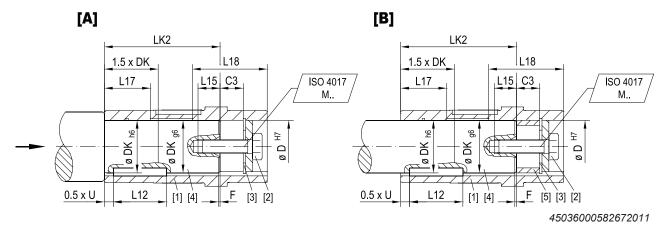
Gear unit type	D ^{H7}	DK	L17	L18	F	L8	MS	U	ISO 4017		
	mm	mm	mm	mm	mm	mm	Nm	mm	M		
WA47	3	0	35	45	1	122	20	8	M10 × 25		
SA57	3	0	39	45	1	132	20	8	M10 × 25		
SA57	3	5	45	52	1	132	20	10	M12 × 30		
FA57, KA57	4	0	50	60	1	142	40	12	M16 × 40		
FA67, KA67	4	0	50	60	1	156	40	12	M16 × 40		
FAM67, KAM67	4	0	50	60	1	278	40	12	M16 × 40		
SA67	4	0	50	60	1	144	40	12	M16 × 40		
SA67	4	5	50	60	1	144	40	14	M16 × 40		
FA77, KA77	5	0	65	75	1	183	40	14	M16 × 45		
FAM77, KAM77	5	50		75	1	309	40	14	M16 × 45		
SA77	50		50		63	75	1	180	40	14	M16 × 45
SA77	60		72	90	1	180	80	18	M20 × 50		
FA87, KA87	6	60		90	1	210	80	18	M20 × 50		
FAM87, KAM87	6	0	75	90	1	363	80	18	M20 × 50		
SA87	6	0	75	90	1	220	80	18	M20 × 50		
SA87	7	0	90	105	2	220	80	20	M20 × 50		
FA97, KA97	7	0	90	105	2	270	80	20	M20 × 50		
FAM97, KAM97	7	0	90	105	2	422	80	20	M20 × 50		
SA97	7	0	90	105	2	260	80	20	M20 × 50		
SA97	9	0	110	125	2	255	200	25	M24 × 60		
FA107, KA107	90		110	125	2	313	200	25	M24 × 60		
FAM107, KAM107	90		110	125	2	473	200	25	M24 × 60		
FA127, KA127	100		120	150	2	373	200	28	M24 × 60		
FAM127, KAM127	100		7 100		120	150	2	553	200	28	M24 × 60
FA157, KA157	12	20	180	180	2	460	200	32	M24 × 60		
FAM157, KAM157	12	20	180	180	2	691	200	32	M24 × 60		

6.4.2 Assembly/disassembly with SEW-EURODRIVE assembly and disassembly kit

Assembly

You can use the optional assembly/disassembly kit for mounting. This kit can be ordered for the specific gear unit types by quoting the part numbers in the following table. The scope of delivery includes:

- Spacer tube for installation without contact shoulder [5]
- Retaining screw for assembly [2]
- Forcing washer for disassembly [7]
- Fixed nut for disassembly [8]


The short retaining screw delivered as standard is not required.

Note the following information concerning the customer shaft:

- The installation length of the customer shaft must be LK2. **Do not use the spacer tube** if the customer shaft **has a contact shoulder [A]**.
- The installation length of the customer shaft must be LK2. Use the **spacer tube if** the customer shaft has no contact shoulder [B].

The following figure shows the customer shaft with contact shoulder [A] and without contact shoulder [B].

00 002 01 02

- C3 Indentation fixed nut and forcing washer
- D Hollow shaft diameter
- DK Diameter of customer shaft
- F Shaft end chamfer
- L8 Customer shaft length
- L12 Key length
- L15 Thread depth of customer shaft
- L17 Cylinder section length with dimension H7
- L18 Cylinder section length with dimension H7
- LK2 Length of customer shaft when used
- U Key width
- [1] Hollow shaft
- [2] Retaining screw with washer
- [3] Retaining ring
- [4] Customer shaft
- [5] Spacer tube

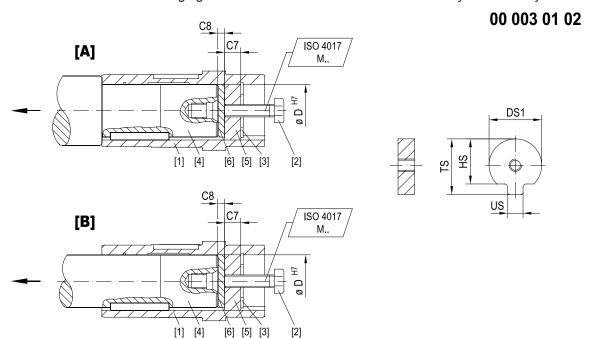
Dimensions, tightening torque MS and part numbers for retaining screw [2]:

Туре	D ^{H7}	DK	LK2	L15	C3	MS	U	L17	L18	ISO 4017	Part number of the as-
	mm	mm	mm	mm	mm	Nm	mm	mm	mm	М	sembly/disassembly kit
WA10	1	6	58	12.5	11	8	5	24	24	M5 × 50	06437125
WA20	1	8	72	16	12	8	6	27	27	M6 × 25	0643682X
WA20	2	0	72	16	12	8	6	26	30	M6 × 25	06436838
WA30	2	0	93	16	12	8	6	30	30	M6 × 25	06436838
WA37	2	0	93	16	12	8	6	28	30	M6 × 25	06436838
SA37	2	0	92	16	12	8	6	40	40	M6 × 25	06436838
KA19	2	0	80	16	12	8	6	28	30	M6 × 25	06436838
KA29	2	5	91	22	16	20	8	30	38	M10 × 35	06436846
FA27	2	5	73	22	16	20	8	30	30	M10 × 35	06436846
SA47	2	5	89	22	16	20	8	38	38	M10 × 35	06436846
WA37	2	5	89	22	16	20	8	40	40	M10 × 35	06436846
WA47	3	0	106	22	16	20	8	35	45	M10 × 35	06436854
FA37	3	0	89	22	16	20	8	39	45	M10 × 35	06436854

Туре	D ^{H7}	DK	LK2	L15	C3	MS	U	L17	L18	ISO 4017	Part number of the as-
	mm	mm	mm	mm	mm	Nm	mm	mm	mm	М	sembly/disassembly kit
KA37	3	0	89	22	16	20	8	39	45	M10 × 35	06436854
SA47	3	0	89	22	16	20	8	39	45	M10 × 35	06436854
SA57	3	0	116	22	16	20	8	39	45	M10 × 35	06436854
KA29	3	0	91	22	16	20	8	35	35	M10 × 35	06436854
KA39	3	0	121	22	16	20	8	35	45	M10 × 35	06436854
KA39	3	5	119	28	18	20	10	35	45	M12 × 45	06436862
FA47	3	5	114	28	18	20	10	45	52	M12 × 45	06436862
KA47	3	5	114	28	18	20	10	45	52	M12 × 45	06436862
SA57	3	5	114	28	18	20	10	45	52	M12 × 45	06436862
KA49	3	5	142	28	18	20	10	35	45	M12 × 45	06436862
KA49	4	0	136	36	18	40	12	35	45	M16 × 50	06436870
FA57	4	0	124	36	18	40	12	50	60	M16 × 50	06436870
KA57	4	0	124	36	18	40	12	50	60	M16 × 50	06436870
FA67	4	0	138	36	18	40	12	50	60	M16 × 50	06436870
FAM67	4	0	260	36	18	40	12	50	60	M16 × 50	06436870
KA67	4	0	138	36	18	40	12	50	60	M16 × 50	06436870
KAM67	4	0	260	36	18	40	12	50	60	M16 × 50	06436870
SA67	4	0	126	36	18	40	12	50	60	M16 × 50	06436870
SA67	4	5	126	36	18	40	14	50	60	M16 × 50	06436889
FA77	5	0	165	36	18	40	14	65	75	M16 × 50	06436897
FAM77	5	0	291	36	18	40	14	65	75	M16 × 50	06436897
KA77	5	0	165	36	18	40	14	65	75	M16 × 50	06436897
KAM77	5	0	291	36	18	40	14	65	75	M16 × 50	06436897
SA77	5	0	165	36	18	40	14	63	75	M16 × 50	06436897
FA87	6	0	188	42	22	80	18	75	90	M20 × 60	06436900
FAM87	6	0	341	42	22	80	18	75	90	M20 × 60	06436900
KA87	6	0	188	42	22	80	18	75	90	M20 × 60	06436900
KAM87	6	0	341	42	22	80	18	75	90	M20 × 60	06436900
SA77	6	0	158	42	22	80	18	72	90	M20 × 60	06436900
SA87	6	0	198	42	22	80	18	75	90	M20 × 60	06436900
FA97	7	0	248	42	22	80	20	90	105	M20 × 60	06436919
FAM97	7	0	400	42	22	80	20	90	105	M20 × 60	06436919
KA97	7	0	248	42	22	80	20	90	105	M20 × 60	06436919
KAM97	7	0	400	42	22	80	20	90	105	M20 × 60	06436919
SA87	7	0	198	42	22	80	20	90	105	M20 × 60	06436919
SA97	7	0	238	42	22	80	20	90	105	M20 × 60	06436919

Туре	D ^{H7}	DK	LK2	L15	C3	MS	U	L17	L18	ISO 4017	Part number of the as-
	mm	mm	mm	mm	mm	Nm	mm	mm	mm	М	sembly/disassembly kit
FA107	9	0	287	50	26	200	25	110	125	M24 × 70	06436927
FAM107	9	0	447	50	26	200	25	110	125	M24 × 70	06436927
KA107	9	0	287	50	26	200	25	110	125	M24 × 70	06436927
KAM107	9	0	447	50	26	200	25	110	125	M24 × 70	06436927
SA97	9	0	229	50	26	200	25	110	125	M24 × 70	06436927
FA127	10	00	347	50	26	200	28	120	150	M24 × 70	06436935
FAM127	10	00	527	50	26	200	28	120	150	M24 × 70	06436935
KA127	10	00	347	50	26	200	28	120	150	M24 × 70	06436935
KAM127	10	00	527	50	26	200	28	120	150	M24 × 70	06436935
FA157	12	20	434	50	26	200	32	180	180	M24 × 70	06436943
FAM157	12	20	665	50	26	200	32	180	180	M24 × 70	06436943
KA157	12	20	434	50	26	200	32	180	180	M24 × 70	06436943
KAM157	12	20	665	50	26	200	32	180	180	M24 × 70	06436943

Disassembly


INFORMATION

The depicted assembly kit for attaching the customer shaft is a recommendation by SEW-EURODRIVE.

- Always check whether this design can compensate the present axial loads.
- In particular applications (e.g. mounting agitator shafts), a different design may have to be used to secure the shaft axially. You can use your own devices to secure the shaft axially, if you ensure that these designs do not cause potential sources of combustion according to DIN EN 13463 (e.g. impact sparks).

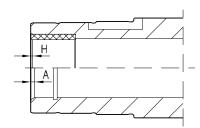
The following figure shows the SEW-EURODRIVE assembly/disassembly kit.

45036005456377099

C7	Width of fixed nut	[1]	Hollow shaft
C8	Width of forcing washer	[2]	Retaining screw
D	Hollow shaft diameter	[3]	Retaining ring
DS1	Diameter of fixed nut	[4]	Customer shaft
HS	Height 1 for fixed nut	[5]	Fixed nut for disassembly
TS	Height 2 for fixed nut	[6]	Forcing washer
US	Base width of fixed nut		-

Dimensions and part numbers of the assembly/disassembly kit:

Туре	D ^{H7}	C8 mm	C7 mm	HS mm	US mm	TS mm	DS1 mm	ISO 4017 M	Part number of the as- sembly/disassembly kit
WA10	16	5	5	12	4.5	18	15.7	M5 × 50	06437125
WA20	18	5	6	13.5	5.5	20.5	17.7	M6 × 25	0643682X
WA20, WA30, SA37, WA37, KA19	20	5	6	15.5	5.5	22.5	19.7	M6 × 25	06436838
FA27, SA47, WA47, KA29	25	5	10	20	7.5	28	24.7	M10 × 35	06436846
FA37, KA29, KA37, KA39, SA47, SA57, WA47	30	5	10	25	7.5	33	29.7	M10 × 35	06436854
FA47, KA39, KA47, KA49, SA57	35	5	12	29	9.5	38	34.7	M12 × 45	06436862
FA57, KA57, FA67, KA49, KA67, SA67	40	5	12	34	11.5	41.9	39.7	M16 × 50	06436870


Туре	D ^{H7}	C8	C7	HS	US	TS	DS1	ISO 4017	Part number of the as-
	mm	mm	mm	mm	mm	mm	mm	М	sembly/disassembly kit
SA67	45	5	12	38.5	13.5	48.5	44.7	M16 × 50	06436889
FA77, KA77, SA77	50	5	12	43.5	13.5	53.5	49.7	M16 × 50	06436897
FA87, KA87, SA77, SA87	60	5	16	56	17.5	64	59.7	M20 × 60	06436900
FA97, KA97, SA87, SA97	70	5	16	65.5	19.5	74.5	69.7	M20 × 60	06436919
FA107, KA107, SA97	90	5	20	80	24.5	95	89.7	M24 × 70	06436927
FA127, KA127	100	5	20	89	27.5	106	99.7	M24 × 70	06436935
FA157, KA157	120	5	20	107	31	127	119.7	M24 × 70	06436943

6.5 Gear units with hollow shaft

6.5.1 Chamfers on hollow shafts

The following illustration shows the chamfers of parallel-shaft helical, helical-bevel, helical-worm and SPIROPLAN® gear units with hollow shaft:

00 004 002

9007203564189835

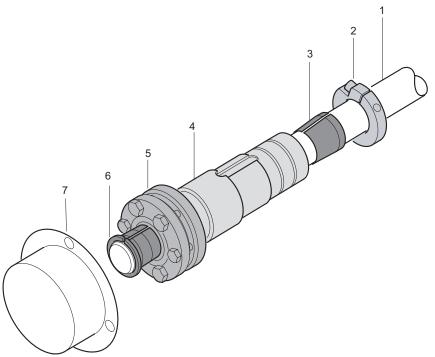
Dimension tables for the chamfers of the F, K, S, and W gear units:

Gear unit	Des	sign
	with hollow shaft (A)	with hollow shaft and shrink disk (H)
W10	1.5 × 30°	-
W20	2 × 30°	-
W30	2 × 30°	-
F27	2 × 30°	0.5 × 45 °
K19	2 × 30°	0.5 × 45 °
K29	2 × 30°	0.5 × 45 °
F/K/S/W37	2 × 30°	0.5 × 45 °

Gear unit	D	esign
	with hollow shaft (A)	with hollow shaft and shrink disk (H)
K39	2 × 30°	-
F/K/S/ W47	2 × 30°	0.5 × 45 °
K49	2 × 30°	-
S57	2 × 30°	0.5 × 45 °
F/K57	2 × 30°	0.5 × 45 °
F/K/S67	2 × 30°	0.5 × 45 °
F/K/S77	2 × 30°	0.5 × 45 °
F/K/S87	3 × 30°	0.5 × 45 °
F/K/S97	3 × 30°	0.5 × 45 °
F/K107	3 × 30°	0.5 × 45 °
F/K127	5 × 30°	0.5 × 45 °
F/K157	5 × 30°	0.5 × 45 °
KH167	-	0.5 × 45 °
KH187	-	0.5 × 45 °

6.5.2 Special motor/gear unit combinations

Please note for parallel-shaft helical gearmotors with hollow shaft (FA..B, FV..B, FH..B, FAF, FVF, FHF, FA, FV, FH, FT, FAZ, FVZ, FHZ):


- If you are using a customer shaft pushed through on the motor end, there may be a collision when a "small gear unit" is used in combination with a "large motor."
- Check the motor dimension AC to decide whether there will be a collision with a pushed-through customer shaft.

6.6 TorqLOC® mounting system for gear units with hollow shaft

6.6.1 Description of TorqLOC®

The TorqLOC® hollow shaft mounting system is used for achieving a non-positive connection between the customer's shaft and the hollow shaft in the gear unit. The TorqLOC® hollow shaft mounting system is an alternative to the hollow shaft with shrink disk, the hollow shaft with key and the splined hollow shaft that have been used so far.

The TorqLOC® hollow shaft mounting system consists of the following components:

4309625867

- [1] Customer shaft
- 2] Clamping ring
- [3] Conical bronze bushing
- [4] Hollow shaft in gear unit
- [5] Shrink disk
- [6] Conical steel bushing
- [7] Fixed hood cover

6.6.2 Benefits of TorqLOC®

The TorqLOC® hollow shaft mounting system provides the following advantages:

- Cost saving because the customer shaft can be made from drawn material up to quality h11.
- Cost saving because different customer shaft diameters can be covered by one hollow shaft diameter and different bushings.
- Simple installation since there is no need to accommodate any shaft connections.
- Simple removal even after many hours of operation because the formation of contact corrosion has been reduced and the conical connections can easily be released.

6.6.3 Technical data of TorqLOC®

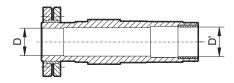
The TorqLOC® hollow shaft mounting system is approved for output torques of 92 Nm to 20000 Nm.

The following gear units are available with TorqLOC® hollow shaft mounting system:

- Parallel-shaft helical gear units in gear unit sizes 37 to 157 (FT37 FT157)
- Helical-bevel gear units in gear unit sizes 37 to 157 (KT37 KT157), 39 and 49 (KT39, KT49)
- Helical-worm gear units in gear unit sizes 37 to 97 (ST37 ST97)
- SPIROPLAN® gear units in gear unit sizes 37 and 47 (WT.7)

Available options

The following options are available for gear units with a TorqLOC® hollow shaft mounting system:


- For helical-bevel, helical-worm and SPIROPLAN® gear units (KT.., ST.., WT.7..): "torque arm" option (../T)
- For parallel-shaft helical gear units (FT..): "rubber buffer" option (../G)

6.7 Shouldered hollow shaft option with shrink disk

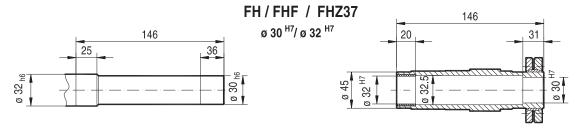
The following gear units with a hollow shaft and shrink disk also have the option of the larger bore diameter D':

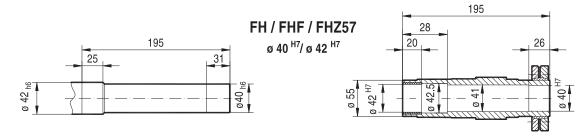
- Parallel-shaft helical gear units FH/FHF/FHZ37 157
- Helical-bevel gear units KH/KHF/KHZ37 157
- Helical-worm gear units SH/SHF47 97

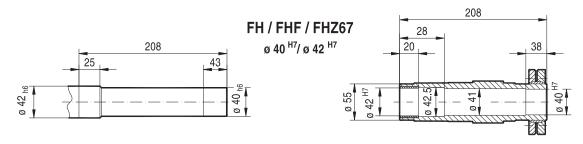
D' = D as standard.

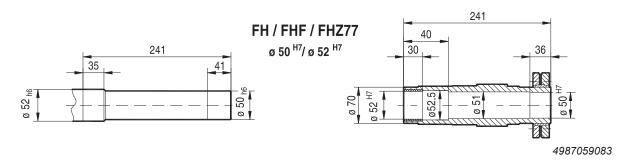
9007204241796363

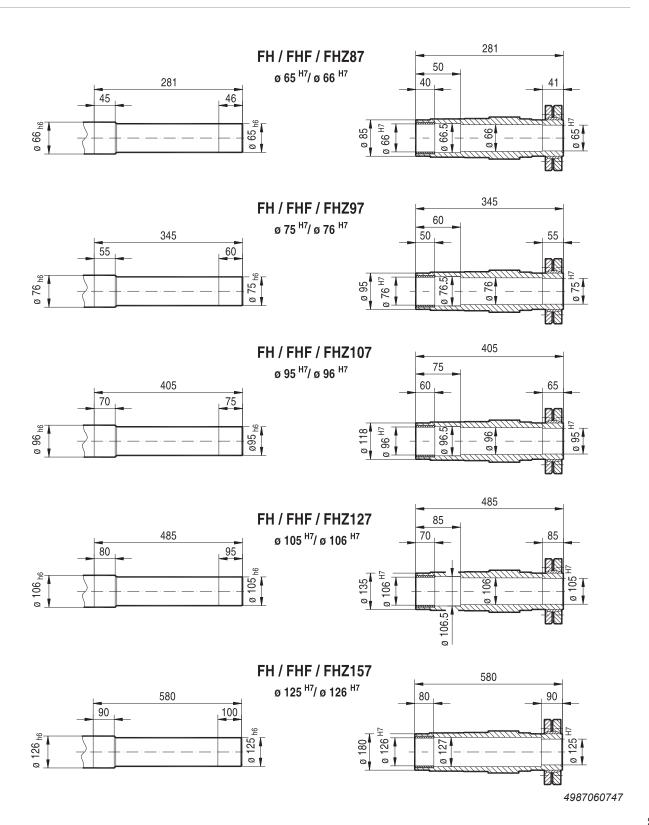
Gear unit	Bore diameter D/ optionally D'
	mm
FH/FHF/FHZ37, KH/KHF/KHZ37, SH/SHF/SHZ47	30/32
FH/FHF/FHZ47, KH/KHF/KHZ47, SH/SHF/SHZ57	35/36
FH/FHF/FHZ57, KH/KHF/KHZ57	40/42
FH/FHF/FHZ67, KH/KHF/KHZ67, SH/SHF/SHZ67	40/42
FH/FHF/FHZ77, KH/KHF/KHZ77, SH/SHF/SHZ77	50/52
FH/FHF/FHZ87, KH/KHF/KHZ87, SH/SHF/SHZ87	65/66
FH/FHF/FHZ97, KH/KHF/KHZ97, SH/SHF/SHZ97	75/76
FH/FHF/FHZ107, KH/KHF/KHZ107	95/96
FH/FHF/FHZ127, KH/KHF/KHZ127	105/106
FH/FHF/FHZ157, KH/KHF/KHZ157	125/126

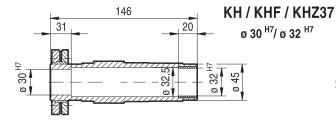

Diameter D/D' must be specified when ordering gear units with a shouldered hollow shaft (optional bore diameter D').

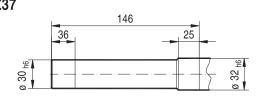

6.7.1 Sample order

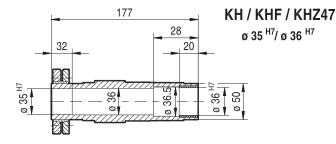

FH37 DRN80M4 with hollow shaft 30/32 mm

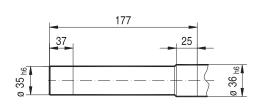

6.7.2 Parallel-shaft helical gear units with shouldered hollow shaft (dimensions in mm):

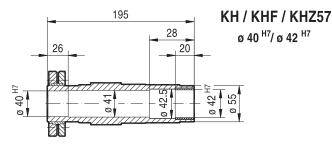


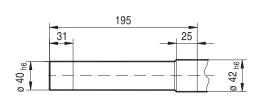


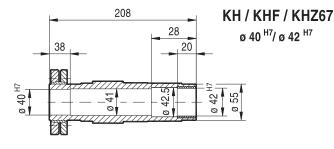


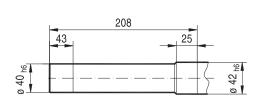


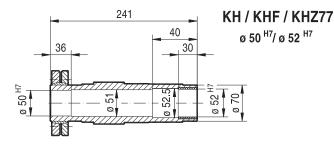


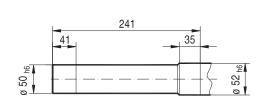

6.7.3 Helical-bevel gear units with shouldered hollow shaft (dimensions in mm):

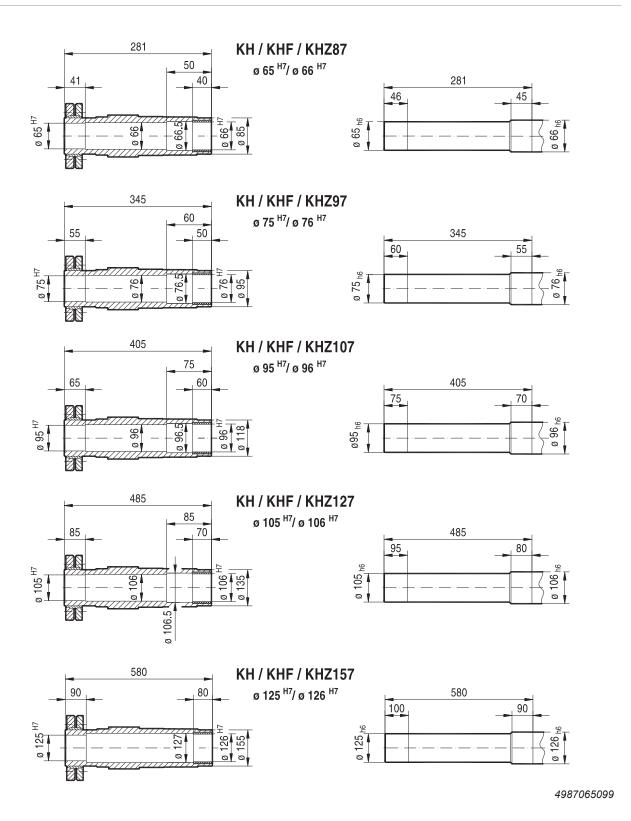


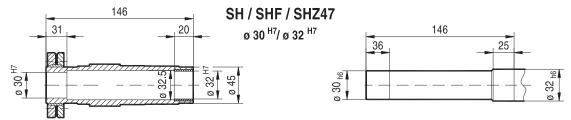


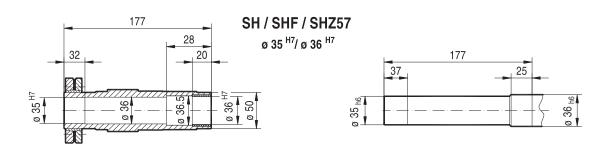


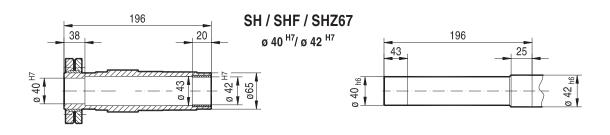


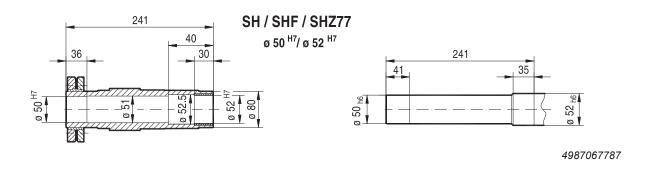




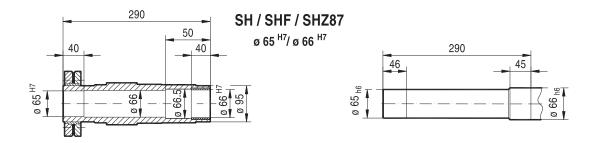


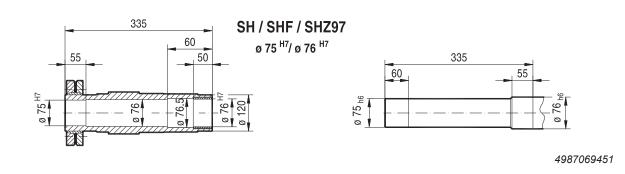



4987063435



Helical-worm gear units with shouldered hollow shaft (dimensions in mm): 6.7.4





Design and operating notes

6.8 Notes on stainless shrink disk or output shaft

Before using a stainless steel shrink disk or stainless steel output shaft, check if the ambient conditions, used chemicals and cleaning agents are compatible with the stainless steel material. For information on the material, refer to the order confirmation.

6.9 Gear unit mounting

Strength class of the screws

Always mount gearmotors using screws of strength class 8.8. The gearmotors in flange-mounted design and in foot-/flange-mounted design listed in the following table are an exception. Always use screws of strength class 10.9 for these gearmotors. Use suitable washers.

Gear unit	Flange Ø	Strength class of the screws
	mm	Sciews
RF37/R37F	120	
RF47/R47F	140	
RF57/R57F	160	
FF/FAF77	250	
KF/KAF77	250	
FM/FAM67, FM/FAM77	300	
KM/KAM67, KM/KAM77	300	
FM/FAM87	350	
KM/KAM87	350	
FM/FAM97	400	10.9
KM/KAM97	400	10.9
RF147		
FM/FAM107	450	
KM/KAM107		
RF167		
FM/FAM127	550	
KM/KAM127		
FM/FAM157	660	
KM/KAM157	660	
RZ37 – RZ87	60ZR – 130ZR	

6.10 Torque arms

NOTICE

Danger due to static overdetermination if gear units with foot (e.g. KA19/29B, KA127/157B or FA127/157B) are mounted both via the torque arm and via the foot plate.

Risk of injuries and damage to property

- Especially with the KA.9B/T variant, it is not permitted to use the foot plates and the torque arm at the same time.
- · Attach the KA.9B/T design only via the torque arm.
- Attach the K.9 or KA.9B design only via the foot plate.
- If you want to use foot plates and torque arms for mounting, contact SEW-EURODRIVE.

6.10.1 Standard torque arms

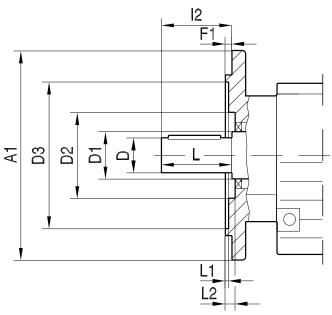
The following table lists the part numbers of all galvanized steel or gray cast iron torque arms available for shipment:

Gear unit		Size						
	19	29	29		39		49	
KA, KH, KT	10684115	106841	07	1068	32163	06442439		
Gear unit				Si	ze			
	27	37		47	57		67	77
KA, KH, KV, KT	-	6434258	643	34282	64343	12	6434312	6434347
SA, SH, ST	-	1269941	644	12374	64424	04	6442439	6442463
FA, FH, FV, FT Rubber buffer (2 pieces)	0133485	0133485	013	33485 01334		85	0133485	0133493
Gear unit				Si	ze			
	87	97		10	07		127	157
KA, KH, KV, KT	6434371	643440	01	1 6434436		6432948		-
SA, SH, ST	6442498	644252	28		-		-	-
FA, FH, FV, FT Rubber buffer (2 pieces)	0133493	013350	07	7 0133507		0	133515	0133477
Gear unit			S		ze			
	10	20	20		30		37	47
WA, WH, WT	10610219	168073	30	1680	0110	10611290		10611851

6.10.2 Stainless steel torque arm

Torque arms made of stainless steel are available for K..19/29 and SPIROPLAN® gear units. Suitable retaining screws made of stainless steel are included in the delivery in a bag.

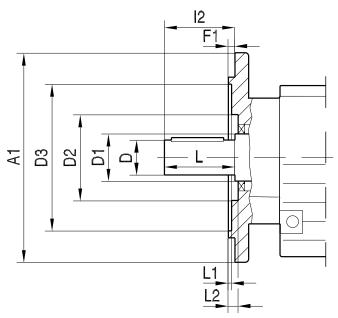
Gear unit	S	ize			
	19	19 29			
KA, KH, KT	10638008	10638016			
Gear unit			Size		
	10	20	30	37	47
WA, WH, WT	10638024	10638032	10638040	10638059	10638067



6.10.3 Torque arms for KH167.., KH187..

As standard, torque arms are not available for gear unit sizes KH167.. and KH187... Consult SEW-EURODRIVE if you need torque arms for these gear units.

6.11 Flange contours of RF.. and R..F gear units

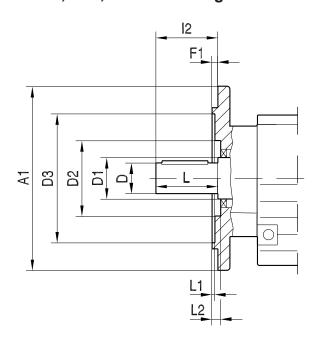


36028801329135371

Check dimensions L1 and L2 for selection and installation of output elements.

Туре	Dimensions in mm											
	A1	D	D1)2	D3	F1	12	L	L	.1	L2
				RF	RF					RF	RF	
	120	20	22	38	38	72	3	40	40	2	2	6
RF07, R07F	140 ¹⁾	20	22	38	-	85	3	40	40	2	-	6
	160 ¹⁾	20	22	38	-	100	3.5	40	40	2.5	-	6.5
	120	20	25	46	46	65	3	40	40	1	1	5
RF17, R17F	140	20	25	46	-	78	3	40	40	1	-	5
	160 ¹⁾	20	25	46	-	95	3.5	40	40	1	-	6
	120	25	30	54	54	66	3	50	50	1	1	6
RF27, R27F	140	25	30	54	-	79	3	50	50	3	-	7
	160	25	30	54	-	92	3.5	50	50	3	-	7
	120	25	35	60	63	70	3	50	50	5	4	7
RF37, R37F	160	25	35	60	-	96	3.5	50	50	1	-	7.5
	2001)	25	35	60	-	119	3.5	50	50	1	-	7.5
	140	30	35	72	64	82	3	60	60	4	1	6
RF47, R47F	160	30	35	72	-	96	3.5	60	60	0.5	-	6.5
	200	30	35	72	-	116	3.5	60	60	0.5	-	6.5
	160	35	40	76	75	96	3.5	70	70	4	2.5	5
RF57, R57F	200	35	40	76	-	116	3.5	70	70	0	-	5
	250 ¹⁾	35	40	76	-	160	4	70	70	0.5	-	5.5
DE07 D07E	200	35	50	90	90	118	3.5	70	70	2	4	7
RF67, R67F	250	35	50	90	-	160	4	70	70	1	-	7.5
DE33 D335	250	40	52	112	100	160	4	80	80	0.5	2.5	7
RF77, R77F	300 ¹⁾	40	52	112	-	210	4	80	80	0.5	-	7
DE07 D075	300	50	62	123	122	210	4	100	100	0	1.5	8
RF87, R87F	350	50	62	123	-	226	5	100	100	1	-	9
DE07	350	60	72	136		236	5	120	120	0		9
RF97	450	60	72	136		320	5	120	120	0		9

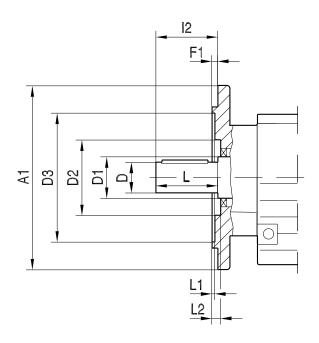
¹⁾ The flange contour protrudes from under the base surface.



36028801329135371

Check dimensions L1 and L2 for selection and installation of output elements.

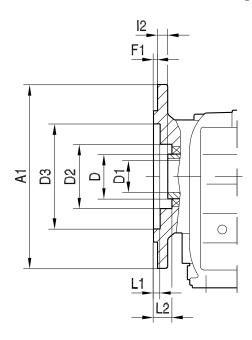
Туре			Dimensions in mm									
	A1	D	D1	D	2	D3	F1	12	L	L	.1	L2
				RF	RF					RF	RF	
DE407	350	70	82	157		232	5	140	140	0		11
RF107	450	70	82	186		316	5	140	140	0		11
RF127	450	90	108	180		316	5	170	170	0		10
RF137	450	90	108	180		316	5	170	170	0		10
KF 137	550	90	108	180		416	5	170	170	0		10
RF147	450	110	125	210		316	5	210	210	0		10
RF 147	550	110	125	210		416	5	210	210	0		10
DE167	550	120	145	290		416	5	210	210	1		10
RF167	660	120	145	290		517	6	210	210	2		11


6.12 Flange contours of FF.., KF.., SF.. and WF.. gear units

27021602074397451

Check dimensions L1 and L2 for selection and installation of output elements.

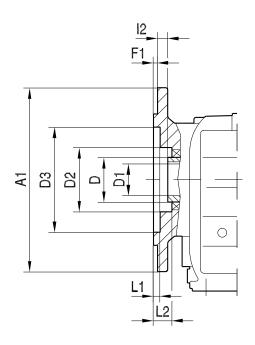
Туре	Dimensions in mm									
	A1	D	D1	D2	D3	F1	12	L	L1	L2
FF27	160	25	40	66	96	3.5	50	50	3	18.5
FF37	160	25	30	70	94	3.5	50	50	2	6
FF47	200	30	40	72	115	3.5	60	60	3.5	7.5
FF57	250	35	40	84	155	4	70	70	4	9
FF67	250	40	50	84	155	4	80	80	4	9
FF77	300	50	55	82	205	4	100	100	5	9
FF87	350	60	65	115	220	5	120	120	5	9
FF97	450	70	75	112	320	5	140	140	8	10
FF107	450	90	100	159	318	5	170	170	16	9
FF127	550	110	118	-	420	5	210	210	10	-
FF157	660	120	135	190	520	6	210	210	8	14
KF19	120	20	25	-	70	2.5	40	40	-	11.5
KF19	160	20	25	-	100	2.5	40	40	-	11.5
KF29	160	25	30	-	109	3.5	50	50	-	6.5
KF29	200	25	30	-	115	3.5	50	50	-	6.5
KF37	160	25	30	70	94	3.5	50	50	2	6
KF39	160	30	39	68	96	3.5	60	60	13.5	23.5
KF47	200	30	40	72	115	3.5	60	60	3.5	7.5
KF49	200	35	49	76	115	3.5	70	70	24.5	28
KF57	250	35	40	84	155	4	70	70	4	9
KF67	250	40	50	84	155	4	80	80	4	9
KF77	300	50	55	82	205	4	100	100	5	9
KF87	350	60	65	115	220	5	120	120	5	9
KF97	450	70	75	112	320	5	140	140	8	10
KF107	450	90	100	159	318	5	170	170	16	9
KF127	550	110	118	-	420	5	210	210	10	-
KF157	660	120	135	190	520	6	210	210	8	14



27021602074397451

Check dimensions L1 and L2 for selection and installation of output elements.

Туре	Dimensions in mm									
	A1	D	D1	D2	D3	F1	12	L	L1	L2
SF37	120	20	25	-	68	3	40	40	6	-
SF37	160	20	25	-	96	3.5	40	40	5.5	-
SF47	160	25	30	70	94	3.5	50	50	2	6
SF57	200	30	40	72	115	3.5	60	60	3.5	7.5
SF67	200	35	45	-	115	3.5	70	70	8.5	-
SF77	250	45	55	108	160	4	90	90	8	9
SF87	350	60	65	130	220	5	120	120	6	10
SF97	450	70	75	150	320	5	140	140	8.5	10
WF10	80	16	25	-	39	2.5	40	40	30	-
WF10	120	16	25	39	74	3	40	40	5	30
WF20	110	20	30	44	53	-4	40	40	27	35
WF20	120	20	30	-	45	2.5	40	40	37.5	-
WF30	120	20	30	48	63	2.5	40	40	18	27
WF30	160	20	30	48	63	2.5	40	40	33	42
WF37	120	20	30	-	63	2.5	40	40	-	10.5
WF37	160	20	30	-	63	2.5	40	40	-	25.5
WF47	160	30	35	-	92	3.5	10	60	6	-


6.13 Flange contours of FAF.., KAF.., SAF.. and WAF.. gear units

36028801329367819

Check dimensions L1 and L2 for selection and installation of output elements.

Type				Din	nensions in I	mm			
	A1	D	D1	D2	D3	F1	12	L1	L2
FAF27	160	40	25	66	96	3.5	20	3	18.5
FAF37	160	45	30	62	94	3.5	24	2	30
FAF47	200	50	35	70	115	3.5	25	3.5	31.5
FAF57	250	55	40	76	155	4	23.5	4	31
FAF67	250	55	40	76	155	4	23	4	31
FAF77	300	70	50	95	205	4	37	5	45
FAF87	350	85	60	120	220	5	30	5	39
FAF97	450	95	70	135	320	5	41.5	5.5	51
FAF107	450	118	90	224	320	5	41	16	52
FAF127	550	135	100	185	420	5	51	6	63
FAF157	660	155	120	200	520	6	60	10	74
KAF19	120	30	20	60	70	2.5	25	9	25.5
KAF19	160	30	20	60	100	2.5	25	9	25.5
KAF29	160	40	25 / 30	-	105	3.5	33.5	-	6.5
KAF29	200	40	25 / 30	-	118	3.5	33.5	-	6.5
KAF39	160	50	30 / 35	68	96	3.5	24.5	10	27
KAF37	160	45	30	62	94	3.5	24	2	30
KAF47	200	50	35	70	115	3.5	25	3.5	8.5
KAF49	200	55	35 / 40	76	115	3.5	32.5	16	34.5
KAF57	250	55	40	76	155	4	23.5	4	31
KAF67	250	55	40	76	155	4	23	4	31
KAF77	300	70	50	95	205	4	37	5	45
KAF87	350	85	60	120	220	5	30	5	39
KAF97	450	95	70	135	320	5	41.5	5.5	51
KAF107	450	118	90	224	320	5	41	16	52
KAF127	550	135	100	185	420	5	51	6	63
KAF157	660	155	120	200	520	6	60	10	74

36028801329367819

Check dimensions L1 and L2 for selection and installation of output elements.

Туре	Dimensions in mm									
	A1	D	D1	D2	D3	F1	12	L1	L2	
SAF37	120	35	20	-	68	3	15	6	-	
SAF37	160	35	20	-	96	3.5	15	5.5	-	
SAF47	160	45	30 / 25	62	94	3.5	24	2	30	
SAF57	200	50	35 / 30	70	115	3.5	25	3.5	31.5	
SAF67	200	65	45 / 40	91	115	3.5	42.5	4	48.5	
SAF77	250	80	60 / 50	112	164	4	45.5	5	53.5	
SAF87	350	95	70 / 60	131	220	5	52.5	6	62.5	
SAF97	450	120	90 / 70	160	320	5	60	6.5	69	
WAF10	80	25	16	-	39	2.5	23	30	-	
WAF10	120	25	16	39	74	3	23	5	30	
WAF20	110	30	18 / 20	45	53	-4	30	27	35	
WAF20	120	30	18 / 20	-	45	2.5	30	37.5	-	
WAF30	120	30	20	48	63	2.5	19.5	18	27	
WAF30	160	30	20	48	63	2.5	34.5	22	42	
WAF37	120	35	20 / 25	62	63	2.5	19.5	9	24.5	
WAF37	160	35	20 / 25	62	63	2.5	34.5	24	39.5	
WAF47	160	45	30	62.5	92	3.5	35	6	41	
WAF47	200	45	30	62.5	115	3.5	35	6	41	

6.14 Safety covers

6.14.1 Rotating safety cover

The following gear unit types with hollow shaft and shrink disk are equipped with a rotating safety cover as standard:

Gear unit type	Sizes			
KH	19 – 49 and 37 – 97			
FH, SH, WH	37 – 97			

Should you require a fixed plastic or metal safety cover for safety reasons, refer to the part numbers in the following chapters.

6.14.2 High fixed plastic safety cover

The following gear unit types with hollow shaft and shrink disk are equipped with a high fixed plastic safety cover as standard:

Gear unit type	Sizes			
FH	27 and 107 – 127			
KH	107 – 127			

Should you require a high fixed plastic safety cover for other gear unit types or sizes due to safety reasons, refer to the part numbers in the following chapters.

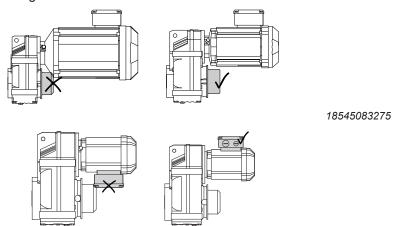
6.14.3 Fixed sheet metal safety cover

The following gear unit types with hollow shaft and shrink disk are equipped with a fixed sheet metal safety cover as standard:

Gear unit type	Sizes
KH	157, 167 and 187
FH	157
FT, KT, ST, WT (with TorqLOC® hollow shaft mounting system)	All available sizes
Explosion-proof gear units FH, KH, SH, WH gear units	All available sizes

Should you require a fixed sheet metal safety cover for other gear unit types or sizes, the part number required to order the cover can be found in the following chapter.

6.14.4 Flat fixed plastic safety cover


The following gear unit types with hollow shaft can optionally be equipped with a flat fixed plastic safety cover:

Gear unit type	Sizes
FA, FV	27 – 97
KA	19 – 49 and 37 – 97
KV	37 – 97
SA	37 – 97
WA	10 – 30 and 37/47

Should you require a flat fixed plastic safety cover for these gear unit types due to safety reasons, refer to the part numbers in the following chapters.

6.14.5 Motor mounting sizes and terminal box position with fixed safety cover

The size of the attached motor may be limited by the use of a high fixed safety cover for parallel-shaft helical gear units.

18557415179

INFORMATION

SEW-EURODRIVE recommends the terminal box position ≠ 90° for parallel-shaft helical gear units with high safety cover to simplify assembly and maintenance.

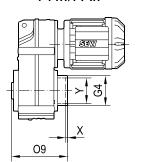
If necessary, check the configuration in the product configurator on the SEW-EURODRIVE website.

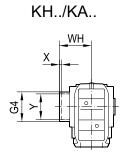
High fixed plastic safety cover

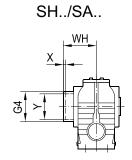
The following table shows the maximum possible motor mounting sizes, depending on the gear unit size, for a high fixed plastic safety cover:

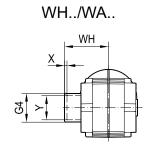
Gear unit size	F37	F47	F57	F67	F77	F87	F97
Maximum possible motor mounting sizes	71M	80M	90L	112M	132L	160L	180L

Fixed sheet metal safety cover


The following table shows the maximum possible motor sizes, depending on the gear unit size, for a high fixed sheet metal safety cover:


Gear unit size	F37	F47	F57	F67	F77	F87	F97
Maximum possible motor mounting sizes	71M	71M	80M	100L	132L	160L	180L


6.14.6 Part numbers and dimensions for high fixed plastic covers


00 002 00 18

FH../FA..

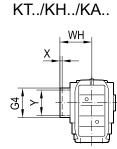
18014412946175627

Parallel-shaft helical gearmotors	FH/FA 27	FH/FA 37	FH/FA 47	FH/FA 57	FH/FA 67	FH/FA 77	FH/FA 87	FH/FA 97
Part number	06435319	6435130	6435149	6435157	6435157	6435165	6435173	6435181
G4 in mm	58	78	88	100	100	121	164	185
O9 in mm	134	157	188.5	207.5	221.5	255	295	363.5
X in mm	8.0	2	4.5	7.5	6	6	4	6.5
Y in mm	56	75	83	83	93	114	159	174

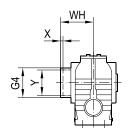
1 11 11 11 11	00	70
Helical-bevel gearmotors	KH/KA 19	KH/KA 29
Part number	10684158	10684166
G4 in mm	62	68
WH in mm	83	90
X in mm	2	4
Y in mm	50	60
WH in mm X in mm	83	90

Helical-bevel gearmotors ¹⁾	KH/KA 37	KH/KA 47	KH/KA 57	KH/KA 67	KH/KA 77	KH/KA 87	KH/KA 97
Part number	6435130	6435149	6435157	6435157	6435165	6435173	6435181
G4 in mm	78	88	100	100	121	164	185
WH in mm	95	111.5	122.5	129	147	172	210.5
X in mm	0	1.5	5.5	3	1	2	4.5
Y in mm	75	83	83	93	114	159	174

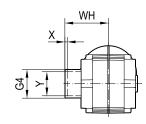
1) Not possible in foot-mounted helical-bevel gear units with hollow shafts (KH..B and KA..B)


Helical-worm gearmotors	SH/SA 37	SH/SA 47	SH/SA 57	SH/SA 67	SH/SA 77	SH/SA 87	SH/SA 97
Part number	6435122	6435130	6435149	6435157	6435165	6435173	6435181
G4 in mm	59	78	88	100	121	164	185
WH in mm	88	95	111.5	123	147	176	204.5
X in mm	1	0	1.5	3	1	0	0.5
Y in mm	53	75	83	93	114	159	174

SPIROPLAN® gearmotors	WH/WA 37	WH/WA 47		
Part number	10611363	10611940		
G4 in mm	68	80.5		
WH in mm	95.5	109.5		
X in mm	11	12.5		
Y in mm	50	72		


6.14.7 Part numbers and dimensions for fixed sheet metal covers

19 004 00 18


FT../FH../FA..

ST../SH../SA..

WT../WH../WA..

36028806206049163

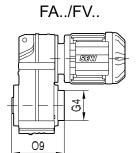
Parallel-shaft helical gearmotors	FT/FH/FA 37	FT/FH/FA 47	FT/FH/FA 57	FT/FH/FA 67	FT/FH/FA 77	FT/FH/FA 87	FT/FH/FA 97	FT/FH/FA 107	FT/FH/FA 127	FT/FH/FA 157
Part number	0643584X	06435858	06435866	06435866	06435874	06435882	06435890	06421814	06421822	06421830
G4 in mm	81	90	101	101	124	165	200	196	229	275
O9 in mm	166	199	222	236	285	322	382	421	502	605
X in mm	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5
Y in mm	78	87	98	98	121	162	197	193	226	272
Helical-bevel gear-	KH/KA	KH/KA	KT/KH/KA	KT/KH/KA		•				

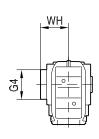
1 111 1111111	70	01	50	50	
Helical-bevel gear- motors	KH/KA KH/K 1929		KT/KH/KA 39	KT/KH/KA 49	
Part number	10686320	10686339	10682651	10682964	
G4 in mm	60	68	86	97	
WH in mm	84.5	91.5	117.5	138	
X in mm	1.5	1.5	1	1	
Y in mm	50	60	84	95	
G4 in mm WH in mm X in mm	60 84.5 1.5	68 91.5 1.5	86 117.5 1	97 138 1	

Helical-bevel gear- motors ¹⁾	KT/KH/ KA 37	KT/KH/ KA 47	KT/KH/ KA 57	KT/KH/ KA 67	KT/KH/ KA 77	KT/KH/ KA 87	KT/KH/ KA 97	KT/KH/ KA 107	KT/KH/ KA 127	KT/KH/ KA 157
Part number	0643584X	06435858	06435866	06435866	06435874	06435882	06435890	06421814	06421822	06421879
G4 in mm	81	90	101	101	124	165	200	196	229	275
WH in mm	104	122	137	143	177	229	382	246	297	375
X in mm	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5
Y in mm	78	87	98	98	121	162	197	193	226	272

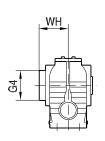
 $\underline{\ \ }1)\ \ Not\ possible\ in\ foot-mounted\ helical-bevel\ gear\ units\ with\ hollow\ shafts\ (KH..B\ and\ KA..B)$

Helical-worm gear- motors	ST/SH/SA 37	ST/SH/SA 47	ST/SH/SA 57	ST/SH/SA 67	ST/SH/SA 77	ST/SH/SA 87	ST/SH/SA 97
Part number	06444768	0643584X	06435858	06435866	06435874	06435882	06435882
G4 in mm	64	81	90	101	124	165	165
WH in mm	98	104	122	137	177	203	223
X in mm	1.5	1.5	1.5	1.5	1.5	1.5	1.5
Y in mm	61	78	87	98	121	162	162

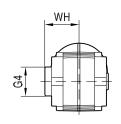

SPIROPLAN® gear- motors	WT/WH/ WA 37	WT/WH/ WA 47
Part number	10611479	10611959
G4 in mm	67	78
WH in mm	95.5	109
X in mm	1	1
Y in mm	64	76


6.14.8 Part numbers and dimensions for flat fixed plastic covers

19 003 00 18


WA..

Safety covers



KA../KV..

SA..

9007222831910155

Parallel-shaft helical gearmotors	FA/FV27	FA/FV37	FA/FV47	FA/FV57	FA/FV67	FA/FV77	FA/FV87	FA/FV97
Part number	10688684	10688293	10688390	10688498	10688498	10688595	10688692	10688781
G4 in mm	57.4	80.4	80.4	84.7	84.7	117.4	147.5	187.4
O9 in mm	111	134	163	179	193	223	251	313
Helical-bevel gearmotors	KA19	KA29	KA	39 KA	49			

Part number	10688684	10688293	10688498	10688498			
G4 in mm	57.4	80.4	84.7	84.7			
WH in mm	63.2	73.5	90	90			
Helical-bevel gearmotors ¹⁾	KA/KV37	KA/KV47	KA/KV57	KA/KV67	KA/KV77	KA/KV87	KA/KV97
Part number	10688293	10688390	10688498	10688498	10688595	10688692	10688781
G4 in mm	80.4	80.4	84.7	84.7	117.4	147.5	187.4
WH in mm	72.5	87	95	101.5	116	131	161

1) Not possible in foot-mounted helical-bevel gear units with hollow shafts (KH..B and KA..B)

, the possible in lost meanited henced so to god and man honor chance (thing and the ma)							
Helical-worm gearmotors	SA37	SA47	SA57	SA67	SA77	SA 87	SA97
Part number	10687890	10688293	10688390	10688498	10688595	10688692	10688781
G4 in mm	57.4	80.4	80.4	84.7	117.4	147.5	187.4
WH in mm	68	72.5	87	95.5	116	135	155
SPIROPLAN® gearmotors	WA10	WA20	WA30	WA37	WA47		
Part number	10687998	10687998	10688099	10688099	10688196		
G4 in mm	42.4	42.4	57.4	57.4	62.4		
WH in mm	51	58.5	69	69	82.5		

6.15 Technical data condition monitoring

6.15.1 Information on oil aging sensor /DUO10A

Technical data

	Techn	ical data		
	OIL1	CLP mineral oil	T _{max} = 100 °C	
	OILI	Biodegradable oil	T _{max} = 100 °C	
Dragat all grades	011.0	CLP HC synthetic oil	T _{max} = 130 °C	
Preset oil grades	OIL2	CLP PAO oil	T _{max} = 130 °C	
	OIL3	CLP PG polyglycol	T _{max} = 130 °C	
	OIL4	Food grade oil	T _{max} = 100 °C	
		ly warning (time to next oil chan en 2 and 100 days)	ge can be set to	
Switch outputs	2: Mai	n alarm (time to oil change 0 da	ys)	
	3: Exceeded temperature T _{max}			
	4: DUO10A is ready for operation			
Permitted oil temperature	-40 °C – +130 °C			
Permitted temperature sensor	PT1000			
EMC	IEC1000-4-2/3/4/6			
Ambient temperature	-25 °C – +70 °C			
Operating voltage	DC 18	– 28 V		
Current consumption for DC 24 V	< 90 mA			
Protection class	III			
Degree of protection	IP67 (optionally IP69K)			
Housing materials	Evaluation unit: V2A, EPDM/X, PBT, FPM			
Tiousing materials	Temperature sensor: V4A			
Electrical connection	Evaluation unit: M12 plug connector			
Licotrical confidential	PT1000 temperature sensor: M12 plug connector			

Designations and part numbers

Designation	Description	Part number
DUO10A	Evaluation unit (basic device)	13438751
DUO10A-PUR-M12-5m	5 m PUR cable with 1 connector	13438778
DUO10A-PVC-M12-5m	5 m PVC cable with 1 connector	13438786
DUO10A	Angle bracket	13438808
DUO10A D = 34	Mounting clamp	13438794
W4843 PT1000	PT1000 temperature sensor	13438816
W4843_4x0.34-2m-PUR	2 m PUR cable for PT1000 ¹⁾	13438824
W4843_4x0.34-2m-PVC	2 m PVC cable for PT1000 ²⁾	13438832
DUO10A	Protection cap (for aseptic design, IP69K)	13439022

¹⁾ PUR cables are particularly suited for use in oil-contaminated environments.

²⁾ PVC cables are particularly suited for use in moist environments.

Mounting to standard gear units (R, F, K,S)

Adapter for mounting the PT1000 temperature sensor in screw plug bores:

Complete adapter for PT1000 sensor	Part number
M10 × 1	13439030
M12 × 1.5	13439049
M22 × 1.5	13439057
M33 × 2	13439065
M42 × 2	13439073

Mounting base for installing the diagnostic unit at the gear unit with an angle bracket:

Mounting base with sealing ring	Part number
M10 × 1	13434411
M12 × 1.5	13438271
M22 × 1.5	13438298
M33 × 2	13438301
M42 × 2	13438328

6.15.2 Information on the /DUV40A vibration monitoring system

Scope of delivery

- Device Vibration SmartCheck with integrated software FAG SmartWeb
- User documentation Vibration SmartCheck and FAG SmartWeb on CD-ROM
- FAG SmartUtility Light software with user documentation on CD-ROM
- 1 retaining screw: Hexagon socket head screw M6 × 45
- 1 O-ring to secure the retaining screw against loss
- 1 plug with logo to close assembly opening
- 3 closing plugs to close unused M12 connections

INFORMATION

Cables for connecting the device are not included in the standard delivery of Vibration SmartCheck devices.

Technical data

DUV40A (Diagnostic Ui	DUV40A (Diagnostic Unit Vibration)		
Housing	Glass fiber reinforced plastic		
Fastening	lexagon socket head screw M6 × 45		
	Contact surface on the machine: 25 mm Ø		
Current consumption	< 200 mA at 24 V		
Ambient temperature	-20 to +70 °C		
Internal operating temperature	-20 to +85 °C		

DUV40A (Diagnostic Ui	nit Vibration)	
Voltage supply	11 – 32 VDC or	
	Power over Ethernet (PoE) based on 802.3af Mode A	
Size	44 mm × 57 mm × 55 mm	
Weight	ca. 210 g	
Degree of protection	IP 67	
Operating system	Embedded Linux	
Software	FAG SmartWeb (Mozilla Firefox ESR 38 (recommended), Internet Explorer 11, Internet Explorer 9 not recommended due to performance reasons)	
	Vibration SmartUtility Light or optionally Vibration SmartUtility	
	Languages: German, English, Chinese, Spanish, and French	

Internal sensor technology		
Vibration	Acceleration sensor (piezoelectric sensor)	
	Frequency range 0.8 Hz to 10 kHz	
	Measuring range ±50 g	
Temperature	Measuring range -20 to +70 °C	

Measurement	
Measurement functions	Acceleration
	Speed and distance by integration
	System temperature
	Process parameters (e.g. speed, load, pressure)
Diagnostic methods	Time signal, envelope, spectrum and trend analysis, speed and frequency checking

Characteristic values (time and frequency range)							
Defined characteristic values	DIN/ISO 10816						
Calculated characteris- tic values	RMS, frequency selected RMS, direct component, peak, peak to peak, crest factor, Wellhausen count, carpet level, condition monitoring						
	Other user-defined characteristic values are available.						

Signal processor	
Frequency resolution	1600, 3200, 6400, or 12800 lines
	Line width min. 0.0039 Hz at 50 Hz (depending on low pass)
Measurement resolution	24 Bit (A/D converter)
Frequency range	0.8 Hz – 10 kHz
Low passes	50 Hz – 10 kHz (50 Hz, 100 Hz, 200 Hz, 500 Hz, 1 kHz, 2 kHz, 5 kHz, 10 kHz)
High passes (only envelope)	750 Hz, 1 kHz, 2 kHz (other filters upon request)

Memory	
Program and data	64 MB RAM, 128 MB flash

Inputs and outp	puts
Inputs	2 analog inputs (0 – 10 V / 0 – 24 V / 0 – 20 mA / 4 – 20 mA), frequency range 0 – 500 Hz, 12 Bit
	1 digital input (0 – 30 V, 0.1 Hz – 1 kHz)
Outputs	1 analog output (0 – 10 V / -20 mA / 4 – 20 mA), 12 Bit
	1 switching output (open collector, max. 1 A, 28 V)
	Optional galvanic isolation between inputs and outputs

Interfaces							
Control elements	2 capacitive pushbuttons (learning mode, alarm reset, restart, factory settings)						
Display elements	1 LED to display status and alarm						
	1 LED to acknowledge the pushbuttons						
	2 LEDs to display communication						
Communication	Ethernet 100 Mb/s						
	RS485 (currently not yet supported)						
Electrical connections	3 M12 plug connectors (polarity reversal protected) for supply, RS485, inputs/outputs, and Ethernet						

Part numbers

	Description	Part number
Sensor	DUV40A (Diagnostic Unit Vibration)	19175892
Cables	Voltage supply cable 8-pin for SmartCheck 5 m; M12(B) <-> open end	19179596
Cables	Ethernet cable for SmartCheck 5 m; M12 <-> RJ45	19179618
Cables	I/O cable 8-pin for SmartCheck 5 m; M12(St) <-> open end	19179626
Cables	Power/Ethernet/I-O signals in 10m and 20m	

	Description	Part number
Base for mounting on	Mounting base with sealing ring M10 × 1	20593422
standard gear units (R, F, K, and S gear units)	Mounting base with sealing ring M12 × 1.5	20593430
r, ix, and o gear anito)	Mounting base with sealing ring M22 × 1.5	20593449
	Mounting base with sealing ring M33 × 2	20593457
	Mounting base with sealing ring M42 × 2	20593465

	Description	Part number
Base for mounting on	Mounting base with sealing ring G3/4"	20593384
industrial gear units	Mounting base with sealing ring G1"	20593392
	Mounting base with sealing ring G1 1/4"	20593406
	Mounting base with sealing ring G1 1/2"	20593414

	Description	Part number
Base for mounting on	Mounting base M5	21014175
standard motors	Mounting base M6	21014167
	Mounting base M8	20593503
	Mounting base M10	21014248
	Mounting base M12	20593473
	Mounting base M16	20593481
	Mounting base M20	20593511

7 Important information on selection tables and dimension drawings

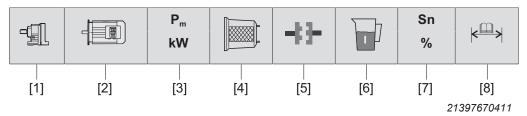
7.1 Information on the selection tables

7.1.1 Information on selection tables for adapters AM..

R77, n _e	= 1400 n	nin ⁻¹ , M _a	_{max} /Nm									820 Nm
i	n _a	M _{a max G}	F _{Ra} ¹⁾	ф (/R)				Α	.M			
	min ⁻¹	Nm	N	'	63	71	80	90	100	112	132S/M	132ML
						ę	2 2		*			
5.31	264	510	3990	8			77	77	215	215	475	475
5.99	234	540	3990	8			87	87	240	240	535	535
6.79	206	580	3850	8	33	33	99	99	275	275	580	580
7.74	181	610	3940	8	38	38	113	113	315	315	610	610
8.59	163	630	4110	7	42	42	126	126	350	350	630	
9.64	145	630	6300	7			141	141	390	390	630	630
10.88	129	660	6490	6			159	159	440	440	660	660
						•	•	•				
[1]	[2]	[3]	[4]	[5]				[6	6]			

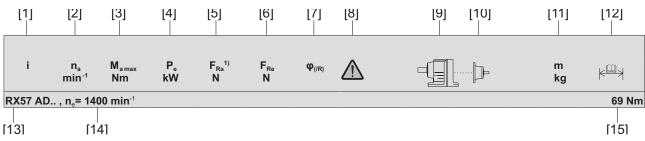
9007220651244427

- [1] Gear unit ratio: For gear ratios with a footnote²⁾, refer to the chapter "Churning losses and thermal rating" ($\rightarrow \mathbb{B}$ 47).
- [2] Output speed
- [3] Maximum permitted output torque of the open gear unit without additional component
- [4] Permitted overhung load at maximum output torque (1) foot-mounted gear unit with solid shaft)
- Numerical value given: The reduced backlash option (/R) is possible; the numerical value specifies the rotational clearance of the reduced backlash version in angular minutes '. No data (-): The reduced backlash option (/R) is not possible for this i value.
- [6] Maximum permitted output torque of the gear unit/adapter combination
- [7] Stages of the following gear ratios


Combination is **not possible**.

Combination is **possible**.

The following table provides weight information for gear units with IEC or NEMA adapter


m /kg	АМ								
IEC	S	63	71	80	90	100	112	132S/M	132ML
R77	<i>₽</i> 2	33	34	36	36	40	40	47	47
R77	₽ 3	34	35	37	37	41	41	48	48
NEMA		-	56	143	145	182	184	213/215	-
R77	<i>Д</i> 3 2	-	34	36	36	39	39	45	-
R77	₽ 3	-	35	37	37	40	40	46	-
RF: + 5.7 kg / RM: + 30.7 kg									

7.1.2 Information on selection tables for adapters AT...

- [1] Gear unit size
- [2] Motor type
- [3] Motor power
- [4] Adapter type
- [5] Coupling type
- [6] Fill quantity in liters
- [7] Rated slip of the coupling
- [8] Dimension sheet page number

7.1.3 Information on the selection tables for input shaft assemblies AD..

21398152971

- [1] Gear unit ratio; A value marked with * indicates a finite gear unit ratio.
- [2] Output speed
- [3] Maximum permitted output torque
- [4] Calculated input power of the gear unit
- [5] Permitted overhung load at maximum output torque (foot-mounted gear unit with solid shaft)
- [6] Permitted overhung load on input end
- [7] Numerical value given: The reduced backlash option (/R) is possible; the numerical value specifies the rotational clearance of the reduced backlash version in angular minutes '. No data (-): The reduced backlash option (/R) is not possible for this i value.
- [8] Observe the chapter "Thermal limit rating for gear units with input shaft assembly" ($\rightarrow \mathbb{B}$ 68).
- [9] Gear unit size
- [10] Cover type
- [11] Weight
- [12] Dimension sheet page number
- [13] Gear unit type and size
- [14] Rated speed
- [15] Maximum output torque of the gear unit

7.2 Dimension sheet information

7.2.1 Symbols for scope of delivery

Standard parts supplied by SEW-EURODRIVE.

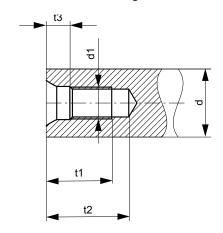
Standard parts not supplied by SEW-EURODRIVE.

7.2.2 Tolerances

Shaft heights

The following tolerances apply to the indicated dimensions:

h \leq 250 mm \rightarrow -0.5 mm h > 250 mm \rightarrow -1 mm


Foot-mounted gear units: Check the mounted motor because it might project below the mounting surface.

Shaft ends

Diameter tolerance:

 \emptyset $\leq 50 \text{ mm}$ $\rightarrow \text{ISO k6}$ \emptyset > 50 mm $\rightarrow \text{ISO m6}$

Center holes according to DIN 332, shape DR:

31461089803

d	d1	t1 +2/0	t2 min	t3 +1/0
13 < d ≤ 16	M5	12.5	17	4
16 < d ≤ 21	M6	16	21	5
21 < d ≤ 24	M8	19	25	6
24 < d ≤ 30	M10	22	30	7.5
30 < d ≤ 38	M12	28	37	9.5
38 < d ≤ 50	M16	36	45	12

d	d1	t1 +2/0	t2 min	t3 +1/0
50 < d ≤ 85	M20	42	53	15
85 < d ≤ 130	M24	50	63	18
130 < d ≤ 225	M30	63	85	20

Keys: according to DIN 6885 (domed type)

Keyway width to ISO N9

Hollow shafts

Diameter tolerance:

 \emptyset \rightarrow ISO H7 measured with plug gauge

Keys: according to DIN 6885 (domed type)

Exception: Key for WA.37 with shaft Ø 25 mm and for KA.29 with shaft Ø 30 mm ac-

cording to DIN 6885-3 (low form)

Keyway width to ISO JS9

Multiple-spline shafts

D_m Measuring roller diameter

M_e Check size

The fit of the hollow shafts with splined hollow shaft is 9H.

The assumed fit of the customer shaft in the dimension sheets of the catalog is 7d.

The fit pair 9H/7d specified in the dimension sheets is a clearance fit. Depending on the application requirements, it is the customer's responsibility to choose another fit pair and to manufacture the customer shaft accordingly.

Flanges

Centering shoulder tolerance:

 \emptyset \leq 230 mm (flange sizes A120 – A300) \rightarrow ISO j6 \emptyset > 230 mm (flange sizes A350 – A660) \rightarrow ISO h6

Up to 3 different flange dimensions are available for each size of helical gear unit, SPIROPLAN® gear unit, AC (brake) motor and explosion-proof AC (brake) motor. The mountable flange for each size can be found in the respective dimension sheets.

7.2.3 Eyebolts, lifting eyes

R07 – R27 helical gear units, K..167 – K..187 helical-bevel gear units, motors up to DRN90 and SPIROPLAN® gearmotors W..10 – W..30 are delivered without special transportation fixtures. All other gear units and motors are equipped with cast-on lifting eyes, screw-on lifting eyes or screw-on eyebolts.

Gear unit/motor	Scre	Cast-on	
type	lifting eyebolts	lifting eyes	lifting eyes
R37 – R57	_	X	_
R67 – R167	X	_	_
RX57 – RX67	_	X	_
RX77 – RX107	X	_	_
F27 – F157	_	_	X
K19 – K49	_	X	_
K37 – K157	_	_	X
S37 – S47	_	X	_
S47 – S97	_	_	X
W37 – W47	_	X	_
≥ DRN100L	X	<u> </u>	_

Legend: — not available, X available

7.2.4 Breather valves

The gear unit dimension drawings always show the screw plugs. The corresponding screw plug is replaced by an activated breather valve at the factory depending on the ordered mounting position M1 to M6. The result may be slightly altered contour dimensions.

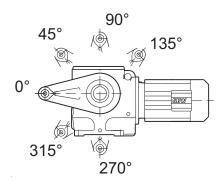
7.2.5 Shrink disk connection

In order to non-positively transfer the torques stated in the catalog in case of gear units with hollow shaft and shrink disk connection, observe the following peripheral conditions in addition to the information on the respective dimension sheet when dimensioning the customer shaft:

- Surface roughness R₇ ≤ 16 μm
- Elastic limit of the customer shaft material R_e and/or Rp_{0.2} ≥ 305 N/mm²
- Design of the customer shaft as solid shaft

For customer shafts designed as hollow shaft, contact SEW-EURODRIVE.

7.2.6 Splined hollow shaft


FV.. hollow shaft gear unit sizes 27 to 107, and KV.. sizes 37 to 107 are supplied with splining according to standard DIN 5480.

7.2.7 Rubber buffer for FA/FH/FV/FT

The depictions on the dimension sheets show the rubber buffers for FA/FH/FV/FT gear units in loose state. Preload rubber buffer by the indicated value ΔL . The characteristic curve of spring for the rubber buffer is available upon request from SEW-EURODRIVE.

7.2.8 Position of the torque arm

The following illustration shows the possible torque arm positions for helical-worm gear units, the 2-stage K..9 helical-bevel gear units and SPIROPLAN® gear units (135° position not possible with SPIROPLAN® gear units) as well as the respective angles:

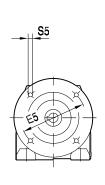
9007204237459467

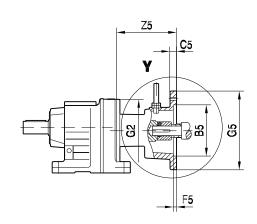
For more information about torque arms, refer to the respective dimension sheets of the gearmotors:

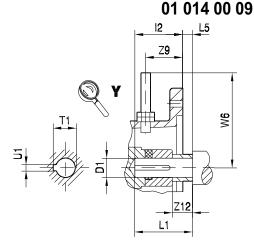
Gearmotor	Dimension sheets from page
Helical-bevel gearmotors	(→ 🖺 219)
Helical-worm gearmotors	(→ 🖺 550)
SPIROPLAN® gearmotors	(→ 🖺 627)

7.2.9 Dimensions of gear units and gearmotors

Motor options


The motor dimensions may change when installing motor options. Refer to the dimension drawings of the motor options in the "AC Motors" catalog.


Special designs


The terminal box dimensions in special designs might vary from the standard.

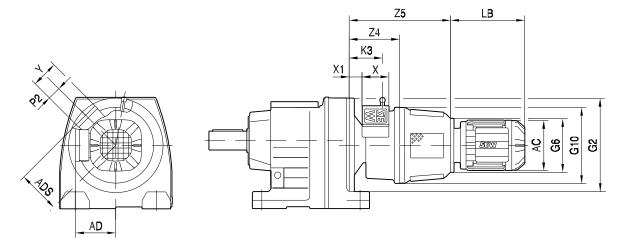
Dimension designations of gear units

The dimensions of the gear units are described below:

9007203785969931

- G5 Adapter flange diameter
- S5 Threaded hole
- E5 Hole circle diameter
- Z5 Adapter length
- G2 Gear unit input end flange diameter
- D1 Coupling bore diameter
- U1 Keyway width
- T1 Keyway depth
- Z12 Shaft collar length to coupling

- C5 Flange thickness
- B5 Center bore diameter
- F5 Centering depth
- L1 Shaft end length (motor)
- 12 Maximum insertion depth in adapter
- L5 Shaft collar length to flange surface
- Z9 Encoder position
- W6 Encoder height


INFORMATION

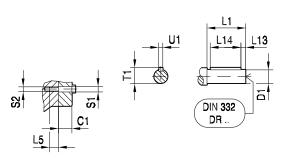
For motors with other feedback systems than resolvers, possible additional lengths must be considered.

AT..

01 177 00 09

9007220654144523

- LB Motor length
- G6 Motor flange diameter
- or moter hange diameter
- Z5 Adapter length


- G10 Housing diameter of start-up coupling

 74 Distance of gear unit and hydraulic
- Z4 Distance of gear unit and hydraulic coupling
- AD Height of motor terminal box
- G2 Flange diameter on input side of gear AC Motor diameter unit

AD../ZR

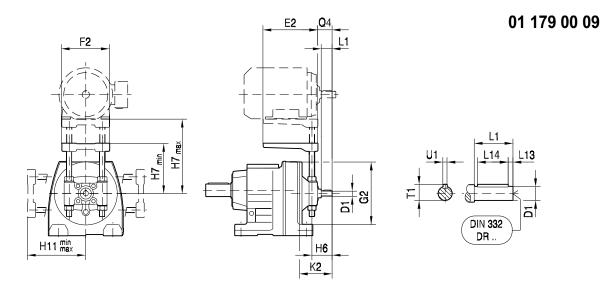
K2 M2 F2 S

01 178 00 09

9007203785976971

- K2 Input shaft assembly length
- B2 Center bore diameter
- M2 Contact surface position
- S1 through bores
- C1 Flange thickness
- D1 Shaft diameter
- L13 Position of key
- U1 Key width

- G2 Flange diameter on input side of gear unit
- F2 Center bore height
- E1 Hole circle diameter
- S2 Thread diameter
- L5 Thread depth
- L1 Length of shaft end
- L14 Key length
- T1 Key height in shaft

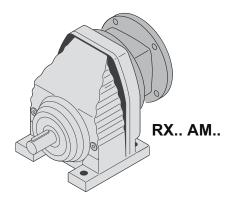


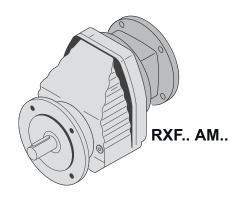
7

Important information on selection tables and dimension drawings

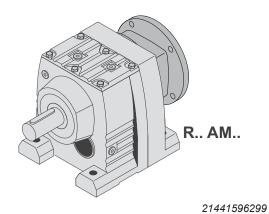
Dimension sheet information

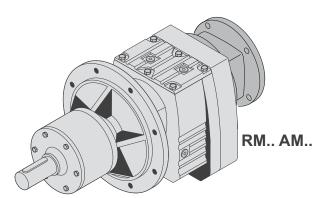
AD../P

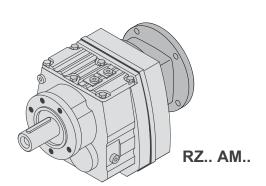

9007203785979659

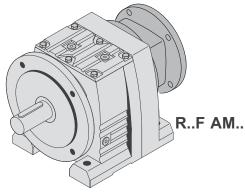

- K2 Input shaft assembly length
- E2 Length of motor platform
- F2 Width of motor platform
- H7 Adjusting height
- D1 Shaft diameter
- L13 Position of key
- U1 Key width

- G2 Flange diameter on input side of gear unit
- Q4 Distance from end of shaft to base plate
- H6 Distance from end of shaft to middle of column
- H11 Adjusting height (0°, 180°)
- L1 Length of shaft end
- L14 Key length
- T1 Key height in shaft


8 R.. helical gear units


8.1 Selection tables for adapters for mounting IEC/NEMA motors (AM..)





21441598731

8.1.1 RX.. AM.. /Nm

0.1.1		/\IVI /									
	_e = 1400	1 1		1							69 Nm
i	n _a	M _{a max G}	F _{Ra} 1)	φ _(/R)			1	AM	1	ı	1
	min ⁻¹	Nm	N	•	63	71	80	90	100	112	132S/M
							1				
1.30	1075	63	132	-	6	6	19	19	54	54	63
1.48	946	68	112	-	7	7	22	22	61	61	68
1.65	848	69	430	-	8	8	24	24	68	68	69
1.92	729	69	880	-	9	9	28	28	69	69	69
2.04	686	69	1070	-	10	10	30	30	69	69	69
2.37	591	69	1500	-	12	12	35	35	69	69	
2.64	530	69	1810	-	13	13	39	39	69	69	
2.91	481	67	2170	-	15	15	43	43			
3.14	446	65	2320	-	16	16	47	47	65		
3.55	394	69	2420	-	18	18	50	50			
3.79	369	69	2480	-	19	19	51	51			
4.35	322	68	2640	-	22	22	53				
5.07	276	36	3030	-	26	26					
5.50	255	39	3100	-	28	28					
RX57, n	n /kg							AM	1		
	IE	С	s		63	71	80	90	100	112	132S/M
R)	,		4	1	12	13	15	15	20	20	27
K/	, NI	EMA	s		-	56	143	145	182	184	213/215
			4	1	-	13	15	15	19	19	24
RXF: + 1	1.9 kg										
RX67, n	_e = 1400	min ⁻¹ , M _a	_{max} /Nm								134 Nm
i	n _a	M _{a max G}	F _{Ra} 1)	φ _(/R)				AM	1	1	1
	min ⁻¹	Nm	N	•	63	71	80	90	100	112	132S/M
							1				
1.40	1000	104	205	-			20	20	58	58	104
1.61	870	114	245	-	8	8	24	24	66	66	114
1.86	753	126	225	-	9	9	27	27	77	77	126
2.04	686	134	230	-	10	10	30	30	84	84	134
2.40	583	123	1530	-	12	12	35	35	96	99	123
2.54	551	118	2000	-	13	13	38	38	100	105	118
2.89	484	106	2640	-	14	14	43	43	106	106	
3.20	438	100	2800	-	16	16	48	48	100	100	
3.77	371	87	3090	-	19	19	56	56	87		
4.30	326	80	3300	-	22	22	61	61			
4.53	309	82	3350	-	23	23	61	61			
5.18	270	75	3580	-	26	26	63				
6.07	231	43	4000	_	31	31					
RX67, n	n /kg							AM			
	IE	С	s		63	71	80	90	100	112	132S/M
.	,		4	1	15	15	17	17	22	22	29
R)	NI	EMA	s		-	56	143	145	182	184	213/215
			4	1	-	16	17	17	21	21	27
DVE .	1 O ka		1				1	1	1	1	
RXF: + 4	+.0 kg										

i	= 1400	1 1		(n)				,	λM			215 Nm
'	n _a min ⁻¹	M _{a max G}	r _{Ra} '	φ _(/R)	63	71	80	90	100	112	132S/M	132ML
ı							3 1					
1.42	986	155	240	_			21	21	58	58	128	128
1.67	838	173	240	-			24	24	68	68	151	151
1.88	745	187	255	-			27	27	77	77	170	170
2.13	657	200	360	-	10	10	31	31	88	88	193	193
2.43	576	215	425	-	12	12	36	36	100	100	215	215
2.70	519	215	1030	-	13	13	40	40	111	111	215	
3.08	455	193	2490	-	15	15	46	46	127	127	193	
3.25	431	182	3140	-	16	16	48	48	134	134	182	
3.70	378	153	4280	-	18	18	55	55	145	151		
4.04	347	143	4490	-	20	20	60	60	143	143		
4.73	296	123	4890	-	24	24	70	70	123			
5.35	262	103	5240	-	27	27	77	77				
5.63	249	110	5300	-	28	28	77	77				
6.41	218	103	5600	-	32	32	79					
7.47	187	53	6200	-	38	38						
8.00	175	57	6330	-	40	40						
RX77, m			1				I	1	AM .			
	IE	С	S		63	71	80	90	100	112	132S/M	132ML
RX			₽	1	25	25	27	27	32	32	39	39
IXX	NE	EMA	s		-	56	143	145	182	184	213/215	-
			3	1	-	25	27	27	31	31	37	-
RXF: + 2												
DV0=	4 4 4 4 4											
1	= 1400	min ⁻¹ , M _a			ı							405 Nn
RX87, n _e i	n _a	M _{a max G}	F _{Ra} 1)	φ _(/R)		1	1	1	AM	l		ı
1		1 1		φ _(/R)	80	90	100	112	AM 132S/M	132ML	160	405 Nn 180
1	n _a	M _{a max G}	F _{Ra} 1)		80		100	1	1	132ML	160	ı
1	n _a	M _{a max G}	F _{Ra} 1)		80			1	1	132ML	160 255	ı
i	n _a min ⁻¹	M _{a max G}	F _{Ra} 1) N	•	80			1	132S/M			180
i 1.39	n _a min ⁻¹	M _{a max G} Nm	F _{Ra} 1) N	-	80		1	112	132S/M	125	255	180 290
1.39 1.60	n _a min ⁻¹ 1005 875	M _{a max G} Nm 290 315	F _{Ra} 1) N 74 74	-	80		1 65	112 65	132S/M 125 144	125 144	255 295	180 290 315
1.39 1.60 1.93	n _a min ⁻¹ 1005 875 725	M _{a max G} Nm 290 315 355	F _{Ra} 1) N 74 74 185			6	65 79	65 79	125 144 174	125 144 174	255 295 355	290 315 355
1.39 1.60 1.93 2.15 2.48 2.76	n _a min ⁻¹ 1005 875 725 651	M _{a max G} Nm 290 315 355 385	F _{Ra} 1) N 74 74 185 42		31	31	65 79 88	65 79 88	125 144 174 194	125 144 174 194	255 295 355 385	290 315 355 385
1.39 1.60 1.93 2.15 2.48 2.76 3.09	n _a min ⁻¹ 1005 875 725 651 565	290 315 355 385 405	74 74 185 42 470		31 36	31 36	65 79 88 102	65 79 88 102	125 144 174 194 220	125 144 174 194 220	255 295 355 385 405	290 315 355 385 405
1.39 1.60 1.93 2.15 2.48 2.76 3.09 3.48	n _a min ⁻¹ 1005 875 725 651 565 507	290 315 355 385 405	74 74 185 42 470 1200		31 36 40	31 36 40	65 79 88 102 113	65 79 88 102 113	125 144 174 194 220 250	125 144 174 194 220 250	255 295 355 385 405 405	290 315 355 385 405
1.39 1.60 1.93 2.15 2.48 2.76 3.09	n _a min ⁻¹ 1005 875 725 651 565 507 453	290 315 355 385 405 405	74 74 185 42 470 1200 2030		31 36 40 45	31 36 40 45	65 79 88 102 113 127	65 79 88 102 113 127	125 144 174 194 220 250 275	125 144 174 194 220 250 275	255 295 355 385 405 405 405	290 315 355 385 405
1.39 1.60 1.93 2.15 2.48 2.76 3.09 3.48 3.78 4.50	n _a min ⁻¹ 1005 875 725 651 565 507 453 402	290 315 355 385 405 405 405	74 74 185 42 470 1200 2030 2810		31 36 40 45 51	31 36 40 45 51	65 79 88 102 113 127 143	65 79 88 102 113 127 143	125 144 174 194 220 250 275 315	125 144 174 194 220 250 275	255 295 355 385 405 405 405	290 315 355 385 405
1.39 1.60 1.93 2.15 2.48 2.76 3.09 3.48 3.78 4.50 5.07	n _a min ⁻¹ 1005 875 725 651 565 507 453 402 370 311 276	290 315 355 385 405 405 405 405 290 250	74 74 185 42 470 1200 2030 2810 5050 5520 5990		31 36 40 45 51 56 67 75	31 36 40 45 51 56 67 75	65 79 88 102 113 127 143 156 186 210	65 79 88 102 113 127 143 156 186 210	125 144 174 194 220 250 275 315 305	125 144 174 194 220 250 275	255 295 355 385 405 405 405	290 315 355 385 405
1.39 1.60 1.93 2.15 2.48 2.76 3.09 3.48 3.78 4.50 5.07 5.56	n _a min ⁻¹ 1005 875 725 651 565 507 453 402 370 311 276 252	290 315 355 385 405 405 405 290 250 225	74 74 185 42 470 1200 2030 2810 5050 5520 5990 6330		31 36 40 45 51 56 67 75 83	31 36 40 45 51 56 67 75 83	65 79 88 102 113 127 143 156 186 210 215	65 79 88 102 113 127 143 156 186	125 144 174 194 220 250 275 315 305	125 144 174 194 220 250 275	255 295 355 385 405 405 405	290 315 355 385 405
1.39 1.60 1.93 2.15 2.48 2.76 3.09 3.48 3.78 4.50 5.07 5.56 6.45	n _a min ⁻¹ 1005 875 725 651 565 507 453 402 370 311 276 252 217	290 315 355 385 405 405 405 290 250 225 192	74 74 185 42 470 1200 2030 2810 5050 5520 5990 6330 6860		31 36 40 45 51 56 67 75 83 96	31 36 40 45 51 56 67 75 83 96	65 79 88 102 113 127 143 156 186 210	65 79 88 102 113 127 143 156 186 210	125 144 174 194 220 250 275 315 305	125 144 174 194 220 250 275	255 295 355 385 405 405 405	290 315 355 385 405
1.39 1.60 1.93 2.15 2.48 2.76 3.09 3.48 3.78 4.50 5.07 5.56 6.45 7.20	n _a min ⁻¹ 1005 875 725 651 565 507 453 402 370 311 276 252 217	290 315 355 385 405 405 405 306 290 250 225 192 140	74 74 185 42 470 1200 2030 2810 5050 5520 5990 6330 6860 7380		31 36 40 45 51 56 67 75 83 96 107	31 36 40 45 51 56 67 75 83 96	65 79 88 102 113 127 143 156 186 210 215	65 79 88 102 113 127 143 156 186 210	125 144 174 194 220 250 275 315 305	125 144 174 194 220 250 275	255 295 355 385 405 405 405	290 315 355 385 405
1.39 1.60 1.93 2.15 2.48 2.76 3.09 3.48 3.78 4.50 5.07 5.56 6.45 7.20 7.63	n _a min ⁻¹ 1005 875 725 651 565 507 453 402 370 311 276 252 217 194 183	290 315 355 385 405 405 405 305 290 250 225 192 140	74 74 185 42 470 1200 2030 2810 5050 5520 5990 6330 6860 7380 7500		31 36 40 45 51 56 67 75 83 96 107	31 36 40 45 51 56 67 75 83 96	65 79 88 102 113 127 143 156 186 210 215	65 79 88 102 113 127 143 156 186 210	125 144 174 194 220 250 275 315 305	125 144 174 194 220 250 275	255 295 355 385 405 405 405	290 315 355 385 405
1.39 1.60 1.93 2.15 2.48 2.76 3.09 3.48 3.78 4.50 5.07 5.56 6.45 7.20 7.63 8.65	n _a min ⁻¹ 1005 875 725 651 565 507 453 402 370 311 276 252 217 194 183 162	290 315 355 385 405 405 405 306 290 250 225 192 140	74 74 185 42 470 1200 2030 2810 5050 5520 5990 6330 6860 7380		31 36 40 45 51 56 67 75 83 96 107	31 36 40 45 51 56 67 75 83 96	65 79 88 102 113 127 143 156 186 210 215	65 79 88 102 113 127 143 156 186 210 215	125 144 174 194 220 250 275 315 305 290	125 144 174 194 220 250 275	255 295 355 385 405 405 405	290 315 355 385 405
1.39 1.60 1.93 2.15 2.48 2.76 3.09 3.48 3.78 4.50 5.07 5.56 6.45 7.20 7.63	n _a min ⁻¹ 1005 875 725 651 565 507 453 402 370 311 276 252 217 194 183 162 /kg	290 315 355 385 405 405 405 290 250 225 192 140 149	74 74 74 185 42 470 1200 2030 2810 5050 5520 5990 6330 6860 7380 7500 7890		31 36 40 45 51 56 67 75 83 96 107 107	31 36 40 45 51 56 67 75 83 96 107	65 79 88 102 113 127 143 156 186 210 215 192	65 79 88 102 113 127 143 156 186 210 215	132S/M 125 144 174 194 220 250 275 315 305 290	125 144 174 194 220 250 275 315	255 295 355 385 405 405 405 405	290 315 355 385 405 405
1.39 1.60 1.93 2.15 2.48 2.76 3.09 3.48 3.78 4.50 5.07 5.56 6.45 7.20 7.63 8.65	n _a min ⁻¹ 1005 875 725 651 565 507 453 402 370 311 276 252 217 194 183 162	290 315 355 385 405 405 405 290 250 225 192 140 149	74 74 185 42 470 1200 2030 2810 5050 5520 5990 6330 6860 7380 7500 7890		31 36 40 45 51 56 67 75 83 96 107 109	31 36 40 45 51 56 67 75 83 96 107	65 79 88 102 113 127 143 156 186 210 215 192	65 79 88 102 113 127 143 156 186 210 215	132S/M 125 144 174 194 220 250 275 315 305 290 AM 132S/M	125 144 174 194 220 250 275 315	255 295 355 385 405 405 405 405	290 315 355 385 405 405
1.39 1.60 1.93 2.15 2.48 2.76 3.09 3.48 3.78 4.50 5.07 5.56 6.45 7.20 7.63 8.65 RX87, m	1005 875 725 651 565 507 453 402 370 311 276 252 217 194 183 162 /kg	290 315 355 385 405 405 405 305 290 250 225 192 140 149 139	74 74 185 42 470 1200 2030 2810 5050 5520 5990 6330 6860 7380 7500 7890		31 36 40 45 51 56 67 75 83 96 107 107 109	31 36 40 45 51 56 67 75 83 96 107 107	65 79 88 102 113 127 143 156 186 210 215 192 100 48	112 65 79 88 102 113 127 143 156 186 210 215	125 144 174 194 220 250 275 315 305 290 AM 132S/M 56	125 144 174 194 220 250 275 315	255 295 355 385 405 405 405 405 405	290 315 355 385 405 405 405
1.39 1.60 1.93 2.15 2.48 2.76 3.09 3.48 3.78 4.50 5.07 5.56 6.45 7.20 7.63 8.65	1005 875 725 651 565 507 453 402 370 311 276 252 217 194 183 162 /kg	290 315 355 385 405 405 405 290 250 225 192 140 149	74 74 185 42 470 1200 2030 2810 5050 5520 5990 6330 6860 7380 7500 7890		31 36 40 45 51 56 67 75 83 96 107 109	31 36 40 45 51 56 67 75 83 96 107	65 79 88 102 113 127 143 156 186 210 215 192	65 79 88 102 113 127 143 156 186 210 215	132S/M 125 144 174 194 220 250 275 315 305 290 AM 132S/M	125 144 174 194 220 250 275 315	255 295 355 385 405 405 405 405	290 315 355 385 405 405

RXF: +8.6 kg	RX97, n	= 140	0 min ⁻¹ , M _a	_{max} /Nm										595 Nm
1.1	i	n _a	M _{a max G}	F _{Ra} 1)	φ _(/R)					A	M			
1.42° 986		min ⁻	¹ Nm	N		100	112	132S	/ M	132	ML	160	180	200
1.64° 8.54							d	2 1						
1.96	1.422)	986	455	132	-			126	3	12	26	260	315	455
2.24	1.642)	854	505	51	-			146	3	14	16	300	360	505
2.64	1.96	714	570	19	-			175	5	17	' 5	360	435	570
2.92	2.24	625	595	545	-	91	91	200)	20	00	415	495	595
3.30	2.64	530	595	2020	-	108	108	235	5	23	35	490	585	595
3.64 385 595 4610 - 149 149 325 325 595 595 595	2.92	479	595	2890	-	119	119	260)	26	60	545	595	595
4.04 347 595 5450 - 166 166 166 365 365 595	3.30	424	595	3820	-	135	135	295	5	29	95	595	595	
4.52 310 595 6210 - 186 186 405 405 595	3.64	385	595	4610	-	149	149	325	5	32	25	595	595	
4.91 285 395 7240 - 200 200 395 -	4.04	347	595	5450	-	166	166	365	5	36	35	595		
S.79	4.52	310	595	6210	-	186	186	405	5	40)5	595		
6.56	4.91	285	395	7240	-	200	200	395	5					
7.16					-		235	420)					
R.23					-									
RX97, m /kg					-		260							
RXF: +8.6 kg RX107, n ₀ = 1400 min ⁻¹ , M _{a max O} more min ⁻¹ , M _a			225	9570	-	225								
RXF: + 8.6 kg RX107, n _e = 1400 min¹, M _{amax} /Nm	RX97, m													
NEMA S 182 184 213/215 - 254/256 284/286 324/326			IEC		-									
NEMA S 182 184 213/215 - 254/256 284/286 324/326 RXF: + 8.6 kg	RX			4	1	73	73	79		7:	9	97	97	115
RXF: + 8.6 kg RX107, n _s = 1400 min ⁻¹ , M _{a max} /Nm n _s min ⁻¹ Nm N N N N N N N N		.	NEMA	1						-			284/286	324/326
RX107, n				- A	1	72	72	77	'	-		92	94	110
i na min¹ M _{a max G} Nm F _{Ra} ¹¹ N N φ _(R) v 100 112 132S/M 132ML 160 180 200 225 1.444²¹ 972 645 315 - 152 152 315 375 705<														
Min		1	1		1 1	l								830 Nm
1.44²) 972 645 315 -	1				Φ(/R)	400	440	4220/84	1 40	1		400	200	005
1.44²⟩ 972 645 315 - 128 265 320 600 600 1.71²⟩ 819 705 345 - 152 152 315 375 705 705 1.95 718 765 420 - 174 174 360 430 765 765 2.30 609 830 760 - 205 205 425 510 830 830 2.64 530 830 1850 - 107 107 235 235 490 585 830 830 3.07 456 830 3300 - 125 125 275 275 570 680 830 830 3.38 414 830 4190 - 138 138 305 305 630 735 830 830 3.81 367 830 5260 - 156 156 340 340 710 755 775 4.65 301 695 7380 <t< th=""><th></th><th>min</th><th>NM</th><th>N</th><th></th><th>100</th><th></th><th></th><th>13</th><th>ZIVIL</th><th>160</th><th>180</th><th>200</th><th>225</th></t<>		min	NM	N		100			13	ZIVIL	160	180	200	225
1.71 ²⁾ 819 705 345 - 152 152 315 375 705 705 1.95 718 765 420 - 174 174 360 430 765 765 2.30 609 830 760 - 205 205 425 510 830 830 2.64 530 830 1850 - 107 107 235 235 490 585 830 830 3.07 456 830 3300 - 125 125 275 275 570 680 830 830 3.38 414 830 4190 - 138 138 305 305 630 735 830 830 3.81 367 830 5260 - 156 156 340 340 710 755 4.20 333 830 6140 - 172 172 375 375 775 775 4.65 301 695 7380 - 191 191 420 420 695 5.19 270 695 7780 - 210 210 455 455 695 5.61 250 455 9040 - 230 230 455 6.63 211 460 9660 - 260 270 460 RX107, m /kg RX107, m /kg IEC		1					d	1						1
1.95 718 765 420 - 174 174 360 430 765 765 2.30 609 830 760 - 205 205 425 510 830 830 2.64 530 830 1850 - 107 107 235 235 490 585 830 830 3.07 456 830 3300 - 125 125 275 275 570 680 830 830 3.38 414 830 4190 - 138 138 305 305 630 735 830 830 3.81 367 830 5260 - 156 156 340 340 710 755 4.20 333 830 6140 - 172 172 375 375 775 775 4.65 301 695 7380 - 191 191 420 420 695 5.19 270 695 7780 - 210 210 455 455 695 5.61 250 455 9040 - 230 230 455 6.63 211 460 9660 - 260 270 460 RX107, m /kg RX107, m /kg IEC	1.442)	972	645	315	-				1	28	265	320	600	600
2.30 609 830 760 - 205 205 425 510 830 830 830 2.64 530 830 1850 - 107 107 235 235 490 585 830 830 3.07 456 830 3300 - 125 125 275 275 570 680 830 830 830 3.38 414 830 4190 - 138 138 305 305 630 735 830 830 830 3.81 367 830 5260 - 156 156 340 340 710 755 4.20 333 830 6140 - 172 172 375 375 775 775 4.65 301 695 7380 - 191 191 420 420 695 5.19 270 695 7780 - 210 210 455 455 695 5.61 250 455 9040 - 230 230 455 6.63 211 460 9660 - 260 270 460 8 820 825 84/286 324/326 364/365 82 82 82 82 82 82 82 82 82 82 82 82 82	1.712)	819	705	345	-			152	1	52	315	375	705	705
2.64 530 830 1850 - 107 107 235 235 490 585 830 830 3.07 456 830 3300 - 125 125 275 275 570 680 830 830 3.38 414 830 4190 - 138 138 305 305 630 735 830 830 3.81 367 830 5260 - 156 156 340 340 710 755 4.20 333 830 6140 - 172 172 375 375 775 775 4.65 301 695 7380 - 191 191 420 420 695 5.19 270 695 7780 - 210 210 455 455 695 5.61 250 455 9040 - 230 230 455 6.63 211 460 9660 - 260 270 460 8 820 825 84/286 324/326 364/365 824 825 824/286 324/326 364/365 824 825 824/286 324/326 364/365 824 825 824/286 324/326 364/365 825 825 825 825 825 824/286 324/326 364/365 825 825 825 825 825 825 825 825 825 82	1.95	718	765	420	-			174	1	74	360	430	765	765
3.07					-				1					
3.38					-				_					
3.81 367 830 5260 - 156 156 340 340 710 755 4.20 333 830 6140 - 172 172 375 375 775 775 775 4.65 301 695 7380 - 191 191 420 420 695 5.19 270 695 7780 - 210 210 455 455 695 5.61 250 455 9040 - 230 230 455 5.63 211 460 9660 - 260 270 460 88X107, m /kg RX107, m /kg IEC									_					
4.20 333 830 6140 - 172 172 375 375 775 775 775 4.65 301 695 7380 - 191 191 420 420 695 - <													830	830
4.65 301 695 7380 - 191 191 420 420 695 - - - 191 191 420 420 695 - - - - 210 210 455 455 695 - - - - 210 210 455 455 695 -														
5.19 270 695 7780 - 210 210 455 455 695 - - - 230 230 455 695 - - - - 230 230 455 -												/75		
5.61 250 455 9040 - 230 230 455 - - - - 260 270 460 - - - - - 260 270 460 - <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>_</td><td></td><td></td><td></td><td></td><td></td></t<>									_					
6.63 211 460 9660 - 260 270 460									4	33	695			
RX107, m /kg														
RX IEC S 100 112 132S/M 132ML 160 180 200 225 105 105 110 110 130 130 145 150 150 164 165			400	9000		200	2/0	400		Δ	M			
RX 105 105 110 110 130 130 145 150 1			IFC:			100	112	132S/M	13			180	200	225
RX NEMA s 182 184 213/215 - 254/256 284/286 324/326 364/368		Ì							1					
№ 1 105 105 105 - 125 125 145 145	RX		NEMA	-										
		ľ												
RXE: + 17 KO	RXF· + 1	7 ka		1 03		. 30						1	1	

R.. helical gear units

Selection tables for adapters for mounting IEC/NEMA motors (AM..)

8.1.2 R.. AM.. /Nm

1		nin ⁻¹ , M _{a m}						130 I
i	n_a	M _{a max G}	F _{Ra} 1)	φ _(/R)	1		AM	
	min ⁻¹	Nm	N	•	63	71	80	90
					a a	§ 2		
3.37	415	79	900	-	17	17	49	49
4.00	350	85	900	-	20	20	59	59
4.27	328	87	920	-	21	21	63	63
5.00	280	95	860	-	25	25	74	74
5.60	250	99	880	-	28	28	83	83
6.59	212	106	880	-	33	33	98	98
7.63	183	112	900	-	39	39	106	106
8.16	172	116	870	-	41	41	108	108
9.41	149	122	900	-	48	48	112	
10.13	138	122	1890	-	51	51	122	122
11.86	118	129	1980	-	60	60	129	129
13.28	105	130	2140	-	67	67	130	130
15.63	90	130	2290	-	80	80	130	130
18.08	77	130	2440	-	92	92	130	130
19.35	72	130	2510	-	99	99	130	130
22.32	63	130	2660	-	114	114	130	
26.09	54	130	2840	-	130	130		
28.37	49	130	2940	-	130	130		
					Ą	3		
24.47	57	130	2760	-	123	123	130	130
28.78	49	130	2950	-	130	130	130	130
32.47	43	130	3100	-	130	130	130	130
36.79	38	130	3260	-	130	130	130	130
39.25	36	130	3350	-	130	130	130	130
44.90	31	130	3530	-	130	130	130	130
48.17	29	130	3630	-	130	130	130	130
55.87	25	130	3840	-	130	130	130	
61.30	23	130	3980	-	130	130	130	130
69.47	20	130	4180	-	130	130	130	130
74.11	19	130	4230	-	130	130	130	130
84.78	17	130	4230	-	130	130	130	130
90.96	15	130	4230	-	130	130	130	130
105.49	13	130	4230	-	130	130	130	
123.91	11	130	4230	-	130	130		
135.09	10	130	4230	-	130	130		
R27, m /l	kg					1	AM	
	IE	С	s		63	71	80	90
			්	2	6.2	6.5	8.9	8.9
_			48	3	6.5	6.7	9.1	9.2
R	N	EMA	s		-	56	143	145
			-23	2	-	6.8	8.9	8.9
			48	,	-	7.1	9.1	9.2

R37, n _e = i	: 1400 m n _a	nin ⁻¹ , M _{a m}	F _{Ra} 1)	φ _(/R)			AM	200 Ni
•	min ⁻¹	Nm	' Ra N	Ψ(/R)	63	71	80	90
						2 2		
3.41	411	112	900	14	17	17	50	50
4.05	346	122	840	13	20	20	60	60
4.32	324	126	820	13	21	21	64	64
5.06	277	135	790	13	25	25	75	75
5.67	247	142	760	12	28	28	84	84
6.67	210	144	1000	12	34	34	99	99
7.97	176	156	1720	8	40	40	118	118
9.47	148	167	1760	8	48	48	140	140
10.11	138	170	1820	8	51	51	150	150
11.83	118	183	1810	8	60	60	175	175
13.25	106	190	1880	8	67	67	190	190
15.60	90	200	2010	8	80	80	200	200
18.05	78	200	2390	8	92	92	200	200
19.31	73	200	2570	7	99	99	200	200
22.27	63	200	2970	7	114	114	200	200
26.03	54	185	3860	7	134	134	200	
28.32	49	200	3690	7	144	144		
20.32	43	200	3090	ı		3		
		, ,			<u> </u>	3 53 3		
24.42	57	200	3240	9	122	122	200	200
28.73	49	200	3740	9	144	144	200	200
32.40	43	200	4120	9	163	163	200	200
36.72	38	200	4540	9	185	185	200	200
39.17	36	200	4760	9	198	198	200	200
44.81	31	200	4940	9	200	200	200	200
48.08	29	200	4940	9	200	200	200	200
55.76	25	200	4940	9	200	200	200	
61.18	23	200	4940	8	200	200	200	200
69.33	20	200	4940	8	200	200	200	200
73.96	19	200	4940	8	200	200	200	200
84.61	17	200	4940	8	200	200	200	200
90.77	15	200	4940	8	200	200	200	200
105.28	13	200	4940	8	200	200	200	
123.66	11	200	4940	8	200	200		
134.82	10	200	4940	8	200	200		
R37, m /l	kg						AM	
	IE	C	s		63	71	80	90
			ವಾಸಿ	2	12	12	15	15
			-288	3	12	13	15	15
R	NI	EMA	s			56	143	145
			-23		-	13	15	15
			28		-	13	15	15
RF: + 1.5	1		400				1.5	

29154650/FN - 03/2020

R47, n _e =	1400 m	nin¹, M _{a m}									300 Nr
i	n _a	M _{a max G}	F _{Ra} 1)	φ _(/R)				AM		,	
	min ⁻¹	Nm	N	•	63	71	80	90	100	112	132S/M
						45	2				
3.83	366	144	2080	11	19	19	56	56	144	144	144
4.34	323	146	2190	11	21	21	64	64	146	146	146
4.85	289	150	2280	10	24	24	71	71	150	150	150
5.64	248	155	2410	10	28	28	83	83	155	155	155
6.00	233	156	2470	10	30	30	88	88	156	156	156
6.96	201	159	2620	10	35	35	103	103	159	159	
7.76	180	163	2720	10	39	39	115	115	163	163	
8.01	175	205	2690	8	40	40	118	118	205	205	205
9.07	154	220	2780	8	45	45	134	134	220	220	220
10.15	138	230	2880	7	51	51	150	150	230	230	230
11.79	119	245	3020	7	59	59	174	174	245	245	245
12.54	112	250	3080	7	63	63	186	186	250	250	250
											250
14.56	96	265	3230	7	74	74	215	215	265	265	
16.22	86	275	3350	7	82	82	240	240	275	275	
17.89	78	290	3390	7	91	91	265	265			
19.27	73	295	3530	7	98	98	285	285	295		
21.81	64	300	3710	7	111	111	300	300			
23.28	60	300	3820	7	119	119	300	300			
26.74	52	300	4050	7	137	137	300				
31.12	45	220	4610	7	160	160					
33.79	41	240	4680	7	174	174					
						A.	3				
23.59	59	300	3840	8	116	116	300	300	300		
26.70	52	300	4050	8	132	132	300	300	300		
29.88	47	300	4240	8	149	149	300	300	300		
34.73	40	300	4520	8	173	173	300	300	300		
36.93	38	300	4630	8	185	185	300	300	300		
42.87	33	300	4930	8	215	215	300	300	300		
47.75	29	300	5140	8	240	240	300	300	300		1
52.69	27	300	5350	8	265	265	300	300			
56.73	25	300	5420	8	285	285	300	300	300		
64.21	22	300	5420	8	300	300	300	300			
68.54	20	300	5420	8	300	300	300	300			
76.23	18	300	5420	7	300	300	300	300			
84.90	16	300	5420	7	300	300	300	300			
93.68	15	300	5420	7	300	300	300	300			
	14	300		7			1	1			
100.86	12	300	5420	7	300	300	300	300			
114.17	11	300	5420	7	300	300	1	300			
121.87			5420	1	300	300	300	300			
139.99	10	300	5420	7	300	300	300				+
162.94	8.6	300	5420	7	300	300					
176.88 R47 , m /k	7.9	300	5420	7	300	300		AM			
1X47, III /F	(g IE	C			63	71	80	90	100	112	132S/M
	IE		s බුනී								
	-		-		16	16	18	19	23	23	30
R			48		17	17	19	19	24	24	31
	N	EMA	S		-	56	143	145	182	184	213/215
			43	2	-	17	18	19	22	22	28
	<u> </u>		48								

R57, n _e =	= 1400 m	nin ⁻¹ , M _{a m}	_{ax} /Nm								450 Nm
i	n _a	M _{a max G}	F _{Ra} 1)	φ _(/R)		ı	1	AM	1	1	1
	min ⁻¹	Nm	N	•	63	71	80	90	100	112	132S/M
						٩	2				
4.39	319	280	1900	10			64	64	179	179	280
5.05	277	305	1730	10	25	25	74	74	205	205	305
5.82	241	320	1820	10	29	29	86	86	235	235	320
6.41	218	335	1770	9	32	32	94	94	260	260	335
7.53	186	350	1950	9	38	38	111	111	305	305	350
7.97	176	355	2020	9	40	40	118	118	325	325	355
9.06	155	375	2010	9	46	46	134	134	355	365	
9.35	150	370	3180	7	46	46	137	137	370	370	370
10.79	130	390	3330	7	54	54	159	159	390	390	390
11.88	118	405	3430	7	59	59	175	175	405	405	405
13.95	100	430	3610	7	70	70	205	205	430	430	430
14.77	95	435	3690	7	74	74	215	215	435	435	435
16.79	83	450	3860	7	85	85	245	245	450	450	
18.60	75	450	4050	7	94	94	275	275	450	450	
21.93	64	450	4370	7	112	112	325	325	450		
24.99	56	450	4640	6	127	127	360	360			
26.31	53	450	4750	6	134	134	360	360			
						a gr	3				
26.97	52	450	4800	8	133	133	390	390	450	450	450
30.18	46	450	5040	8	150	150	440	440	450	450	450
35.07	40	450	5390	8	175	175	450	450	450	450	450
37.30	38	450	5530	8	186	186	450	450	450	450	450
43.30	32	450	5900	8	215	215	450	450	450	450	
48.23	29	450	6170	8	240	240	450	450	450	450	
53.22	26	450	6430	8	265	265	450	450			
57.29	24	450	6630	8	285	285	450	450	450		
64.85	22	450	6980	8	325	325	450	450			
69.23	20	450	7100	7	350	350	450	450			
80.55	17	450	7100	7	400	400	450	450	450	450	
89.71	16	450	7100	7	450	450	450	450	450	450	
98.99	14	450	7100	7	450	450	450	450			
106.58	13	450	7100	7	450	450	450	450	450		
120.63	12	450	7100	7	450	450	450	450			
128.77	11	450	7100	7	450	450	450	450			
147.92	9.5	450	7100	7	450	450	450				
172.17	8.1	450	7100	7	450	450					
186.89	7.5	450	7100	7	450	450					
R57, m /	kg							AM			
	IE	С	s		63	71	80	90	100	112	132S/M
			-23	2	21	21	23	23	28	28	35
_			48	3	22	22	24	24	29	29	36
R	N	EMA	s		-	56	143	145	182	184	213/215
			చ్చికి	2	-	22	23	23	27	27	33
			- 25°	3	-	22	24	24	28	28	34
RF: + 3.4	ka / RM	1: + 15 kg	_			ı	1	I	I	I .	

1		nin ⁻¹ , M _{am}		1 1				4.54			600 N
i	n _a	M _{a max G}	F _{Ra} 1)	φ _(/R)	00			AM	400	440	4000/84
	min ⁻¹	Nm	N		63	71	80	90	100	112	132S/M
						4	2				
4.29	326	270	5000	10			63	63	175	175	270
4.93	284	290	5210	9	24	24	72	72	200	200	290
5.70	246	310	5450	9	28	28	84	84	230	230	310
6.27	223	330	5590	9	31	31	92	92	250	255	330
7.36	190	370	5790	8	37	37	108	108	280	300	370
7.79	180	380	5830	8	39	39	115	115	290	315	380
8.70	161	440	5960	7			128	128	355	355	440
10.00	140	470	6220	7	49	49	147	147	405	405	470
11.54	121	500	6500	7	57	57	170	170	470	470	500
12.70	110	520	6640	6	63	63	187	187	510	520	520
14.91	94	550	6980	6	75	75	220	220	550	550	550
15.79	89	560	7130	6	79	79	230	230	560	560	560
17.95	78	590	7330	6	91	91	265	265	590	590	
19.89	70	600	7560	6	101	101	295	295	600	600	
23.44	60	560	8010	6	119	119	345	345	560		
26.72	52	540	8210	6	136	136	375	375			
28.13	50	540	8210	6	143	143	375	375			
						Q.	3				
28.83	49	520	8400	7	142	142	420	420	520	520	520
32.27	43	540	8210	7	160	160	470	470	540	540	540
37.50	37	570	7900	7	187	187	545	545	570	570	570
39.88	35	580	7790	7	199	199	580	580	580	580	580
46.29	30	600	7560	7	230	230	600	600	600	600	
51.56	27	600	7560	7	255	255	600	600	600	600	
56.89	25	600	7560	7	285	285	600	600			
61.26	23	600	7560	7	305	305	600	600	600		
69.75	20	600	7560	7	345	345	600	600	600	600	600
74.17	19	600	7560	7	370	370	600	600	600	600	600
86.11	16	600	7560	6	430	430	600	600	600	600	
95.91	15	600	7560	6	480	480	600	600	600	600	
105.83	13	600	7560	6	530	530	600	600			
113.94	12	600	7560	6	575	575	600	600	600		
128.97	11	600	7560	6	600	600	600	600			
137.67	10	600	7560	6	600	600	600	600			
158.14	8.9	600	7560	6	600	600	600				
184.07	7.6	600	7560	6	600	600					
199.81	7.0	600	7560	6	600	600					
R67, m /	kg							AM			
	IE	С	s		63	71	80	90	100	112	132S/M
			-28		28	28	30	30	35	35	42
_			48	3	28	29	31	31	36	36	43
R	N	EMA	s		-	56	143	145	182	184	213/215
			ವಿತಿ	2	-	28	30	30	34	34	39
	⊢		28		_	29	31	31	35	35	40

R77, n _e =	= 1400 n	nin ⁻¹ , M _{a m}	_{ax} /Nm									820 Nm
i	n _a	M _{a max G}	$F_{Ra}^{1)}$	φ _(/R)				Α	M			
	min ⁻¹	Nm	N	•	63	71	80	90	100	112	132S/M	132ML
						ď	3 2					
5.31	264	510	3990	8			77	77	215	215	475	475
5.99	234	540	3990	8			87	87	240	240	535	535
6.79	206	580	3850	8	33	33	99	99	275	275	580	580
7.74	181	610	3940	8	38	38	113	113	315	315	610	610
8.59	163	630	4110	7	42	42	126	126	350	350	630	
9.64	145	630	6300	7			141	141	390	390	630	630
10.88	129	660	6490	6			159	159	440	440	660	660
12.33	114	690	6740	6	60	60	181	181	500	500	690	690
14.05	100	720	7050	6	69	69	205	205	575	575	720	720
15.60	90	740	7390	6	77	77	225	225	635	635	740	
17.82	79	780	7620	6	89	89	260	260	730	730	780	
18.80	74	780	7980	6	94	94	275	275	770	770	780	
21.43	65	820	8250	6	108	108	315	315	820	820		
23.37	60	820	8870	6	118	118	345	345	820	820		
						ď	3 3					
25.23	55	780	10100	7			365	365	780	780	780	780
29.00	48	820	9920	7	141	141	420	420	820	820	820	820
33.47	42	820	9920	7	164	164	485	485	820	820	820	820
36.83	38	820	9920	7	181	181	535	535	820	820	820	
43.26	32	820	9920	7	210	210	630	630	820	820	820	
45.81	31	820	9920	7	225	225	665	665	820	820	820	
52.07	27	820	9920	7	255	255	760	760	820	820		
57.68	24	820	9920	7	285	285	820	820	820	820		
65.77	21	820	9920	7	320	320	820	820	820	820	820	
77.24	18	820	9920	6	380	380	820	820	820	820	820	
81.80	17	820	9920	6	405	405	820	820	820	820	820	
92.97	15	820	9920	6	460	460	820	820	820	820		
102.99	14	820	9920	6	510	510	820	820	820	820		
121.42	12	820	9920	6	605	605	820	820	820			
138.39	10	820	9920	6	690	690	820	820				
145.67	9.6	820	9920	6	725	725	820	820				
166.59	8.4	820	9920	6	820	820	820					
195.24	7.2	820	9920	6	820	820						
R77, m /					•				M		400000	
	IE	C	S		63	71	80	90	100	112	132S/M	132ML
	_		් දුන් ලක		33	34	36	36	40	40	47	47
R			- A		34	35	37	37	41	41	48	48
	N	EMA	S		-	56	143	145	182	184	213/215	-
	_		23		-	34	36	36	39	39	45	-
			48	3	-	35	37	37	40	40	46	-
RF: + 5.7	kg/RM	1: + 31 kg										

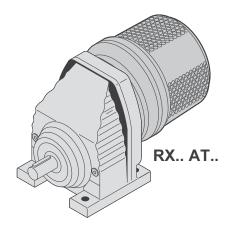
R87, n _e =		1 1	F _{Ra} 1)					^	M			1550 Nm
ı	n _a min ⁻¹	M _{a max G}	r _{Ra}	φ _(/R)	80	90	100	112	132S/M	132ML	160	180
							3 2		1020/111		100	100
5.30	264	910	1710	7			210	210	470	470	910	910
6.39	219	1020	970	7			255	255	570	570	1020	1020
7.13	196	1070	820	7	103	103	290	290	635	635	1070	1070
8.22	170	1160	225	7	119	119	330	330	735	735	1160	1160
9.14	153	1210	99	6	133	133	370	370	810	810	1210	1210
9.90	141	1180	3520	6			400	400	880	880	1180	1180
11.93	117	1230	4120	6			480	480	1060	1060	1230	1230
13.33	105	1280	4220	6	192	192	540	540	1190	1190	1280	1280
15.35	91	1340	4450	6	220	220	625	625	1340	1340	1340	1340
17.08	82	1390	4580	6	245	245	695	695	1390	1390	1390	1390
19.10	73	1440	4800	6	275	275	775	775	1440	1440	1440	
21.51	65	1500	4970	6	315	315	870	870	1500	1500	1500	
23.40	60	1550	5000	6	340	340	950	950	1550			
27.84	50	1550	6640	6	410	410	1140	1140	1550			
31.40	45	1550	7820	5	460	460	1280	1280				
34.40	41	1500	9480	5	505	505	1310	1300				
						Ş	3					
27.88	50	1500	7370	7	395	395	1120	1120	1500	1500	1500	1500
32.66	43	1550	8220	7	465	465	1310	1310	1550	1550	1550	1550
36.84	38	1550	9470	7	530	530	1480	1480	1550	1550	1550	1550
41.74	34	1550	10800	7	600	600	1550	1550	1550	1550	1550	
47.58	29	1550	12300	7	685	685	1550	1550	1550	1550	1550	
52.82	27	1550	13500	6	765	765	1550	1550	1550			
60.35	23	1550	15200	6	870	870	1550	1550	1550			
63.68	22	1550	15800	6	920	920	1550	1550	1550			
72.57	19	1550	16900	6	1050	1050	1550	1550				
81.92	17	1550	16900	6	1180	1180	1550	1550	1550	1550	1550	
93.38	15	1550	16900	6	1350	1350	1550	1550	1550	1550	1550	
103.65	14	1550	16900	6	1500	1500	1550	1550	1550			
118.43	12	1550	16900	6	1550	1550	1550	1550	1550			
124.97	11	1550	16900	6	1550	1550	1550	1550	1550			
142.41	9.8	1550	16900	6	1550	1550	1550	1550				
155.34	9.0	1550	16900	6	1550	1550	1550	1550				
181.77	7.7	1550	16900	6	1550	1550	1550					
205.71	6.8	1550	16900	6	1550	1550						
216.54	6.5	1550	16900	6	1550	1550						
246.54	5.7	1550	16900	6	1550							
R87, m /l	kg							Δ	M			
	IE	С	s		80	90	100	112	132S/M	132ML	160	180
			්	2	62	62	67	67	74	74	90	90
_			48	3	63	63	68	68	76	76	92	92
R	NI	EMA	s		143	145	182	184	213/215	-	254/256	284/286
			්නුයි	2	62	62	66	66	72	-	85	88
			28	3	63	63	67	67	74	-	87	89
RF: + 7 1	ka / RM	1: + 37 kg			1	I	I		1	I		

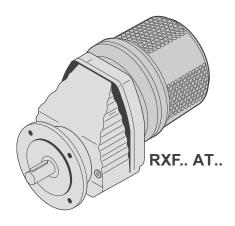
R97, n _e =	1400 n	nin ⁻¹ , M _{a m}	_{nax} /Nm								3000 Nm
i	n_a	M _{a max G}	F _{Ra} 1)	φ _(/R)		1	1	AM	ı	1	ı
	min ⁻¹	Nm	N	'	100	112	132S/M	132ML	160	180	200
						4	2				
4.50	311	1630	0	6			395	395	820	980	1630
5.20	269	1780	0	6			460	460	950	1140	1780
6.21	225	1890	0	6			550	550	1140	1360	1890
7.12	197	2000	0	6	285	285	630	630	1310	1560	2000
8.39	167	2030	0	6	335	335	745	745	1540	1850	2030
9.29	151	2030	0	6	375	375	820	820	1710	2030	2030
10.83	129	2090	3720	6			960	960	1990	2090	2090
12.39	113	2190	3850	6	495	495	1100	1100	2190	2190	2190
14.62	96	2300	4240	6	590	590	1300	1300	2300	2300	2300
16.17	87	2400	4130	6	655	655	1440	1440	2400	2400	2400
18.24	77	2500	4270	6	740	740	1620	1620	2500	2500	
20.14	70	2610	4110	5	810	810	1800	1800	2610	2610	
22.37	63	2720	4060	5	910	910	2000	2000	2720		
25.03	56	2830	4140	5	1020	1020	2230	2220	2830		
27.19	51	2560	8380	5	1110	1110	2280				
32.05	44	2560	10600	5	1300	1300	2340				
						a s					I
27.58	51	2670	7260	6	1090	1090	2420	2420	2670	2670	2670
33.25	42	2890	7160	6	1320	1320	2890	2890	2890	2890	2890
37.13	38	3000	7410	6	1480	1480	3000	3000	3000	3000	3000
42.78	33	3000	9480	6	1710	1710	3000	3000	3000	3000	3000
47.58	29	3000	11100	6	1910	1910	3000	3000	3000	3000	
53.21	26	3000	12900	6	2140	2140	3000	3000	3000	3000	
59.92	23	3000	14800	6	2410	2410	3000	3000	3000		
65.21	21	3000	16300	6	2630	2630	3000	3000	3000		
72.17	19	3000	18000	6	2880	2880	3000	3000	3000	3000	3000
83.15	17	3000	19800	6	3000	3000	3000	3000	3000	3000	3000
92.48	15	3000	19800	6	3000	3000	3000	3000	3000	3000	
103.44	14	3000	19800	6	3000	3000	3000	3000	3000	3000	
116.48	12	3000	19800	6	3000	3000	3000	3000	3000		
126.75	11	3000	19800	6	3000	3000	3000	3000	3000		
150.78	9.3	3000	19800	6	3000	3000	3000				
170.02	8.2	3000	19800	6	3000	3000	3000				
186.30	7.5	3000	19800	6	3000	3000					
216.28	6.5	3000	19800	6	3000	0000					
241.25	5.8	3000	19800	6	3000						
255.71	5.5	3000	19800	6							
289.74	4.8	3000	19800	6							
R97, m /l		3000	13000					AM			
., //	,a IE	С	s		100	112	132S/M	132ML	160	180	200
		-	- බුනී	2	105	105	115	115	130	130	145
			28		110	110	115	115	135	135	150
R	N	EMA	S		182	184	213/215	-	254/256	284/286	324/326
	IN	LIVIA	<u> </u>		105	105	110	-	125	130	145
	-		+ -				1				
		: + 68 kg	48	J	110	110	115	-	130	130	150

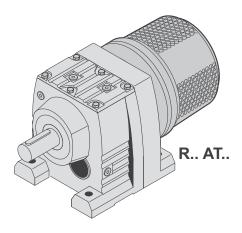
R107, n _e	= 1400	1 1		1								4300 Nm
i	n _a	M _{a max G}	F _{Ra} 1)	φ _(/R)		ı	1		M	1	I	I
	min ⁻¹	Nm	N	'	100	112	132S/M	132ML	160	180	200	225
						6	3 2					
4.922)	285	2900	11300	9				430	900	1070	2020	2020
5.82	241	2970	12100	9			510	510	1060	1270	2400	2400
6.66	210	2970	12800	9			585	585	1220	1460	2750	2750
7.86	178	2970	13800	9			695	695	1440	1720	2970	2970
8.56 ²⁾	164	4300	11300	7				750	1560	1870	3520	3520
10.13	138	4300	12400	7			890	890	1850	2220	4170	4170
11.59	121	4300	13300	7			1020	1020	2120	2540	4300	4300
13.66	102	4300	14400	7			1210	1210	2510	3000	4300	4300
15.65	89	4300	15400	7	625	625	1390	1390	2870	3440	4300	4300
18.21	77	4300	16600	7	730	730	1620	1620	3350	4010	4300	4300
20.07	70	4300	17300	7	810	810	1780	1780	3690	4300	4300	4300
22.62	62	4300	18300	7	910	910	2010	2010	4160	4300		
24.90	56	4300	19200	7	1010	1010	2220	2220	4300	4300		
27.58	51	4300	20100	7	1120	1120	2460	2460	4300			
30.77	45	4300	21100	7	1250	1250	2750	2750	4300			
						6	3 3					
29.49	47	4300	20700	7			2570	2570	4300	4300	4300	4300
35.26	40	4300	22400	7			3080	3080	4300	4300	4300	4300
40.37	35	4300	23800	7	1590	1590	3540	3540	4300	4300	4300	4300
47.63	29	4300	25500	7	1890	1890	4180	4180	4300	4300	4300	4300
52.68	27	4300	26600	7	2100	2100	4300	4300	4300	4300	4300	4300
59.41	24	4300	28000	7	2370	2370	4300	4300	4300	4300		
65.60	21	4300	29200	7	2630	2630	4300	4300	4300	4300		
72.88	19	4300	29500	7	2920	2920	4300	4300	4300			
78.57	18	4300	29500	7	3110	3110	4300	4300	4300	4300	4300	4300
92.70	15	4300	29500	7	3680	3680	4300	4300	4300	4300	4300	4300
102.53	14	4300	29500	7	4090	4090	4300	4300	4300	4300	4300	4300
115.63	12	4300	29500	7	4300	4300	4300	4300	4300	4300		
127.68	11	4300	29500	7	4300	4300	4300	4300	4300	4300		
141.83	9.9	4300	29500	7	4300	4300	4300	4300	4300			
158.68	8.8	4300	29500	7	4300	4300	4300	4300	4300			
172.34	8.1	4300	29500	7	4300	4300	4300					
203.16	6.9	4300	29500	7	4300	4300	4300					
229.95	6.1	4300	29500	7	4300	4300						
251.15	5.6	4300	29500	7	4300	4300						
R107, m									M			
	IE	C	S		100	112	132S/M	132ML	160	180	200	225
	<u> </u>		් වූජී		160	160	165	165	185	185	200	205
R			48		170	170	170	170	190	190	205	210
	NI	EMA	S		182	184	213/215	-	254/256	284/286	324/326	364/365
			28		160	160	160	-	180	180	200	200
			48	3	165	165	170	-	185	185	205	205
RF: + 6.0	kg / RM	1: + 94 kg										

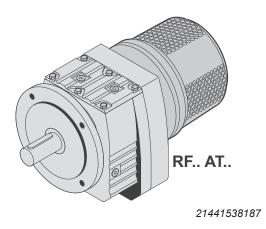
i	n _a		F _{Ra} 1)	φ _(/R)				A	M			6000 Ni
	min ⁻¹	Nm	N	• (11.)	100	112	132S/M	132ML	160	180	200	225
						,	AB 2					
5.55 ²⁾	252	3930	37600	8			Ī	485	1010	1210	2280	2280
6.56	213	3930	40200	8			575	575	1200	1430	2700	2700
7.51	186	3930	42400	8			660	660	1370	1640	3090	3090
8.85	158	3930	43000	8			780	780	1620	1940	3520	3520
8.96 ²⁾	156	5420	41400	7				785	1630	1960	3690	3690
10.59	132	5700	43000	6			930	930	1940	2320	4360	4360
12.12	116	5940	43000	6			1070	1070	2220	2660	5000	5000
14.29	98	6000	43000	6			1260	1260	2620	3140	5690	5690
16.37	86	6000	43000	6	655	655	1450	1450	3010	3600	5930	5930
19.04	74	6000	43000	6	765	765	1690	1690	3500	4190	6000	6000
20.98	67	6000	43000	6	840	840	1860	1860	3860	4600	6000	6000
23.65	59	6000	43000	6	950	950	2110	2110	4350	4720		
26.04	54	6000	43000	6	1050	1050	2320	2320	4800	4830		
28.84	49	6000	43000	6	1170	1170	2570	2570	4970			
32.18	44	6000	43000	6	1300	1300	2850	2850	4860			
						•	3					
30.84	45	5380	43000	7			2690	2690	5380	5380	5380	5380
36.88	38	5730	43000	7			3220	3220	5730	5730	5730	5730
42.22	33	6000	43000	7	1670	1670	3700	3700	6000	6000	6000	6000
49.81	28	6000	43000	7	1980	1980	4370	4370	6000	6000	6000	6000
55.09	25	6000	43000	7	2190	2190	4840	4840	6000	6000	6000	6000
62.13	23	6000	43000	7	2480	2480	5470	5470	6000	6000		
68.61	20	6000	43000	7	2750	2750	6000	6000	6000	6000		
76.21	18	6000	43000	7	3060	3060	6000	6000	6000			
82.17	17	6000	43000	6	3250	3250	6000	6000	6000	6000	6000	6000
85.26	16	6000	43000	7	3420	3420	6000	6000	6000			
96.95	14	6000	43000	6	3850	3850	6000	6000	6000	6000	6000	6000
07.23	13	6000	43000	6	4270	4270	6000	6000	6000	6000	6000	6000
20.92	12	6000	43000	6	4830	4830	6000	6000	6000	6000		
33.53	10	6000	43000	6	5350	5350	6000	6000	6000	6000		
48.33	9.4	6000	43000	6	5950	5950	6000	6000	6000			
65.95	8.4	6000	43000	6	6000	6000	6000	6000	6000			
80.23	7.8	6000	43000	6	6000	6000	6000					
212.46	6.6	6000	43000	6	6000	6000	6000					
240.48	5.8	6000	43000	6	6000	6000						
262.65	5.3	6000	43000	6	6000	6000						
127, m		^			400	440	4200/54		M 460	400	200	005
	IE	C	s	2	100 210	112 210	132S/M 210	132ML 210	160 230	180 230	200 245	225 250
	-		28		225	225	225	225	245	245	265	270
R	NI	EMA	S		182	184	213/215	-	254/256	284/286	324/326	364/36
			-බුනී	2	205	205	210	-	225	230	245	245
			28		225	225	225	_	240	245	260	260

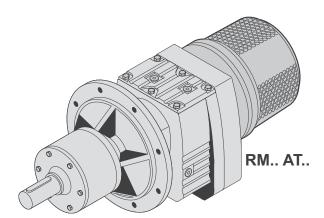
29154650/FN - 03/2020

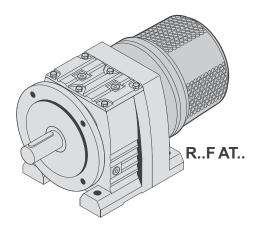


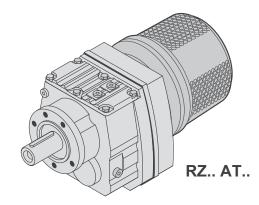

R137, n _e i	= 1400 n _a	min ⁻¹ , M _a	_{max} /Nm F _{Ra} 1)	(O			Δ	М	8000 Nm		
'	min ⁻¹	Nm	' Ra N	φ _(/R)	132S/M	132ML	160	180	200	225	
						A 2					
5.15	272	4600	34500	8				1120	2110	2110	
6.38	219	5110	35900	8		555	1160	1390	2620	2620	
7.59	184	5110	39000	8	665	665	1380	1660	3130	3130	
8.71	161	7840	27600	6				1900	3580	3580	
10.79	130	8000	31100	6		940	1960	2360	4440	4440	
12.83	109	8000	34700	6	1120	1120	2340	2810	5290	5290	
14.51	96	8000	37300	6	1280	1280	2660	3180	5980	5980	
16.80	83	8000	40600	6	1480	1480	3080	3690	6760	6760	
19.04	74	8000	43500	6	1680	1680	3500	4180	6970	6970	
22.00	64	8000	47100	6	1950	1950	4040	4840	7250	7250	
24.12	58	8000	49400	6	2140	2140	4440	5310	7400	7400	
29.57	47	7780	53900	6	2630	2630	5450	5610			
,						A 3					
27.83	50	7680	54100	6		2400	5020	6010	7680	7680	
32.91	43	8000	53400	6	2860	2860	5950	7120	8000	8000	
37.65	37	8000	53400	6	3280	3280	6820	8000	8000	8000	
44.39	32	8000	53400	6	3880	3880	8000	8000	8000	8000	
50.86	28	8000	53400	6	4450	4450	8000	8000	8000	8000	
59.17	24	8000	53400	6	5190	5190	8000	8000	8000	8000	
65.20	21	8000	53400	6	5730	5730	8000	8000	8000	8000	
73.49	19	8000	53400	6	6470	6470	8000	8000			
80.91	17	8000	53400	6	7130	7130	8000	8000			
88.70	16	8000	53400	6	7770	7770	8000	8000	8000	8000	
103.20	14	8000	53400	6	8000	8000	8000	8000	8000	8000	
113.72	12	8000	53400	6	8000	8000	8000	8000	8000	8000	
128.18	11	8000	53400	6	8000	8000	8000	8000			
141.12	9.9	8000	53400	6	8000	8000	8000	8000			
156.31	9.0	8000	53400	6	8000	8000	8000				
174.40	8.0	8000	53400	6	8000	8000	8000				
188.45	7.4	8000	53400	6	8000						
222.60	6.3	8000	53400	6	8000						
R137, m	/kg		,				Α	М			
	IE	С	s		132S/M	132ML	160	180	200	225	
			-බුනී	2	245	245	265	265	280	285	
R			48	3	255	255	275	275	290	295	
IX	N	EMA	s		213/215	-	254/256	284/286	324/326	364/365	
			්	2	245	-	260	260	280	280	
			28	3	255	-	270	270	290	290	


R147, n _e = 1400 min ⁻¹ , M _{a max} /Nm 13000 Nr												
i	n _a	M _{a max G}	$F_{Ra}^{1)}$	φ _(/R)				AM				
	min ⁻¹	Nm	N	•	132ML	160	180	200	225	250	280	
						4	2					
5.00	280	8670	49300	8				2050	2050	3200	3200	
5.89	238	8670	53200	8			1280	2420	2420	3480	3780	
7.25	193	8670	58400	8	630	1320	1580	2980	2980	3790	4650	
8.26	169	13000	49900	6				3390	3390	5290	5290	
9.74	144	13000	54400	6			2120	4000	4000	5760	6250	
11.99	117	13000	60400	5	1040	2180	2620	4930	4930	6270	7700	
13.91	101	12600	63400	5	1220	2540	3040	5730	5730	6510	8940	
15.64	90	13000	62700	5	1370	2860	3430	6450	6450	10000	10000	
18.04	78	10500	67000	5	1590	3310	3960	7330	7330	10500	10500	
20.44	68	12000	64600	5	1810	3750	4490	7550	7550	12000	12000	
						ą,	3					
24.19	58	11900	64700	6			5210	9820	9820	11900	11900	
29.95	47	13000	62700	6	2580	5400	6470	12100	12100	13000	13000	
35.64	39	13000	62700	6	3090	6440	7710	13000	13000	13000	13000	
40.29	35	13000	62700	6	3500	7290	8730	13000	13000	13000	13000	
46.65	30	13000	62700	6	4070	8460	10100	13000	13000	13000	13000	
52.87	26	13000	62700	6	4630	9600	11400	13000	13000	13000	13000	
61.09	23	13000	62700	6	5360	11100	13000	13000	13000			
66.99	21	13000	62700	6	5890	12100	13000	13000	13000			
72.09	19	13000	62700	6	6270	13000	13000	13000	13000	13000	13000	
83.47	17	13000	62700	6	7290	13000	13000	13000	13000	13000	13000	
94.60	15	13000	62700	6	8280	13000	13000	13000	13000	13000	13000	
109.31	13	13000	62700	5	9600	13000	13000	13000	13000			
119.86	12	13000	62700	5	10500	13000	13000	13000	13000			
146.91	9.5	13000	62700	5	12900	13000	13000					
163.31	8.6	13000	62700	5	13000	13000						
R147, m	_						1	AM			1	
	IE	C	S		132ML	160	180	200	225	250	280	
	_		433		380	390	390	405	410	445	445	
R			48	3	390	405	405	420	425	455	455	
``	N	EMA	S		-	254/256	284/286	324/326	364/365	-	-	
			්		-	385	390	405	405	-	-	
			433	3	-	400	400	415	415	-	-	
RF: + 8.3	3 kg / RN	1: + 175 k	g									


i l	= 1400 n _a	min ⁻¹ , M _a M _{a max G}	F _{Ra} 1)	0	AM							
•	min ⁻¹	Nm	' Ra N	φ _(/R)	160	180	200	225	250	280		
						<i>₽</i> 2		-				
10.24	137	18500	77500	5		9	4190	4190	6560	6560		
11.99	117	19000	83300	5		2610	4920	4920	7100	7690		
14.48	97	19700	89300	5	2640	3160	5950	5950	7560	9290		
16.98	82	20000	95400	5	3100	3720	6990	6990	7940	10900		
19.03	74	20000	100600	5	3480	4170	7850	7850	12200	12200		
21.85	64	20000	107100	5	4000	4790	8790	8790	14000	14000		
24.57	57	16400	120000	5	4510	5400	8990	8990	15800	15800		
30.71	46	11700	120000	5	5650	6760	9410	9410				
37.74	37	10200	120000	5	6940	7150						
46.00	30	9460	120000	5	7350							
						3						
23.71	59	18800	114400	6			9610	9610	15000	15000		
27.96	50	20000	119500	6		6010	11300	11300	16200	17700		
34.41	41	20000	120000	6	6200	7430	13900	13900	17600	20000		
39.92	35	20000	120000	6	7210	8640	16200	16200	18300	20000		
44.87	31	20000	120000	6	8120	9720	18200	18200	20000	20000		
51.76	27	20000	120000	6	9380	11200	20000	20000	20000	20000		
58.65	24	20000	120000	6	10600	12700	20000	20000	20000	20000		
67.40	21	20000	120000	6	12200	14600	20000	20000				
73.70	19	20000	120000	6	13300	16000	20000	20000				
82.91	17	20000	120000	5	14900	17900	20000	20000	20000	20000		
93.19	15	20000	120000	5	16800	20000	20000	20000	20000	20000		
107.49	13	20000	120000	5	19400	20000	20000	20000	20000	20000		
121.81	11	20000	120000	5	20000	20000	20000	20000	20000	20000		
139.98	10	20000	120000	5	20000	20000	20000	20000				
153.07	9.1	20000	120000	5	20000	20000	20000	20000				
186.93	7.5	20000	120000	5	20000	20000						
229.71	6.1	20000	120000	5	20000							
R167, m	/kg						А	М				
	IE	С	s		160	180	200	225	250	280		
			<i>-</i> ఫైకి	2	650	650	670	670	700	700		
_			48	3	650	650	670	680	700	700		
R	N	EMA	s		254/256	284/286	324/326	364/365	-	-		
			చ్చికి	2	640	640	660	660	-	-		
			28	3	650	650	670	670	-	_		


Selection tables for adapters with hydraulic start-up coupling (AT..) 8.2



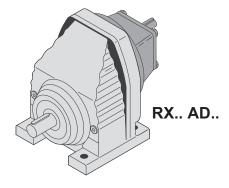


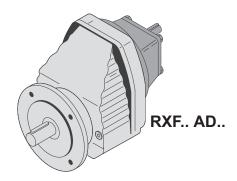
21441540619

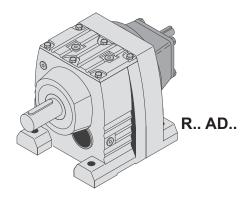
8.2.1 R..AT/DRN..4

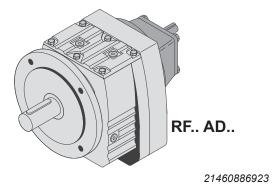
4		P _{Mot}		-63-		Sn	k [□] ≯
		kW				%	1, ,
	DRN71M4	0.37	AT311	T11	0.42	12	
	DRN80MK4	0.55	AT312	T11D	0.55	11	
	DRN80M4	0.75	AT312	T11D	0.7	11	
R67	DRN90S4	1.1	AT312	T11D	0.72	15	
	DRN90L4	1.5	AT321	T21	0.85	9	
	DRN100LS4	2.2	AT321	T21	0.9	13	
	DRN100L4	3	AT322	T21D	1.53	11	
	DRN80MK4	0.55	AT312	T11D	0.55	11	
	DRN80M4	0.75	AT312	T11D	0.7	11	
	DRN90S4	1.1	AT312	T11D	0.72	15	
R77	DRN90L4	1.5	AT421	T21	0.85	9	
	DRN100LS4	2.2	AT421	T21	0.9	13	(→ 🖺 268)
	DRN100L4	3	AT422	T21D	1.53	11	(→ ■ 200)
	DRN112M4	4	AT422	T21D	1.6	12	
	DRN90S4	1.1	AT312	T11D	0.72	15	
	DRN90L4	1.5	AT421	T21	0.85	9	
	DRN100LS4	2.2	AT421	T21	0.9	13	
	DRN100L4	3	AT422	T21D	1.53	11	
R87	DRN112M4	4	AT422	T21D	1.6	12	
KO1	DRN132S4	5.5	AT541	T41	2	6	
	DRN132M4	7.5	AT541	T41	2.4	8	
	DRN132L4	9.2	AT541	T41	2.5	10	
	DRN160M4	11	AT541	T41	2.5	13	
	DRN160L4	15	AT542	T41D	4.2	8	

		P _{Mot}		+}-		Sn %	K
	DRN90S4	1.1	AT312	T11D	0.72	15	
	DRN90L4	1.5	AT421	T21	0.85	9	
	DRN100LS4	2.2	AT421	T21	0.9	13	
	DRN100L4	3	AT422	T21D	1.53	11	
	DRN112M4	4	AT422	T21D	1.6	12	
R97	DRN132S4	5.5	AT541	T41	2	6	
IX91	DRN132M4	7.5	AT541	T41	2.4	8	
	DRN132L4	9.2	AT541	T41	2.5	10	
	DRN160M4	11	AT541	T41	2.5	13	
	DRN160L4	15	AT542	T41D	4.2	8	
	DRN180M4	18.5	AT542	T41D	4.3	10	
	DRN180L4	22	AT542	T41D	4.3	14	
	DRN100LS4	2.2	AT421	T21	0.9	13	
	DRN100L4	3	AT422	T21D	1.53	11	
	DRN112M4	4	AT422	T21D	1.6	12	
	DRN132S4	5.5	AT541	T41	2	6	(→ 🖺 268)
R107	DRN132M4	7.5	AT541	T41	2.4	8	(→ ≡ 200)
KIUI	DRN132L4	9.2	AT541	T41	2.5	10	
	DRN160M4	11	AT541	T41	2.5	13	
	DRN160L4	15	AT542	T41D	4.2	8	
	DRN180M4	18.5	AT542	T41D	4.3	10	
	DRN180L4	22	AT542	T41D	4.3	14	
	DRN100LS4	2.2	AT421	T21	0.9	13	
	DRN100L4	3	AT422	T21D	1.53	11	
	DRN112M4	4	AT422	T21D	1.6	12	
	DRN132S4	5.5	AT541	T41	2	6	
R127	DRN132M4	7.5	AT541	T41	2.4	8	
KIZI	DRN132L4	9.2	AT541	T41	2.5	10	
	DRN160M4	11	AT541	T41	2.5	13	
	DRN160L4	15	AT542	T41D	4.2	8	
	DRN180M4	18.5	AT542	T41D	4.3	10	
	DRN180L4	22	AT542	T41D	4.3	14	

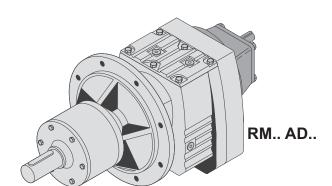

		P _{Mot}		-13-		Sn %	K
	DRN100LS4	2.2	AT421	T21	0.9	13	
	DRN100L4	3	AT422	T21D	1.53	11	
	DRN112M4	4	AT422	T21D	1.6	12	
	DRN132S4	5.5	AT541	T41	2	6	
R137	DRN132M4	7.5	AT541	T41	2.4	8	
KISI	DRN132L4	9.2	AT541	T41	2.5	10	
	DRN160M4	11	AT541	T41	2.5	13	
	DRN160L4	15	AT542	T41D	4.2	8	
	DRN180M4	18.5	AT542	T41D	4.3	10	
	DRN180L4	22	AT542	T41D	4.3	14	(→ 🖺 268)
	DRN132M4	7.5	AT541	T41	2.4	8	(→ ■ 200)
	DRN132L4	9.2	AT541	T41	2.5	10	
R147	DRN160M4	11	AT541	T41	2.5	13	
K147	DRN160L4	15	AT542	T41D	4.2	8	
	DRN180M4	18.5	AT542	T41D	4.3	10	
	DRN180L4	22	AT542	T41D	4.3	14	
	DRN160M4	11	AT541	T41	2.5	13	
R167	DRN160L4	15	AT542	T41D	4.2	8	
K 10/	DRN180M4	18.5	AT542	T41D	4.3	10	
	DRN180L4	22	AT542	T41D	4.3	14	

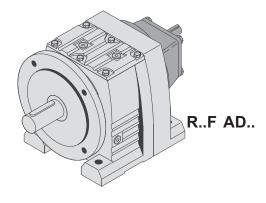

8.2.2 R..AT/DRN..2

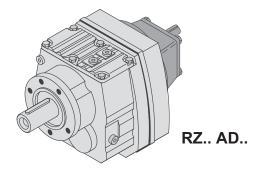

		P _{Mot}		-\$}-		Sn	K ^{III} >
	DRN71M2	0.55	AT311	T11	0.19	3	
	DRN80MS2	0.75	AT311	T11	0.22	4.5	
	DRN80M2	1.1	AT311	T11	0.27	6	
R67	DRN90S2	1.5	AT311	T11	0.29	8.5	
	DRN90L2	2.2	AT311	T11	0.31	11.5	
	DRN100LM2	3	AT311	T11	0.4	12	
	DRN112M2	4	AT312	T11D	0.52	10	
	DRN71M2	0.55	AT311	T11	0.19	3	
	DRN80MS2	0.75	AT311	T11	0.22	4.5	
	DRN80M2	1.1	AT311	T11	0.27	6	
	DRN90S2	1.5	AT311	T11	0.29	8.5	
R77	DRN90L2	2.2	AT311	T11	0.31	11.5	
	DRN100LM2	3	AT311	T11	0.4	12	
	DRN112M2	4	AT312	T11D	0.52	10	
	DRN132S2	5.5	AT321	T11D	0.58	12	
	DRN132S2	5.5	AT421	T21	0.6	8	(→ 🗎 268)
	DRN90S2	1.5	AT311	T11	0.29	8.5	(/ = 200)
	DRN90L2	2.2	AT311	T11	0.31	11.5	
R87	DRN100LM2	3	AT311	T11	0.4	12	
KO1	DRN112M2	4	AT312	T11D	0.52	10	
	DRN132S2	5.5	AT321	T11D	0.58	12	
	DRN132S2	5.5	AT421	T21	0.6	8	
	DRN90S2	1.5	AT311	T11	0.29	8.5	
	DRN90L2	2.2	AT311	T11	0.31	11.5	
R97	DRN100LM2	3	AT311	T11	0.4	12	
K91	DRN112M2	4	AT312	T11D	0.52	10	
	DRN132S2	5.5	AT321	T11D	0.58	12	
	DRN132S2	5.5	AT421	T21	0.6	8	
	DRN100LM2	3	AT311	T11	0.4	12	
D407	DRN112M2	4	AT312	T11D	0.52	10	
R107	DRN132S2	5.5	AT321	T11D	0.58	12	
	DRN132S2	5.5	AT421	T21	0.6	8	


		P _{Mot}		- ;}-		Sn	
	DRN100LM2	3	AT311	T11	0.4	12	
R127	DRN112M2	4	AT312	T11D	0.52	10	
KIZI	DRN132S2	5.5	AT321	T11D	0.58	12	(→ 🖺 268)
	DRN132S2	5.5	AT421	T21	0.6	8	
R137	DRN132S2	5.5	AT421	T21	0.6	8	

8.3 Selection tables for input shaft assembly (AD..)







21460889355

RX57 AD	RX57 AD , n _e = 1400 min ⁻¹											69 Nm
i	n _a min ⁻¹	M _{amax} Nm	P _e kW	F _{Ra} ¹⁾ N	F _{Re} N	$\phi_{\text{(/R)}}$	\triangle				m kg	k □ }
5.50*	255	37	1.0	3120	515	-	-					
5.07	276	34	1.0	3050	645	-	-					
4.35	322	61	2.1	2690	1110	-	-					
3.79	369	58	2.3	2560	1130	-	-	RX	57	AD2	13	274
3.55*	394	55	2.3	2520	1150	-	-	RXF	57	AD2	15	274
3.14	446	65	3.1	2320	990	-	-					
2.91	481	49	2.5	2370	1190	-	-					
2.64*	530	69	3.9	1810	880	-	-					
2.37	591	69	4.4	1500	1860	-	-					
2.04	686	69	5.1	1070	1810	-	-					
1.92*	729	69	5.4	880	1780	-	-	RX	57	AD3	16	274
1.65	847	69	6.3	430	1720	-	-	RXF	57	AD3	18	274
1.48	948	68	6.9	112	1660	-	-					
1.30	1075	63	7.2	132	1710	-	-					

RX67 AD) , n _e = 14	400 min ⁻¹									134 Nm
i	n _a min ⁻¹	M _{amax} Nm	P _e kW	F _{Ra} 1) N	F _{Re}	$\phi_{\text{(/R)}}$	\triangle		-	m kg	k [⊞] ≯
6.07	231	41	1.0	4020	630	-	-				
5.18	270	75	2.2	3580	1090	-	-	RX 67	AD2	15	274
4.53	309	71	2.4	3420	1120	-	-	RXF 67	AD2	19	274
4.30*	326	69	2.4	3370	1140	-	-	TOXI O	ADZ	10	217
3.77	371	87	3.5	3090	880	-	-				
3.20*	438	100	4.7	2800	1700	-	-				
2.89	485	105	5.5	2640	1610	-	-				
2.54	551	118	7.0	2000	1400	-	-				
2.40*	583	123	7.7	1530	1300	-	-	RX 67	AD3	19	274
2.04	685	114	8.3	1260	1310	-	-	RXF 67	AD3	23	274
1.86	754	108	8.7	1180	1340	-	-				
1.61	870	99	9.2	1080	1380	-	-				
1.40*	1000	90	9.6	1030	1420	-	-				

RX77 AD	RX77 AD , n _e = 1400 min ⁻¹											
i	n _a min ⁻¹	M _{amax} Nm	P _e kW	F _{Ra} ¹⁾ N	F _{Re} N	$\phi_{\text{(/R)}}$	\triangle			D	m kg	KEN
8.00*	175	54	1.1	6350	520	-	-					
7.47	188	50	1.0	6220	655	-	-	RX	77	AD2	25	274
6.41	218	101	2.4	5610	1050	-	-	RXF	77	AD2 AD2	25 27	274 274
5.63	249	107	2.9	5320	970	-	-	IXAL	11	ADZ	21	214
5.35*	262	101	2.9	5250	1020	-	-					
4.73	296	123	3.9	4900	1800	-	-	RX	77	ADS	20	274
4.04*	347	143	5.3	4500	1580	-	-	RXF	77	AD3 AD3	29 31	274 274
3.70	378	143	5.8	4350	1560	-	-	KAF	11	ADS	31	2/4
3.25*	431	182	8.4	3200	3160	_	-					
3.08*	455	193	9.4	2560	3040	-	-					
2.70	519	215	11.9	1110	2780	-	-					
2.43	576	215	13.2	510	2670	-	-	RX	77	AD4	35	274
2.13	657	200	14.0	435	2720	-	-	RXF	77	AD4	37	274
1.88*	745	187	14.9	335	2750	-	-					
1.67	840	173	15.5	315	2800	-	-					
1.42	984	155	16.3	315	2870	-	-					

RX87 AD) , n _e = 14	100 min ⁻¹									405 Nm
i	n _a min ⁻¹	M _{amax} Nm	P _e kW	F _{Ra} 1) N	F _{Re} N	$\phi_{\text{(/R)}}$	\triangle			m kg	k □ }
8.65	162	139	2.4	7890	1070	_	-	DV 07	4 D2	44	074
7.63	183	145	2.9	7510	1020	-	-		AD2	41	274
7.20*	194	136	2.9	7390	1060	-	-	RXF 87	AD2	46	274
6.45	217	192	4.5	6850	1640	-	-	DV 05	4.00	4.5	07.4
5.56*	252	225	6.1	6320	1410	-	-		AD3	45	274
5.07	276	215	6.4	6140	1440	-	-	RXF 87	AD3	50	274

0	
0	

RX87 AD) , n _e = 14	100 min ⁻¹									405 Nm
i	n _a min ⁻¹	M _{amax} Nm	P _e kW	F _{Ra} ¹⁾ N	F _{Re} N	φ _(/R)	\triangle			m kg	k⊞≯
4.50*	311	290	9.7	5500	3010	-	-	RX 8	7 AD4	52	274
3.78	370	305	12.1	5030	2850	-	-	RXF 8	7 AD4	56	274
3.48	403	405	17.4	2730	5330	-	-				
3.09	454	405	19.6	1950	5250	-	-				
2.76*	507	405	22	1200	5160	-	-				
2.48	564	405	24	470	5060	-	-	RX 8	7 AD5	66	274
2.15	650	385	27	42	5050	-	-	RXF 8	7 AD5	71	274
1.93	726	355	28	185	5150	-	-				
1.60*	875	315	29	74	5230	-	-				
1.39	1005	290	31	74	5310	-	-				

RX97 AD) , n _e = 14	400 min ⁻¹									595 Nm
i	n _a min ⁻¹	M _{amax} Nm	P _e kW	F _{Ra} ¹⁾ N	F _{Re} N	$\phi_{\text{(/R)}}$	\triangle)	m kg	KEN
8.23 7.16* 6.56	170 196 214	225 260 300	4.2 5.5 6.9	9560 8950 8500	1710 1520 1260	- - -	- - -	RX 97 RXF 97	AD3 AD3	70 78	274 274
5.79 4.91	242 285	420 395	10.9 12.1	7630 7220	2770 2820	-	-	RX 97 RXF 97	AD4 AD4	75 84	274 274
4.52 4.04 3.64* 3.30 2.92 2.64 2.24* 1.96 1.64	309 346 385 425 479 530 625 716 856	595 595 595 595 595 595 595 595 570 505	19.7 22 24 27 30 34 40 43 46	6180 5380 4530 3730 2810 1980 495 19 51	4980 4900 4810 4730 4620 4510 4280 4260 4390	-	- - - - - - -	RX 97 RXF 97	AD5 AD5	92 100	274 274
1.42	988	455	48	132	7450	-	-	RX 97 RXF 97	AD6 AD6	105 115	274 274

RX107 A	D , n _e = '	1400 min ⁻¹									830 Nm
i	n _a min ⁻¹	M _{amax} Nm	P _e kW	F _{Ra} ¹⁾ N	F _{Re}	$\phi_{\text{(/R)}}$	\triangle			m kg	KEN
6.63*	211 250	460	10.4	9700 9080	2710 2660	-	-	RX 107 RXF 107	AD4 AD4	110 125	274 274
5.61		455	12.2			-	<u>-</u>	KAF 107	AD4	125	2/4
5.19	270	695	20	7850	4730	-	-				
4.65	301	695	22	7450	4660	-	-	RX 107	AD5	125	274
4.20*	333	830	30	6420	3800	-	-	RXF 107	AD5	140	274
3.81	367	830	32	5550	3610	-	-	IXIT IVI	ADS	140	214
3.38	414	830	37	4490	3360	-	-				
3.07	456	830	40	3600	6560	-	-				
2.64*	530	830	47	2160	6350	-	-				
2.30	608	830	54	900	6150	-	-	RX 107	AD6	135	274
1.95	716	730	56	1260	6410	-	-	RXF 107	AD6	155	274
1.71	820	640	56	1840	6700	-	-				
1.44	969	540	56	2610	7070	-	-				

R27 AD	, n _e = 140	0 min ⁻¹										130 Nm
i	n _a min ⁻¹	M _{amax} Nm	P _e kW	F _{Ra} ¹⁾ N	F _{Re} N	$\phi_{\text{(/R)}}$	\triangle			Þ	m kg	KEN
135.09	10	130	0.17	4230	750	-	-					
123.91	11	130	0.18	4230	750	-	-					
105.49	13	130	0.21	4230	745	-	-					
90.96	15	130	0.24	4230	740	-	-					
84.78	17	130	0.26	4230	740	-	-					
74.11	19	130	0.29	4230	735	-	-					
69.47	20	130	0.31	4180	735	-	-					
61.30	23	130	0.35	3980	725	-	-	R	27	AD1	6.0	274
55.87	25	130	0.38	3840	565	-	-	RF	27	AD1	5.9	274
48.17	29	130	0.43	3630	550	-	-					
44.90	31	130	0.47	3530	540	-	-					
39.25	36	130	0.53	3350	520	-	-					
36.79	38	130	0.56	3260	505	-	-					
32.47	43	130	0.64	3100	485	-	-					
28.78	49	130	0.72	2950	460	-	-					
24.47	57	130	0.84	2760	425	-	-					
28.37	49	130	0.72	2940	1080	-	-					
26.09	54	130	0.78	2840	1060	-	-					
22.32	63	130	0.91	2660	1020	-	-					
19.35	72	130	1.0	2510	1550	-	-					
18.08	77	130	1.1	2440	1540	-	-					
15.63	90	130	1.3	2290	1520	-	-					
13.28*	105	130	1.5	2140	1510	-	-					
11.86	118	129	1.7	1980	1490	-	-					
10.13	138	122	1.9	1890	1490	-	-	R	27	AD2	6.9	274
9.41	149	122	2.0	900	1150	-	-	RF	27	AD2	6.8	274
8.16	172	116	2.2	870	1160	-	-					
7.63*	184	112	2.2	900	1170	-	-					
6.59	212	106	2.5	880	1170	-	-					
5.60*	250	99	2.7	880	1190	-	-					
5.00*	280	95	2.9	860	1180	-	-					
4.27	328	87	3.1	920	1200	-	-					
4.00*	350	85	3.2	900	1200	-	-					
3.37	415	79	3.6	900	1190	-	-					

R37 AD	, n _e = 140	00 min ⁻¹										200 Nm
i	n _a min ⁻¹	M _{amax} Nm	P _e kW	F _{Ra} 1) N	F _{Re} N	$\phi_{\text{(/R)}}$	\triangle			Þ	m kg	KEN
134.82	10	200	0.25	4940	675	8	-					
123.66	11	200	0.27	4940	665	8	-					
105.28	13	200	0.31	4940	655	8	-					
90.77	15	200	0.36	4940	640	8	-	R	37	AD1	12	274
84.61	17	200	0.38	4940	635	8	-	RF	37 37	AD1	13	274 274
73.96	19	200	0.44	4940	615	8	-	KF	31	ADI	13	214
69.33	20	200	0.47	4940	605	8	-					
61.18	23	200	0.53	4940	590	8	-					
55.76	25	200	0.57	4940	355	9	-					
48.08	29	200	0.66	4940	1510	9	_					
44.81	31	200	0.71	4940	1490	9	-					
39.17	36	200	0.81	4760	1460	9	-	_	27	400	40	074
36.72	38	200	0.86	4540	1440	9 9	-	R	37	AD2	13	274
32.40	43	200	0.97	4120	1390	9	-	RF	37	AD2	14	274
28.73	49	200	1.1	3740	1650	9	-					
24.42	57	200	1.3	3240	1630	9	-					

R37 AD	, n _e = 140	00 min ⁻¹										200 Nm
i	n _a min ⁻¹	M _{amax} Nm	P _e kW	F _{Ra} ¹⁾ N	F _{Re} N	$\phi_{\text{(/R)}}$	\triangle			 =	m kg	KEEN
28.32	49	189	1.0	4000	490	7	-			'		
26.03	54	173	1.0	4180	620	7	-					
22.27	63	200	1.4	2970	1380	7	-					
19.31	73	200	1.6	2570	1360	7	-					
18.05	78	200	1.7	2390	1350	8	-					
15.60	90	200	2.0	2010	1320	8	-					
13.25	106	190	2.2	1880	1320	8	-					
11.83	118	183	2.4	1810	1320	8	-	R	37	AD2	13	274
10.11	139	170	2.6	1820	1330	8	-	RF	37 37	AD2 AD2	14	274 274
9.47	148	167	2.7	1760	1320	8	-	KF	31	ADZ	14	214
7.97	176	156	3.0	1720	1310	8	-					
6.67	210	144	3.3	1000	920	12	-					
5.67	247	142	3.8	760	890	12	-					
5.06	277	135	4.0	790	890	13	-					
4.32	324	126	4.4	820	900	13	-					
4.05	346	121	4.5	880	910	13	-					
3.41	411	107	4.8	1070	950	14	-					

R47 AD	, n _e = 140	00 min ⁻¹										300 Nm
i	n _a min ⁻¹	M _{amax} Nm	P _e kW	F _{Ra} ¹⁾ N	F _{Re} N	$\phi_{\text{(/R)}}$	\triangle			Þ	m kg	KEH
176.88	7.9	300	0.29	5420	1790	7	-					
162.94	8.6	300	0.31	5420	1780	7	-					
139.99	10	300	0.36	5420	1780	7	-					
121.87	11	300	0.41	5420	1780	7	-					
114.17 100.86	12 14	300 300	0.43 0.49	5420 5420	1770 1770	7 7	-					
93.68	15	300	0.49	5420	1760	7	-					
84.90	16	300	0.58	5420	1760	7	_					
76.23	18	300	0.64	5420	1760	7	_					
68.54	20	300	0.70	5420	1450	8	-	R	47	AD2	17	274
64.21	22	300	0.74	5420	1440	8	-	RF	47	AD2	17	274
56.73	25	300	0.84	5420	1410	8	-					
52.69	27	300	0.90	5350	1380	8	-					
47.75	29	300	0.99	5140	1360	8	-					
42.87	33	300	1.1	4930	1640	8	-					
36.93	38	300	1.3	4630	1620	8	-					
34.73	40	300	1.4	4520	1620	8	-					
29.88	47	300	1.6	4240	1600	8	-					
26.70 23.59	52 59	300 300	1.8 2.0	4050 3840	1580 1570	8 8	-					
33.79	41	225	1.0	4740	525	7	-					
31.12	45	205	1.0	4660	670	7	-					
26.74	52	300	1.7	4050 3820	1270	7	-					
23.28 21.81	60 64	300 300	2.0 2.1	3020 3710	1250 1240	7 7	-					
19.27	73	295	2.3	3530	1230	7	-					
17.89	78	290	2.5	3390	1220	7	_					
16.22	86	275	2.6	3350	1240	7	_					
14.56	96	265	2.8	3230	1240	7	_					
12.54	112	250	3.0	3080	1240	7	-	R	47	AD2	16	274
11.79	119	245	3.2	3020	1240	7	-	RF	47	AD2	17	274
10.15	138	230	3.5	2880	1240	7	-					
9.07	154	220	3.7	2780	1230	8	-					
8.01	175	205	3.9	2690	1250	8	-					
7.76*	181	163	3.2	2720	1080	10	-					
6.96	201	159	3.5	2620	1070	10	-					
6.00	233	156	4.0	2470	1040	10	-					
5.64*	248	155	4.2	2410	1020	10	-					
4.85	288	150 146	4.7 5.1	2280	1000	10	-					
4.34	323	146	5.1	2190	970	11	-					
3.83	365	144	5.7	2080	1970	11	-	R RF	47 47	AD3 AD3	20 20	274 274

R57 AD	, n _e = 140	00 min ⁻¹										450 Nm
i	n _a min ⁻¹	M _{amax} Nm	P _e kW	F _{Ra} ¹⁾ N	F _{Re} N	$\phi_{\text{(/R)}}$	\triangle			Þ	m kg	KEN
186.89	7.5	450	0.40	7100	1700	7	-					
172.17	8.1	450	0.43	7100	1690	7	-					
147.92	9.5	450	0.50	7100	1670	7	-					
128.77	11	450	0.57	7100	1650	7	-					
120.63	12	450	0.60	7100	1640	7	-					
106.58	13	450	0.68	7100	1620	7	-					
98.99	14	450	0.73	7100	1590	7	-					
89.71	16	450	0.80	7100	1580	7	-					
80.55	17	450	0.89	7100	1550	7	-	R	57	AD2	22	274
69.23	20	450	1.0	7100	1020	7	-	RF	57	AD2	26	274
64.85	22	450	1.1	6980	1570	8	-	RM	57	AD2	38	274
57.29	24	450	1.2	6630	1560	8	-					
53.22	26	450	1.3	6430	1540	8	-					
48.23	29	450	1.5	6170	1540	8	-					
43.30	32	450	1.6	5900	1520	8	-					
37.30*	38	450	1.9	5530	1500	8	-					
35.07	40	450	2.0	5390	1490	8	-					
30.18	46	450	2.3	5040	1460	8	-					
26.97	52	450	2.6	4800	1440	8	-					
26.31	53	420	2.4	4860	1100	6	-					
24.99*	56	410	2.5	4780	1120	6	_			4.00	0.4	074
21.93	64	450	3.1	4370	1000	7	-	R RF	57	AD2	21	274
18.60*	75	450	3.7	4050	960	7	_		57	AD2	25	274
16.79	83	450	4.1	3860	920	7	-	RM	57	AD2	37	274
14.77*	95	435	4.5	3690	930	7	-					
13.95*	100	430	4.7	3610	1940	7	-					
11.88	118	405	5.2	3430	1930	7	-					
10.79	130	390	5.5	3330	1930	7	_					
9.35	150	370	6.0	3180	1920	7	-					
9.06	155	335	5.6	2900	1580	9	_	R	57	AD3	25	274
7.97	176	355	6.8	2020	1460	9	_	RF	57	AD3	28	274
7.53	186	350	7.0	1950	1460	9	_	RM	57	AD3	40	274
6.41	218	335	7.9	1770	1420	9	_		-		-	
5.82	240	320	8.3	1820	1430	10	_					
5.05	277	305	9.2	1730	1400	10	-					
4.39	319	280	9.7	1900	1440	10	-					

R67 AD	, n _e = 140	00 min ⁻¹										600 Nm
i	n _a min ⁻¹	M _{amax} Nm	P _e kW	F _{Ra} ¹⁾ N	F _{Re} N	$\phi_{\text{(/R)}}$	\triangle			-	m kg	k⊞≯
199.81	7.0	600	0.49	7560	1510	6	-					
184.07	7.6	600	0.53	7560	1500	6	-					
158.14	8.8	600	0.61	7560	1480	6	-					
137.67	10	600	0.70	7560	1450	6	-					
128.97	11	600	0.74	7560	1440	6	-					
113.94	12	600	0.84	7560	1410	6	-					
105.83	13	600	0.90	7560	1380	6	-					
95.91	15	600	0.99	7560	1360	6	-					
86.11	16	600	1.1	7560	1640	6	-	R	67	AD2	29	274
74.17	19	600	1.3	7560	1620	7	-	RF	67	AD2	32	274
69.75	20	600	1.4	7560	1620	7	-	RM	67	AD2	48	274
61.26	23	600	1.5	7560	1450	7	-					
56.89	25	600	1.6	7560	1440	7	-					
51.56	27	600	1.8	7560	1420	7	-					
46.29	30	600	2.0	7560	1410	7	-					
39.88*	35	580	2.3	7790	1400	7	-					
37.50	37	570	2.4	7900	1390	7	-					
32.27	43	540	2.6	8210	1390	7	-					
28.83	49	520	2.8	8400	1380	7	-					
28.13	50	410	2.2	9270	1150	6	_	R	67	AD2	28	274
26.72	52	400	2.3	9340	1160	6	-	RF	67	AD2	31	274
23.44	60	560	3.6	8010	810	6	-	RM	67	AD2	47	274

R67 AD	, n _e = 140	00 min ⁻¹										600 Nm
i	n _a min ⁻¹	M _{amax} Nm	P _e kW	F _{Ra} ¹⁾ N	F _{Re} N	φ _(/R)	\triangle			 =	m kg	KEEN
19.89	70	600	4.6	7560	1710	6	-					
17.95	78	590	5.0	7330	1700	6	-					
15.79	89	560	5.4	7130	1720	6	-					
14.91	94	550	5.6	6980	1720	6	-					
12.70	110	520	6.2	6640	1700	6	-					
11.54	121	500	6.6	6500	1700	7	-	R	67	AD3	31	274
10.00	140	470	7.1	6220	1700	7	-	RF	67	AD3	34	274
8.70*	161	440	7.7	5960	1710	7	-	RM	67	AD3	50	274
7.79	180	380	7.4	5830	1280	8	-	PKIVI	67	ADS	50	2/4
7.36*	190	370	7.6	5790	1290	8	-					
6.27	223	330	8.0	5590	1360	9	-					
5.70	246	310	8.2	5450	1400	9	-					
4.93	284	290	8.9	5210	1400	9	-					
4.29	326	270	9.5	5000	1410	10						

R77 AD,	n _e = 140	0 min ⁻¹										820 Nm
i	n _a min ⁻¹	M _{amax} Nm	P _e kW	F _{Ra} ¹⁾ N	F _{Re} N	$\phi_{(/R)}$	\triangle	4		D	m kg	KEN
195.24*	7.2	820	0.68	9920	1300	6	-					
166.59	8.4	820	0.79	9920	1270	6	-					
145.67	9.6	820	0.90	9920	1240	6	-					
138.39	10	820	0.95	9920	1240	6	-					
121.42	12	820	1.1	9920	1630	6	-					
102.99	14	820	1.3	9920	1610	6	-					
92.97	15	820	1.4	9920	1600	6	-					
81.80	17	820	1.6	9920	1590	6	-	R	77	AD2	35	274
77.24	18	820	1.7	9920	1590	6	-	RF	77	AD2	41	274
65.77	21	820	1.9	9920	1560	7	-	RM	77	AD2	66	274
57.68	24	820	2.2	9920	1380	7	-	1 (10)		,,,,,	00	
52.07	27	820	2.4	9920	1370	7	-					
45.81	31	820	2.8	9920	1350	7	-					
43.26	32	820	2.9	9920	1340	7	-					
36.83	38	820	3.4	9920	1290	7	-					
33.47	42	820	3.8	9920	1270	7	-					
29.00	48	820	4.4	9920	1220	7	-					
25.23	55	780	4.8	10100	1210	7	-					
23.37	60	820	5.3	8870	1620	6	-					
21.43	65	820	5.8	8250	1600	6	-					
18.80	74	780	6.3	7980	1630	6	-					
17.82*	79	780	6.7	7620	1600	6	-	R	77	AD3	37	274
15.60	90	740	7.2	7390	1620	6	-	RF	77	AD3	43	274
14.05	100	720	7.8	7050	1590	6	-	RM	77	AD3	68	274
12.33	114	690	8.5	6740	1580	6	-					
10.88	129	660	9.2	6490	1570	6	-					
9.64	145	630	9.9	6300	1560	7	-					
8.59	163	630	11.1	4110	2970	7	-					
7.74	181	610	11.9	3940	2920	8	-	R	77	AD4	43	274
6.79	206	580	12.9	3850	2930	8	-	RF	77	AD4	49	274
5.99*	234	540	13.7	3990	2970	8	-	RM	77	AD4	74	274
5.31*	264	510	14.5	3990	2980	8	-					

R87 AD	, n _e = 140	00 min ⁻¹										1550 Nm
i	n _a min ⁻¹	M _{amax} Nm	P _e kW	F _{Ra} ¹⁾ N	F _{Re} N	$\phi_{\text{(/R)}}$	\triangle			=	m kg	KEY
246.54	5.7	1550	1.0	16900	1570	6	-					
216.54	6.5	1550	1.1	16900	1570	6	-					
205.71	6.8	1550	1.2	16900	1570	6	-					
181.77	7.7	1550	1.4	16900	1540	6	-					
155.34	9.0	1550	1.6	16900	1530	6	-					
142.41	9.8	1550	1.7	16900	1520	6	-					
124.97	11	1550	1.9	16900	1510	6	-	R	87	AD2	61	274
118.43*	12	1550	2.0	16900	1500	6	-	RF	87	AD2	68	274
103.65	14	1550	2.3	16900	1480	6	-	RM	87	AD2	98	274
93.38	15	1550	2.6	16900	1460	6	-					
81.92 72.57	17 19	1550 1550	3.0 3.3	16900 16900	1440 1160	6	-					
63.68*	22	1550		15800	1130	6 6	-					
60.35*	23	1550	3.8 4.0	15200	1120	6	_					
52.82	27	1550	4.5	13500	1080	6	_					
47.58	29	1550	5.0	12300	1040	7	_					
41.74				16900		7						
36.84*	34	1550 1550	5.7	16800	1940		-	R	87	AD3	65	274
32.66*	38 43	1550	6.5 7.3	16000	1900 1850	7 7	-	RF	87	AD3	72	274
27.88	50	1500	8.3	15100	1810	7	-	RM	87	AD3	100	274
									07	400		074
34.40* 31.40	41 45	1360 1280	6.0 6.2	11500 11700	1400 1450	5 5	-	R RF	87 87	AD3 AD3	64 71	274 274
31.40	45	1200	0.2	11700	1450	5	-	RM	87	AD3	100	274 274
								IXIVI	01	AD3	100	214
27.84*	50	1550	8.5	15000	3200	6	-					
23.40	60	1550	10.1	13900	3130	6	-					
21.51	65 72	1500	10.6	13600	3120	6	-	В	07	AD4	70	274
19.10 17.08*	73	1440 1390	11.4	13000	3130	6	-	R RF	87 87	AD4 AD4	70 77	274
17.08"	82 91	1340	12.4 13.2	12600 12100	3130 3130	6 6	-	RM	87 87	AD4 AD4	77 105	274 274
13.33	105	1280	14.6	11600	3110	6	-	IZIVI	01	AU4	100	214
11.93	117	1230	15.6	11200	3100	6	_					
9.90*	141	1180	18.1	10400	3020	6	-					
										 		
9.14*	153	1210	20	10500 10200	5360	6	-	В	07	AD5	05	274
8.22 7.13	170 196	1160 1070	21 23	9780	5380 5440	7 7	-	R RF	87 87	AD5 AD5	85 92	274 274
6.39	219	1070	23 24	9450	5450	7	-	RM	87	AD5	120	274
5.30*	264	910	26	8980	5510	7	-	IZIVI	01	ADS	120	214
5.50	204	910	20	0900	3310	1						

R97 AD	, n _e = 140	00 min ⁻¹										3000 Nm
i	n _a min ⁻¹	M _{amax} Nm	P _e kW	F _{Ra} 1) N	F _{Re} N	φ _(/R)	\triangle				m kg	KEH
216.28	6.5	3000	2.2	19800	2210	6	-					
186.30	7.5	3000	2.5	19800	2200	6	-					
170.02	8.2	3000	2.8	19800	2180	6	-					
150.78	9.3	3000	3.1	19800	2170	6	-					
126.75	11	3000	3.7	19800	2140	6	-					
116.48	12	3000	4.0	19800	2130	6	-	R	97	AD3	105	274
103.44	14	3000	4.5	19800	2100	6	-	RF	97	AD3	125	274
92.48	15	3000	5.0	19800	2070	6	-	RM	97	AD3	175	274
83.15	17	3000	5.6	19800	2040	6	-					
72.17	19	3000	6.5	18000	2000	6	-					
65.21	21	3000	7.1	19800	1550	6	-					
59.92	23	3000	7.7	19800	1510	6	-					
53.21	26	3000	8.7	19800	1460	6	-					
47.58	29	3000	9.7	19800	3440	6	-					
42.78	33	3000	10.8	19800	3400	6	-	R	97	AD4	110	274
37.13	38	3000	12.4	18600	3320	6	_	RF	97	AD4	130	274
33.25	42	2890	13.4	17900	3310	6	-	RM	97	AD4	180	274
27.58	51	2670	14.9	16900	3290	6	-					
32.05	44	2560	12.1	10600	2370	5	-	R	97	AD4	110	274
27.19	52	2430	13.6	9910	2490	5	-	RF	97	AD4	125	274
								RM	97	AD4	175	274

R97 AD	, n _e = 140	00 min ⁻¹										3000 Nm
i	n _a min ⁻¹	M _{amax} Nm	P _e kW	F _{Ra} 1) N	F _{Re} N	$\phi_{\text{(/R)}}$	\triangle				m kg	KEN
25.03	56	2830	17.1	15900	5290	5	-					
22.37	63	2720	18.4	15300	5320	5	-					
20.14	70	2610	19.6	14800	5350	5	-					
18.24	77	2500	21	14400	5390	6	-					
16.17	87	2400	22	13800	5410	6	-	R	97	AD5	125	274
14.62	96	2300	24	13400	5430	6	-	RF	97	AD5	145	274
12.39	113	2190	27	12700	5380	6	-	RM	97	AD5	195	274
10.83	129	2090	29	12100	5380	6	-	IXIVI	31	ADS	195	214
9.29	151	2030	33	12200	4260	6	-					
8.39	167	2030	37	11700	4140	6	-					
7.12	197	2000	42	10900	3810	6	-					
6.21	225	1890	46	10500	3940	6	-					
5.20	269	1780	52	9850	6870	6	-	R	97	AD6	140	274
4.50*	311	1630	55	9500	6940	6	M2	RF	97	AD6	155	274
								RM	97	AD6	210	274

R107 AD	, n _e = 14	100 min ⁻¹										4300 Nm
i	n _a min ⁻¹	M _{amax} Nm	P _e kW	F _{Ra} ¹⁾ N	F _{Re} N	$\phi_{\text{(/R)}}$	\triangle			=	m kg	KEH
251.15	5.6	4300	2.7	29500	2150	7	-					
229.95	6.1	4300	3.0	29500	2140	7	-					
203.16	6.9	4300	3.3	29500	2130	7	-					
172.34	8.1	4300	3.9	29500	2110	7	-					
158.68	8.8	4300	4.2	29500	2090	7	-	R	107	AD3	165	274
141.83	9.9	4300	4.7	29500	2070	7	-	RF	107	AD3	170	274
127.68	11	4300	5.2	29500	2040	7	-	RM	107	AD3	260	274
115.63	12	4300	5.8	29500	2020	7	-	IXIVI	107	ADS	200	214
102.53	14	4300	6.5	29500	1990	7	-					
92.70	15	4300	7.2	29500	1960	7	-					
78.57	18	4300	8.5	29500	1890	7	-					
72.88	19	4300	9.1	29500	1400	7	-					
65.60*	21	4300	10.1	29200	3400	7	_					
59.41	24	4300	11.2	28000	3360	7	-					
52.68	27	4300	12.6	26600	3310	7	-	R	107	AD4	170	274
47.63	29	4300	13.9	25500	3260	7	-	RF	107	AD4	175	274
40.37*	35	4300	16.4	23800	3150	7	-	RM	107	AD4	265	274
35.26	40	4300	18.8	22400	3070	7	-					
29.49	47	4300	22	20700	2920	7	-					
30.77	46	4300	21	21100	4810	7	-					
27.58	51	4300	24	20100	4730	7	-					
24.90*	56	4300	26	19200	4600	7	-	R	107	AD5	180	274
22.62	62	4300	29	18300	4510	7	-	RF	107	AD5	185	274
20.07	70	4300	32	17300	4400	7	-	RM	107	AD5	270	274
18.21	77	4300	36	16600	4300	7	-					
15.65	89	4300	42	15400	4070	7	-					
13.66	102	4300	48	14400	6890	7	-					
11.59	121	4280	56	13300	6650	7	-					
10.13	138	3740	56	13300	6930	7	-	В	107	AD6	190	274
8.56	163	3160	56	13200	7280	7	M2	R RF	107	AD6	200	274 274
7.86	178	2900	56	13900	6250	9	-	RM	107	AD6	200 285	274 274
6.66	210	2460	56	13500	6650	9	-	KIVI	107	AD6	200	214
5.82	240	2150	56	13200	6930	9	-					
4.92	284	2000	61	12500	6950	9	M2					

R127 AD.	, n _e = 14	100 min ⁻¹										6000 Nm
i	n _a min ⁻¹	M _{amax} Nm	P _e kW	F _{Ra} 1) N	F _{Re} N	$\phi_{\text{(/R)}}$	\triangle			=	m kg	KEH
262.65	5.3	6000	3.6	43000	1940	6	-					
240.48	5.8	6000	3.9	43000	1920	6	-					
212.46	6.6	6000	4.4	43000	1900	6	-					
180.23	7.8	6000	5.2	43000	1870	6	-					
165.95	8.4	6000	5.6	43000	1850	6	-					
148.33	9.4	6000	6.3	43000	1820	6	-					
133.53	10	6000	7.0	43000	1790	6	-	R	127	AD3	220	274
120.92	12	6000	7.7	43000	1760	6	-	RF	127	AD3	235	274
107.23	13	6000	8.7	43000	1720	6	-	RM	127	AD3	330	274
96.95	14	6000	9.6	43000	1670	6	-					
85.26	16	6000	10.8	43000	660	7	-					
82.17	17	6000	11.3	43000	1590	6	-					
76.21	18	6000	12.1	43000	560	7	-					
68.61	20	6000	13.4	43000	460	7	-					
62.13	23	6000	14.8	43000	350	7	-			 		
55.09	25	6000	16.7	43000	2850	7	-					
49.81	28	6000	18.5	43000	2790	7	-	R	127	AD4	230	274
42.22	33	6000	22	43000	2650	7	-	RF	127	AD4	240	274
36.88	38	5730	24	43000	2630	7	M2	RM	127	AD4	335	274
30.84	45	5380	27	43000	2580	7	M1-6					
32.18	44	4850	23	43000	4440	6	-					
28.84	49	5320	28	43000	3800	6	-	R	127	AD5	225	274
26.04	54	5790	34	43000	2760	6	-	RF	127	AD5	245	274
23.65	59	6000	38	43000	2190	6	-	RM	127	AD5	340	274
20.98	67	6000	43	43000	1910	6	M2					
19.04	74	6000	48	43000	5660	6	M1-6					
16.37	86	6000	55	43000	5130	6	M1-6					
14.29	98	5290	56	43000	6080	6	M1-6					
12.12	116	4480	56	43000	6520	6	M1-6	R	127	AD6	240	274
10.59	132	3910	56	43000	6820	6	M1-6	RF	127	AD6	260	274
8.96	156	3300	56	43000	7180	7	M1-6	RM	127	AD6	355	274
8.85	158	3270	56	43000	6110	8	M1-6	IXIVI	121	ADO	300	214
7.51	186	2770	56	43000	6530	8	M1-6					
6.56	213	2420	56	43000	6820	8	M1-6					
5.55	252	2050	56	43000	7170	8	M1-6					

R137 AD.	. , n _e = 14	00 min ⁻¹										8000 Nm
i	n _a min ⁻¹	M _{amax} Nm	P _e kW	F _{Ra} ¹⁾ N	F _{Re} N	$\phi_{\text{(/R)}}$	\triangle				m kg	KEN
222.60*	6.3	8000	5.6	53400	3730	6	-					
188.45	7.4	8000	6.6	53400	3690	6	-					
174.40*	8.0	8000	7.1	53400	3680	6	-					
156.31	9.0	8000	7.9	53400	3650	6	-					
141.12*	9.9	8000	8.8	53400	3600	6	-					
128.18	11	8000	9.7	53400	3570	6	-	R	137	AD4	255	274
113.72	12	8000	10.9	53400	3530	6	-	RF	137	AD4	280	274
103.20*	14	8000	12.0	53400	3490	6	-	RM	137	AD4	390	274
88.70*	16	8000	14.0	53400	3420	6	-					
80.91*	17	8000	15.2	53400	2790	6	-					
73.49	19	8000	16.7	53400	2740	6	-					
65.20	21	8000	18.9	53400	2670	6	-					
59.17*	24	8000	21	53400	2600	6	-					
50.86*	28	8000	24	53400	5670	6	-					
44.39	32	8000	28	53400	5560	6	M2	R	137	AD5	270	274
37.65	37	8000	33	53400	5400	6	M1-6	RF	137	AD5	290	274
32.91	43	8000	37	53400	5240	6	M1-6	RM	137	AD5	405	274
27.83	50	7680	42	54100	5160	6	M1-6					
29.57*	47	7780	40	53800	5200	6	-	R	137	AD6	270	274
24.12	58	8000	50	49400	4330	6	M2	RF	137	AD6	295	274
								RM	137	AD6	405	274

R137 AD.	, n _e = 14	100 min ⁻¹										8000 Nm
i	n _a min ⁻¹	M _{amax} Nm	P _e kW	F _{Ra} 1) N	F _{Re} N	$\phi_{\text{(/R)}}$	\triangle			=	m kg	KEY
22.00*	64	8000	55	47100	11700	6	M1-6					
19.04*	74	8000	63	43500	10700	6	M1-6					
16.80*	83	8000	72	40600	9940	6	M1-6					
14.51	96	8000	83	37300	8800	6	M1-6	R	137	AD7	280	274
12.83	109	7390	87	37400	9850	6	M1-6	RF	137	AD7		
10.79	130	7200	101	34700	8850	6	M1-6	RM	137	AD7	305 415	274 274
8.71	161	6900	120	31800	7540	6	M1-6	KIVI	137	AD1	415	2/4
7.59	184	4600	91	41100	8460	8	M1-6					
6.38	219	4400	104	38900	7940	8	M1-6					
5.15	272	4100	120	36600	7410	8	M1-6					

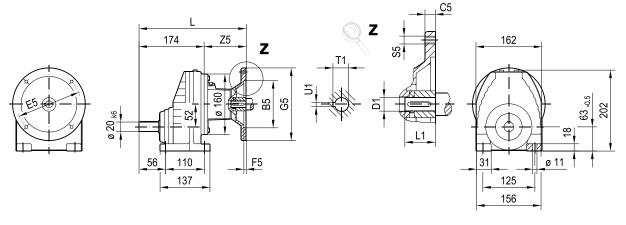
R147 AD.	, n _e = 14	100 min ⁻¹										13000 Nm
i	n _a min ⁻¹	M _{amax} Nm	P _e kW	F _{Ra} ¹⁾ N	F _{Re} N	$\phi_{\text{(/R)}}$	\triangle				m kg	K
163.31	8.6	13000	12.3	62700	2990	5	-					
146.91	9.5	13000	13.6	62700	2940	5	-	R	147	AD4	385	274
119.86	12	13000	16.7	62700	2800	5	-	RF	147	AD4	395	274
109.31	13	13000	18.3	62700	2750	5	-	RM	147	AD4	560	274
94.60*	15	13000	21	62700	2650	6	-	IXIVI	177	707	300	217
83.47	17	13000	24	62700	2560	6	-					
72.09	19	13000	28	62700	5670	6	M2					
66.99	21	13000	30	62700	4550	6	-	R	147	AD5	400	274
61.09	23	13000	33	62700	4470	6	-	RF	147	AD5	410	274
52.87	26	13000	38	62700	4310	6	-	RM	147	AD5	570	274
46.65	30	13000	43	62700	4170	6	M2,4					
40.29	35	13000	49	62700	6970	6	M1-6	R RF RM	147 147 147	AD6 AD6 AD6	410 420 590	274 274 274
35.64	39	13000	56	62700	16800	6	M1-6	R	147	AD7	410	274
29.95	47	13000	66	62700	16600	6	M1-6	RF	147	AD7	420	274
24.19	58	11900	75	64700	16500	6	M1-6	RM	147	AD7	590	274
20.44	68	11700	86	65100	23700	5	M1-6					
18.04	78	10300	86	67300	24300	5	M1-6					
15.64	90	13000	125	62700	22400	5	M1-6					
13.91	101	12300	133	64000	22500	5	M1-6	В	4.47	ADO	420	274
11.99	117	10600	133	66900	23200	5	M1-6	R RF	147 147	AD8 AD8	420 425	274 274
9.74	144	8650	134	67400	23900	6	M1-6	RM	147	AD8	425 590	274 274
8.26	169	7340	134	66900	24400	6	M1-6	KIVI	147	ADO	590	214
7.25	193	6440	134	65300	23200	8	M1-6					
5.89	238	5230	134	64000	23900	8	M1-6					
5.00	280	4430	134	62600	24500	8	M1-6					

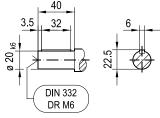
R167 AD.	. , n _e = 14	100 min ⁻¹										20000 Nm
i	n _a min ⁻¹	M _{amax} Nm	P _e kW	F _{Ra} 1) N	F _{Re} N	$\phi_{(/R)}$	\triangle			-	m kg	KEN
229.71	6.1	20000	13.5	120000	5880	5	-					
186.93*	7.5	20000	16.5	120000	5800	5	-					
153.07	9.2	20000	20	120000	5660	5 5	-					
139.98	10	20000	22	120000	5620	5	-	R	167	AD5	650	275
121.81*	11	20000	25	120000	5520	5	-	RF	167	AD5	650	275
107.49	13	20000	29	120000	5430	5	-	RM	167	AD5	850	275
93.19	15	20000	33	120000	5320	5	-					
82.91*	17	20000	37	120000	5210	5	-					
73.70*	19	20000	42	120000	2380	6	-					
67.40	21	20000	45	120000	6240	6	-	R	167	AD6	670	275
58.65	24	20000	52	120000	5870	6	-	RF	167	AD6	670	275
51.76	27	20000	59	120000	5530	6	M2	RM	167	AD6	870	275
44.87	31	20000	68	120000	13700	6	M1-6	R	167	AD7	660	275
39.92	35	20000	77	120000	12900	6	M1-6	RF	167	AD7	670	275
34.41	41	20000	89	120000	12000	6	M1-6	RM	167	AD7	860	275
27.96	50	19800	108	120000	25000	6	M1-6	R	167	AD8	680	275
23.71	59	18400	119	115400	25000	6	M1-6	RF	167	AD8	690	275
								RM	167	AD8	880	275

29154650/EN - 03/2020

8

R.. helical gear units

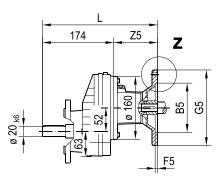

Selection tables for input shaft assembly (AD..)

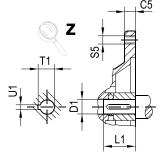

R167 AD	, n _e = 14	100 min ⁻¹									20000 Nm
i	n _a min ⁻¹	M _{amax} Nm	P _e kW	F _{Ra} 1) N	F _{Re} N	$\phi_{\text{(/R)}}$	\triangle			m kg	K
46.00	30	8460	28	120000	3140	5	-	R 167 RF 167 RM 167	AD5 AD5 AD5	640 650 840	275 275 275
37.74 30.71	37 46	9940 11400	40 56	120000 120000	5170 2870	5 5	-	R 167 RF 167 RM 167	AD6 AD6 AD6	660 670 860	275 275 275
24.57 21.85 19.03 16.98 14.48 11.99 10.24	57 64 74 82 97 117	15800 14000 18100 16100 19500 18800 18300	97 97 143 143 203 236 269	120000 120000 105700 105900 89800 83900 78700	22800 23500 21200 21900 19500 19100 18600	5 5 5 5 5 5 5 5	M2 M2,4 M1-6 M1-6 M1-6 M1-6	R 167 RF 167 RM 167	AD8 AD8 AD8	680 680 880	275 275 275

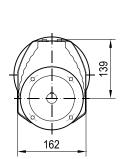
8.4 Dimension sheets for adapters for mounting IEC motors (AM..)

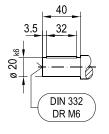
01 010 02 01

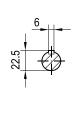
RX57...

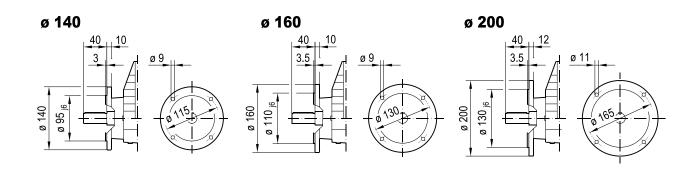


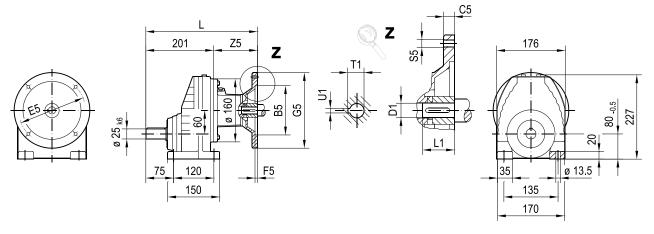

(→ []] 7.2.10)	B5	C5	E5	F5	G5	L	S5	Z5	D1	L1	T1	U1
AM63	95	10	115	3.5	140	240	M8	66	11	23	12.8	4
AM71	110	10	130	4	160	240	M8	66	14	30	16.3	5
AM80	130	12	165	4.5	200	273	M10	99	19	40	21.8	6
AM90	130	12	165	4.5	200	273	M10	99	24	50	27.3	8
AM100	180	15	215	5	250	308	M12	134	28	60	31.3	8
AM112	180	15	215	5	250	308	M12	134	28	60	31.3	8
AM132S/M	230	16	265	5	300	365	M12	191	38	80	41.3	10

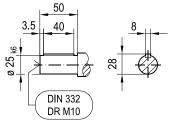

01 011 03 01


RXF57..



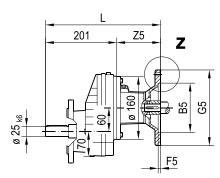


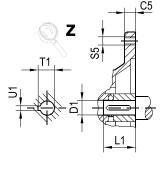


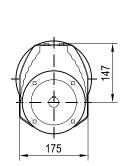

(→ [] 7.2.10)	B5	C5	E5	F5	G5	L	S5	Z 5	D1	L1	T1	U1
AM63	95	10	115	3.5	140	240	M8	66	11	23	12.8	4
AM71	110	10	130	4	160	240	M8	66	14	30	16.3	5
AM80	130	12	165	4.5	200	273	M10	99	19	40	21.8	6
AM90	130	12	165	4.5	200	273	M10	99	24	50	27.3	8
AM100	180	15	215	5	250	308	M12	134	28	60	31.3	8
AM112	180	15	215	5	250	308	M12	134	28	60	31.3	8
AM132S/M	230	16	265	5	300	365	M12	191	38	80	41.3	10

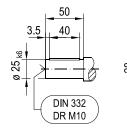
01 012 03 01

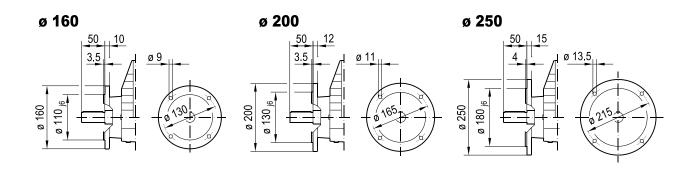
RX67..

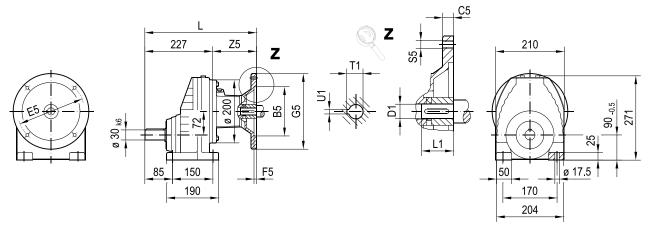


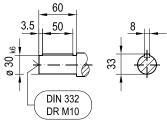

(→ [] 7.2.10)	B5	C5	E5	F5	G5	L	S5	Z 5	D1	L1	T1	U1
AM63	95	10	115	3.5	140	267	M8	66	11	23	12.8	4
AM71	110	10	130	4	160	267	M8	66	14	30	16.3	5
AM80	130	12	165	4.5	200	300	M10	99	19	40	21.8	6
AM90	130	12	165	4.5	200	300	M10	99	24	50	27.3	8
AM100	180	15	215	5	250	335	M12	134	28	60	31.3	8
AM112	180	15	215	5	250	335	M12	134	28	60	31.3	8
AM132S/M	230	16	265	5	300	392	M12	191	38	80	41.3	10


01 013 02 01


RXF67..



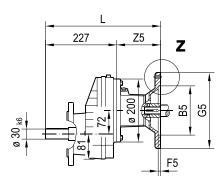


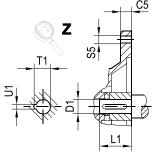


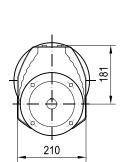
(→ [] 7.2.10)	B5	C5	E5	F5	G5	L	S5	Z5	D1	L1	T1	U1
AM63	95	10	115	3.5	140	267	M8	66	11	23	12.8	4
AM71	110	10	130	4	160	267	M8	66	14	30	16.3	5
AM80	130	12	165	4.5	200	300	M10	99	19	40	21.8	6
AM90	130	12	165	4.5	200	300	M10	99	24	50	27.3	8
AM100	180	15	215	5	250	335	M12	134	28	60	31.3	8
AM112	180	15	215	5	250	335	M12	134	28	60	31.3	8
AM132S/M	230	16	265	5	300	392	M12	191	38	80	41.3	10

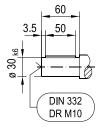
01 014 02 01

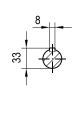
RX77..

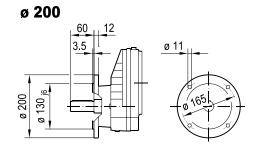


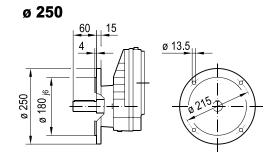

(→ [] 7.2.10)	B5	C5	E5	F5	G5	L	S5	Z 5	D1	L1	T1	U1
AM63	95	10	115	3.5	140	287	M8	60	11	23	12.8	4
AM71	110	10	130	4	160	287	M8	60	14	30	16.3	5
AM80	130	12	165	4.5	200	319	M10	92	19	40	21.8	6
AM90	130	12	165	4.5	200	319	M10	92	24	50	27.3	8
AM100	180	15	215	5	250	353	M12	126	28	60	31.3	8
AM112	180	15	215	5	250	353	M12	126	28	60	31.3	8
AM132S/M	230	16	265	5	300	406	M12	179	38	80	41.3	10
AM132ML	230	16	265	5	300	406	M12	179	38	80	41.3	10

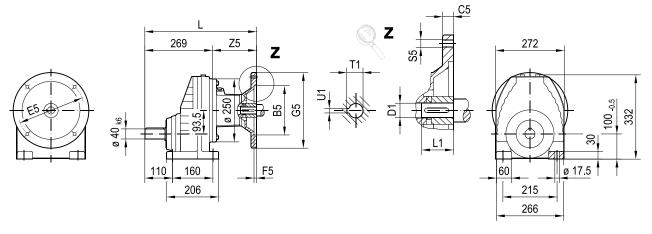

01 015 03 01

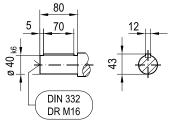

RXF77..









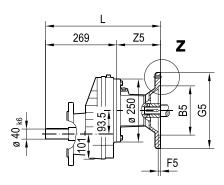


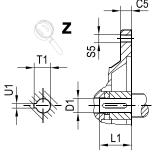
(→ [7.2.10)	B5	C5	E5	F5	G5	L	S5	Z 5	D1	L1	T1	U1
AM63	95	10	115	3.5	140	287	M8	60	11	23	12.8	4
AM71	110	10	130	4	160	287	M8	60	14	30	16.3	5
AM80	130	12	165	4.5	200	319	M10	92	19	40	21.8	6
AM90	130	12	165	4.5	200	319	M10	92	24	50	27.3	8
AM100	180	15	215	5	250	353	M12	126	28	60	31.3	8
AM112	180	15	215	5	250	353	M12	126	28	60	31.3	8
AM132S/M	230	16	265	5	300	406	M12	179	38	80	41.3	10
AM132ML	230	16	265	5	300	406	M12	179	38	80	41.3	10

01 016 01 01

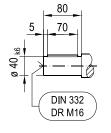
RX87..

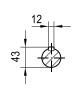


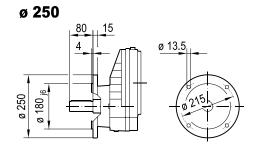


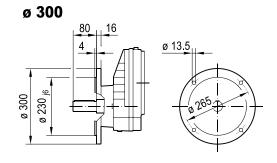

(→ [7.2.10)	B5	C5	E5	F5	G5	L	S5	Z 5	D1	L1	T1	U1
AM80	130	12	165	4.5	200	356	M10	87	19	40	21.8	6
AM90	130	12	165	4.5	200	356	M10	87	24	50	27.3	8
AM100	180	15	215	5	250	390	M12	121	28	60	31.3	8
AM112	180	15	215	5	250	390	M12	121	28	60	31.3	8
AM132S/M	230	16	265	5	300	443	M12	174	38	80	41.3	10
AM132ML	230	16	265	5	300	443	M12	174	38	80	41.3	10
AM160	250	18	300	6	350	501	M16	232	42	110	45.3	12
AM180	250	18	300	6	350	501	M16	232	48	110	51.8	14

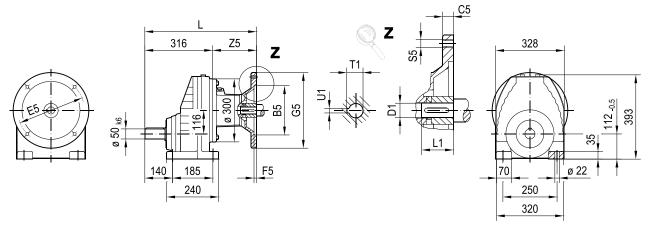

01 017 02 01

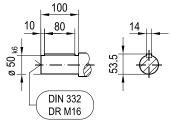

RXF87..







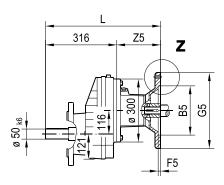


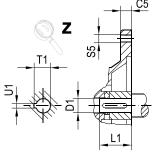


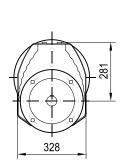
(→ []] 7.2.10)	B5	C5	E5	F5	G5	L	S5	Z 5	D1	L1	T1	U1
AM80	130	12	165	4.5	200	356	M10	87	19	40	21.8	6
AM90	130	12	165	4.5	200	356	M10	87	24	50	27.3	8
AM100	180	15	215	5	250	390	M12	121	28	60	31.3	8
AM112	180	15	215	5	250	390	M12	121	28	60	31.3	8
AM132S/M	230	16	265	5	300	443	M12	174	38	80	41.3	10
AM132ML	230	16	265	5	300	443	M12	174	38	80	41.3	10
AM160	250	18	300	6	350	501	M16	232	42	110	45.3	12
AM180	250	18	300	6	350	501	M16	232	48	110	51.8	14

01 018 01 01

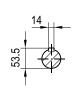
RX97..

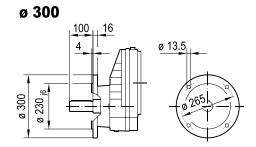


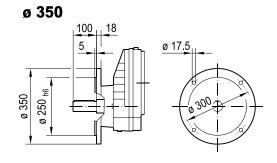

(→ [] 7.2.10)	B5	C5	E5	F5	G5	L	S5	Z5	D1	L1	T1	U1
AM100	180	15	215	5	250	432	M12	116	28	60	31.3	8
AM112	180	15	215	5	250	432	M12	116	28	60	31.3	8
AM132S/M	230	16	265	5	300	485	M12	169	38	80	41.3	10
AM132ML	230	16	265	5	300	485	M12	169	38	80	41.3	10
AM160	250	18	300	6	350	543	M16	227	42	110	45.3	12
AM180	250	18	300	6	350	543	M16	227	48	110	51.8	14
AM200	300	20	350	7	400	584	M16	268	55	110	59.3	16

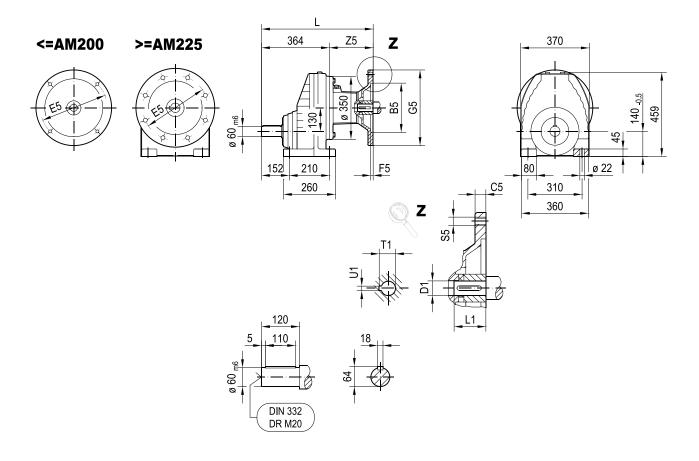

01 019 02 01

RXF97..



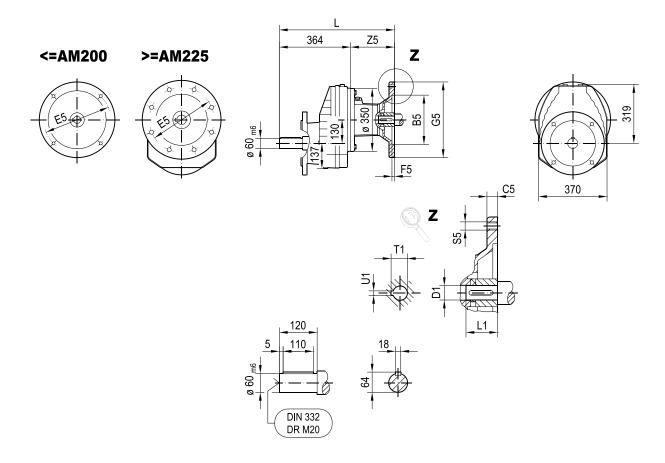


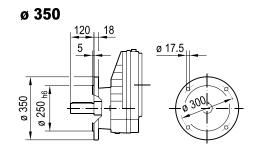


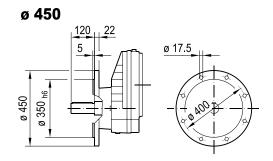


(→ [] 7.2.10)	B5	C5	E5	F5	G5	L	S5	Z5	D1	L1	T1	U1
AM100	180	15	215	5	250	432	M12	116	28	60	31.3	8
AM112	180	15	215	5	250	432	M12	116	28	60	31.3	8
AM132S/M	230	16	265	5	300	485	M12	169	38	80	41.3	10
AM132ML	230	16	265	5	300	485	M12	169	38	80	41.3	10
AM160	250	18	300	6	350	543	M16	227	42	110	45.3	12
AM180	250	18	300	6	350	543	M16	227	48	110	51.8	14
AM200	300	20	350	7	400	584	M16	268	55	110	59.3	16

01 020 01 01

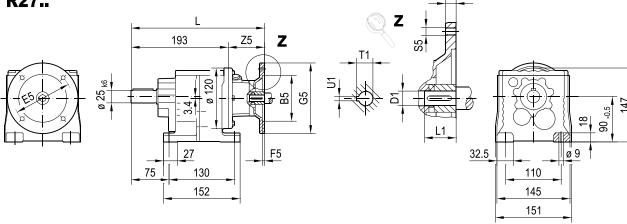

RX107..

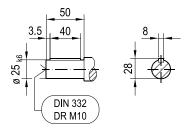



(→ [] 7.2.10)	B5	C5	E5	F5	G5	L	S5	Z 5	D1	L1	T1	U1
AM100	180	15	215	5	250	474	M12	110	28	60	31.3	8
AM112	180	15	215	5	250	474	M12	110	28	60	31.3	8
AM132S/M	230	16	265	5	300	527	M12	163	38	80	41.3	10
AM132ML	230	16	265	5	300	527	M12	163	38	80	41.3	10
AM160	250	18	300	6	350	585	M16	221	42	110	45.3	12
AM180	250	18	300	6	350	585	M16	221	48	110	51.8	14
AM200	300	20	350	7	400	626	M16	262	55	110	59.3	16
AM225	350	22	400	7	450	641	M16	277	60	140	64.4	18

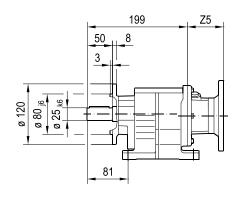
01 021 02 01

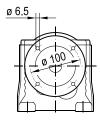
RXF107...



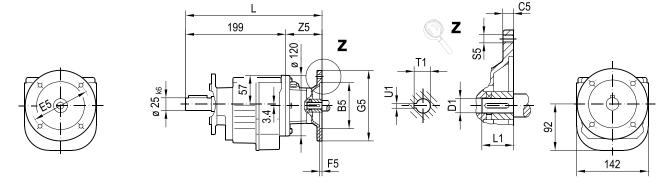


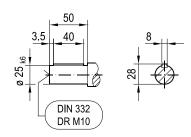
(→ [] 7.2.10)	B5	C5	E5	F5	G5	L	S5	Z 5	D1	L1	T1	U1
AM100	180	15	215	5	250	474	M12	110	28	60	31.3	8
AM112	180	15	215	5	250	474	M12	110	28	60	31.3	8
AM132S/M	230	16	265	5	300	527	M12	163	38	80	41.3	10
AM132ML	230	16	265	5	300	527	M12	163	38	80	41.3	10
AM160	250	18	300	6	350	585	M16	221	42	110	45.3	12
AM180	250	18	300	6	350	585	M16	221	48	110	51.8	14
AM200	300	20	350	7	400	626	M16	262	55	110	59.3	16
AM225	350	22	400	7	450	641	M16	277	60	140	64.4	18

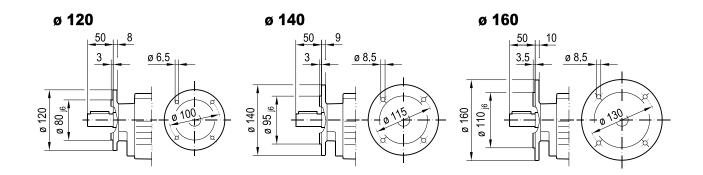

01 022 03 01


R27..

R27F..

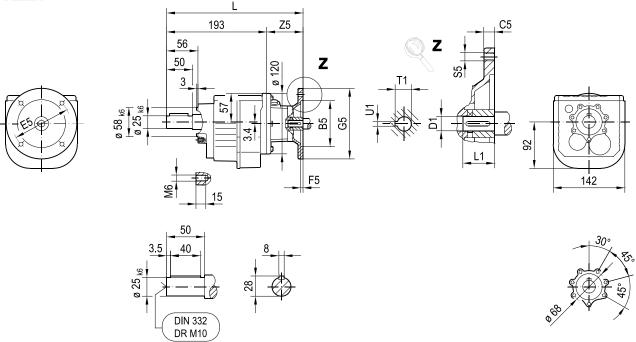




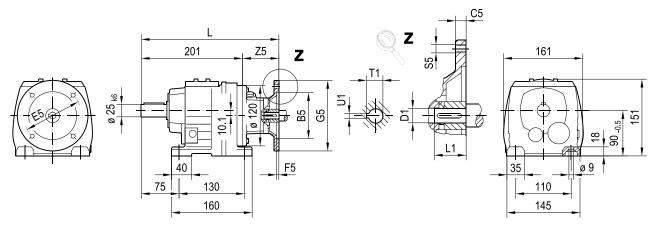

(→ [] 7.2.10)	B5	C5	E5	F5	G5	L	S5	Z5	D1	L1	T1	U1
AM63	95	10	115	3.5	140	265	M8	72	11	23	12.8	4
AM71	110	10	130	4	160	265	M8	72	14	30	16.3	5
AM80	130	12	165	4.5	200	299	M10	106	19	40	21.8	6
AM90	130	12	165	4.5	200	299	M10	106	24	50	27.3	8

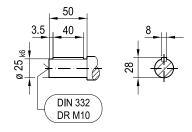
01 023 02 01

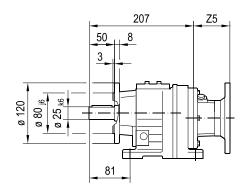
RF27..

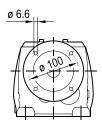


(→ [] 7.2.10)	B5	C5	E5	F5	G5	L	S5	Z5	D1	L1	T1	U1
AM63	95	10	115	3.5	140	271	M8	72	11	23	12.8	4
AM71	110	10	130	4	160	271	M8	72	14	30	16.3	5
AM80	130	12	165	4.5	200	305	M10	106	19	40	21.8	6
AM90	130	12	165	4.5	200	305	M10	106	24	50	27.3	8

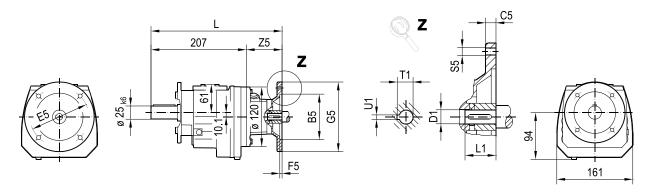

01 004 01 07

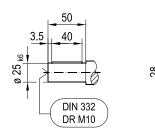

RZ27..

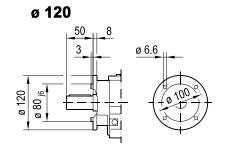

(→ []] 7.2.10)	B5	C5	E5	F5	G5	L	S5	Z5	D1	L1	T1	U1
AM63	95	10	115	3.5	140	265	M8	72	11	23	12.8	4
AM71	110	10	130	4	160	265	M8	72	14	30	16.3	5
AM80	130	12	165	4.5	200	299	M10	106	19	40	21.8	6
AM90	130	12	165	4.5	200	299	M10	106	24	50	27.3	8

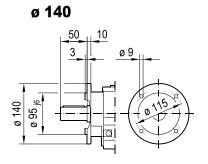

R37.. 01 024 03 01

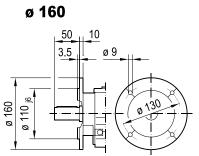
R37F..

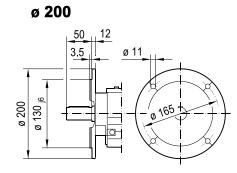


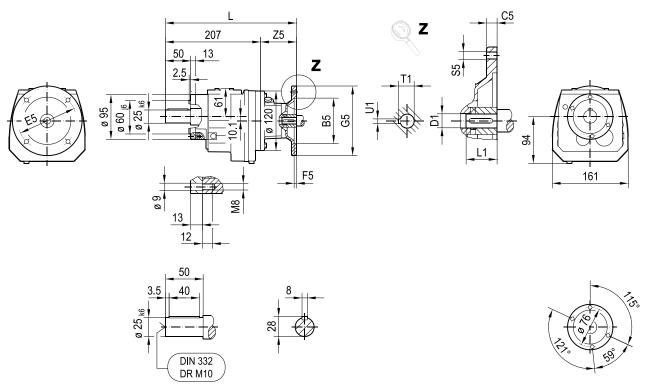



(→ [] 7.2.10)	B5	C5	E5	F5	G5	L	S5	Z5	D1	L1	T1	U1
AM63	95	10	115	3.5	140	273	M8	72	11	23	12.8	4
AM71	110	10	130	4	160	273	M8	72	14	30	16.3	5
AM80	130	12	165	4.5	200	307	M10	106	19	40	21.8	6
AM90	130	12	165	4.5	200	307	M10	106	24	50	27.3	8


RF37..


01 025 03 01

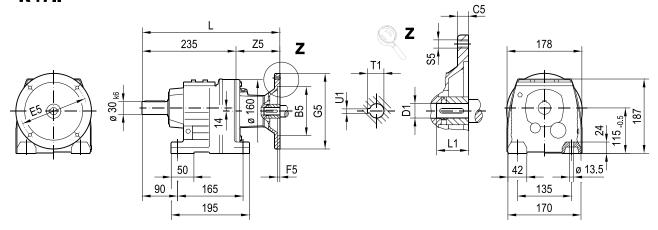


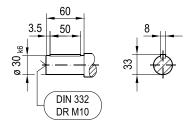


_	
5	
S	
\subset	
$\overline{}$	7
ũ	
C	כ
Ŋ)
Œ	כ
7	t
Ц	
7	
20	0
C	١

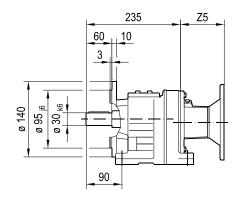
(→ []] 7.2.10)	B5	C5	E5	F5	G5	L	S5	Z5	D1	L1	T1	U1
AM63	95	10	115	3.5	140	279	M8	72	11	23	12.8	4
AM71	110	10	130	4	160	279	M8	72	14	30	16.3	5
AM80	130	12	165	4.5	200	313	M10	106	19	40	21.8	6
AM90	130	12	165	4.5	200	313	M10	106	24	50	27.3	8

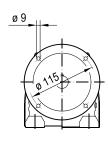
01 005 01 07


RZ37..

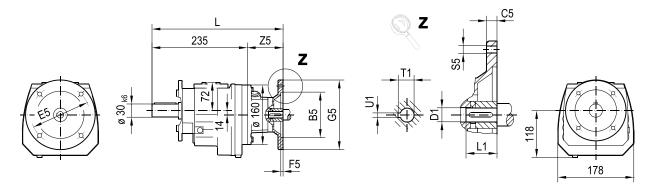


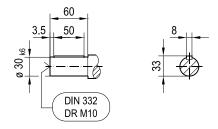
(→ [] 7.2.10)	B5	C5	E5	F5	G5	L	S5	Z 5	D1	L1	T1	U1
AM63	95	10	115	3.5	140	279	M8	72	11	23	12.8	4
AM71	110	10	130	4	160	279	M8	72	14	30	16.3	5
AM80	130	12	165	4.5	200	313	M10	106	19	40	21.8	6
AM90	130	12	165	4.5	200	313	M10	106	24	50	27.3	8

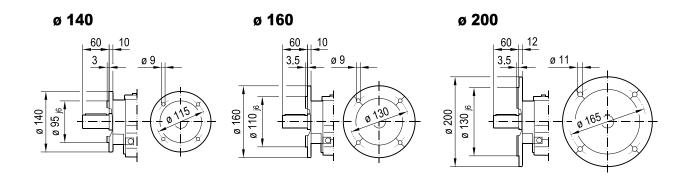

01 026 02 01


R47..

R47F..

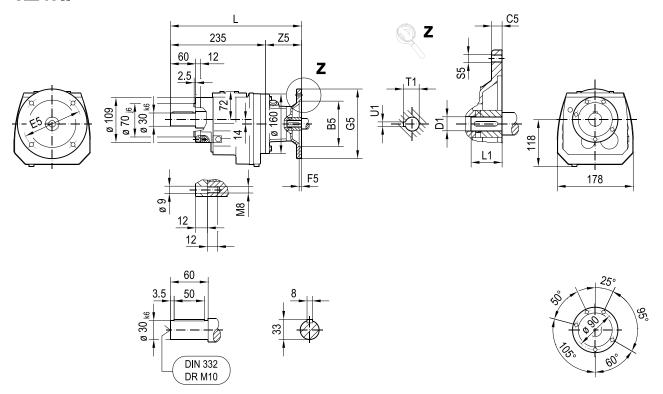





(→ [] 7.2.10)	B5	C5	E5	F5	G5	L	S5	Z5	D1	L1	T1	U1
AM63	95	10	115	3.5	140	301	M8	66	11	23	12.8	4
AM71	110	10	130	4	160	301	M8	66	14	30	16.3	5
AM80	130	12	165	4.5	200	334	M10	99	19	40	21.8	6
AM90	130	12	165	4.5	200	334	M10	99	24	50	27.3	8
AM100	180	15	215	5	250	369	M12	134	28	60	31.3	8
AM112	180	15	215	5	250	369	M12	134	28	60	31.3	8
AM132S/M	230	16	265	5	300	426	M12	191	38	80	41.3	10
		•							•	•		

RF47..

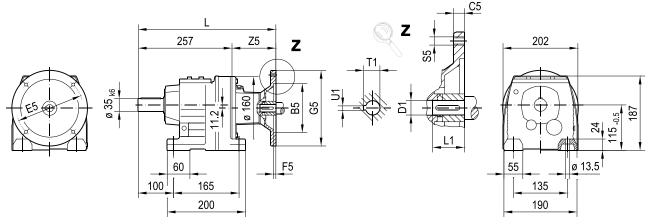
01 027 03 01

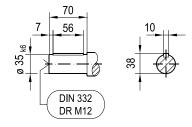


(→ [] 7.2.10)	B5	C5	E5	F5	G5	L	S5	Z5	D1	L1	T1	U1
AM63	95	10	115	3.5	140	301	M8	66	11	23	12.8	4
AM71	110	10	130	4	160	301	M8	66	14	30	16.3	5
AM80	130	12	165	4.5	200	334	M10	99	19	40	21.8	6
AM90	130	12	165	4.5	200	334	M10	99	24	50	27.3	8
AM100	180	15	215	5	250	369	M12	134	28	60	31.3	8
AM112	180	15	215	5	250	369	M12	134	28	60	31.3	8
AM132S/M	230	16	265	5	300	426	M12	191	38	80	41.3	10

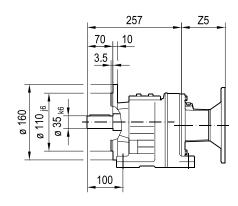
01 006 01 07

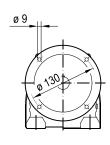
RZ47..



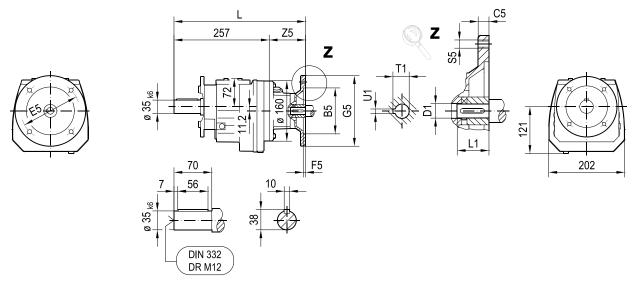

0
S
0
$\overline{\sim}$
∺
ö
- 1
- 1
$\overline{}$
6
ш
$\overline{}$
\simeq
32
Ģ
.7
2
$\overline{}$
0
čί

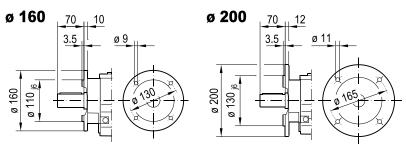
(→ []] 7.2.10)	B5	C5	E5	F5	G5	L	S5	Z 5	D1	L1	T1	U1
AM63	95	10	115	3.5	140	301	M8	66	11	23	12.8	4
AM71	110	10	130	4	160	301	M8	66	14	30	16.3	5
AM80	130	12	165	4.5	200	334	M10	99	19	40	21.8	6
AM90	130	12	165	4.5	200	334	M10	99	24	50	27.3	8
AM100	180	15	215	5	250	369	M12	134	28	60	31.3	8
AM112	180	15	215	5	250	369	M12	134	28	60	31.3	8
AM132S/M	230	16	265	5	300	426	M12	191	38	80	41.3	10

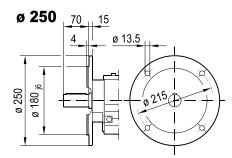

01 028 03 01


R57..

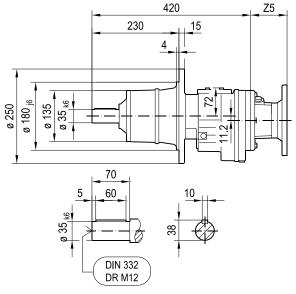
R57F..

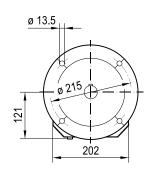




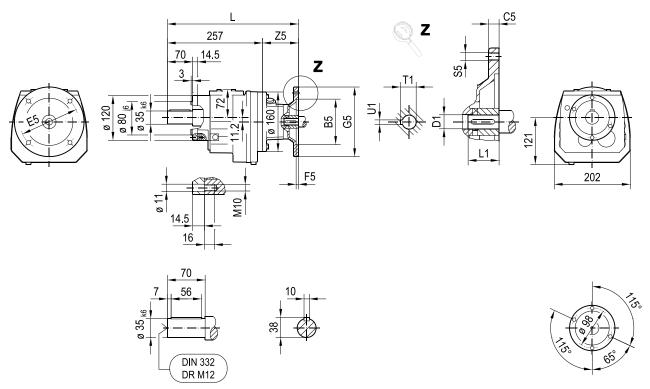

(→ [] 7.2.10)	B5	C5	E5	F5	G5	L	S5	Z5	D1	L1	T1	U1
AM63	95	10	115	3.5	140	323	M8	66	11	23	12.8	4
AM71	110	10	130	4	160	323	M8	66	14	30	16.3	5
AM80	130	12	165	4.5	200	356	M10	99	19	40	21.8	6
AM90	130	12	165	4.5	200	356	M10	99	24	50	27.3	8
AM100	180	15	215	5	250	391	M12	134	28	60	31.3	8
AM112	180	15	215	5	250	391	M12	134	28	60	31.3	8
AM132S/M	230	16	265	5	300	448	M12	191	38	80	41.3	10

01 029 03 01


RF57..

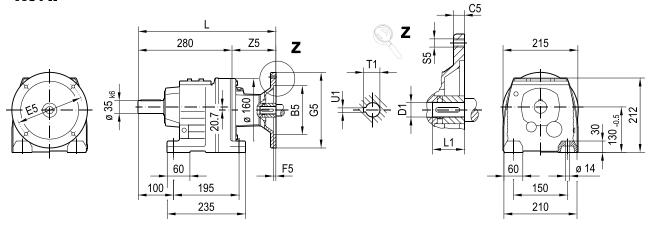


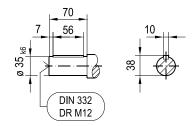
RM57..



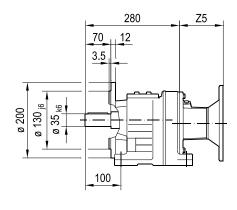
(→ [] 7.2.10)	B5	C5	E5	F5	G5	L	S5	Z 5	D1	L1	T1	U1
AM63	95	10	115	3.5	140	323	M8	66	11	23	12.8	4
AM71	110	10	130	4	160	323	M8	66	14	30	16.3	5
AM80	130	12	165	4.5	200	356	M10	99	19	40	21.8	6
AM90	130	12	165	4.5	200	356	M10	99	24	50	27.3	8
AM100	180	15	215	5	250	391	M12	134	28	60	31.3	8
AM112	180	15	215	5	250	391	M12	134	28	60	31.3	8
AM132S/M	230	16	265	5	300	448	M12	191	38	80	41.3	10

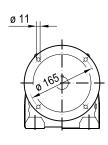
01 007 01 07


RZ57..

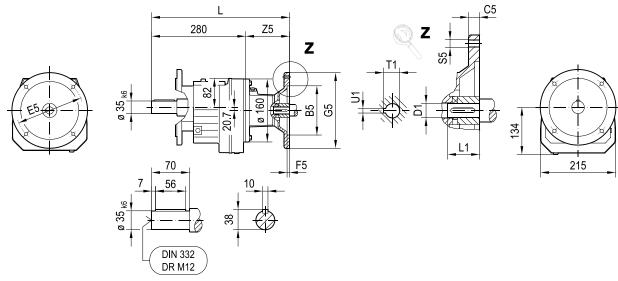


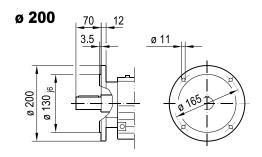
(→ [] 7.2.10)	B5	C5	E5	F5	G5	L	S5	Z5	D1	L1	T1	U1
AM63	95	10	115	3.5	140	323	M8	66	11	23	12.8	4
AM71	110	10	130	4	160	323	M8	66	14	30	16.3	5
AM80	130	12	165	4.5	200	356	M10	99	19	40	21.8	6
AM90	130	12	165	4.5	200	356	M10	99	24	50	27.3	8
AM100	180	15	215	5	250	391	M12	134	28	60	31.3	8
AM112	180	15	215	5	250	391	M12	134	28	60	31.3	8
AM132S/M	230	16	265	5	300	448	M12	191	38	80	41.3	10

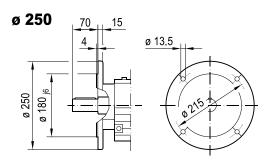

01 030 02 01


R67..

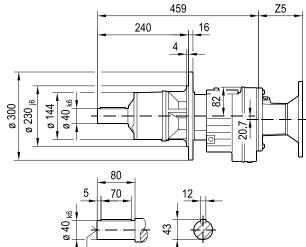
R67F..

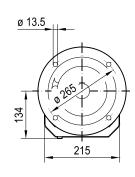


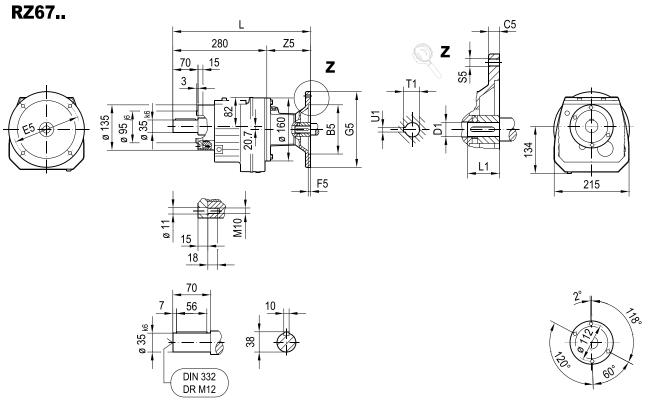



(→ []] 7.2.10)	B5	C5	E5	F5	G5	L	S5	Z5	D1	L1	T1	U1
AM63	95	10	115	3.5	140	346	M8	66	11	23	12.8	4
AM71	110	10	130	4	160	346	M8	66	14	30	16.3	5
AM80	130	12	165	4.5	200	379	M10	99	19	40	21.8	6
AM90	130	12	165	4.5	200	379	M10	99	24	50	27.3	8
AM100	180	15	215	5	250	414	M12	134	28	60	31.3	8
AM112	180	15	215	5	250	414	M12	134	28	60	31.3	8
AM132S/M	230	16	265	5	300	471	M12	191	38	80	41.3	10
		•							•	•	•	

01 031 03 01

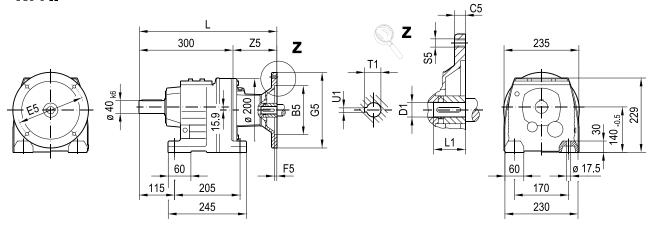

RF67..

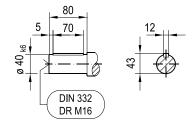




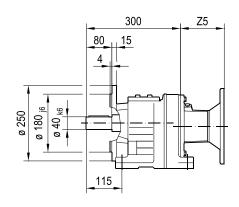
DIN 332 DR M16

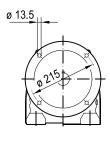
•												
(→ [] 7.2.10)	B5	C5	E5	F5	G5	L	S5	Z5	D1	L1	T1	U1
AM63	95	10	115	3.5	140	346	M8	66	11	23	12.8	4
AM71	110	10	130	4	160	346	M8	66	14	30	16.3	5
AM80	130	12	165	4.5	200	379	M10	99	19	40	21.8	6
AM90	130	12	165	4.5	200	379	M10	99	24	50	27.3	8
AM100	180	15	215	5	250	414	M12	134	28	60	31.3	8
AM112	180	15	215	5	250	414	M12	134	28	60	31.3	8
AM132S/M	230	16	265	5	300	471	M12	191	38	80	41.3	10


01 008 01 07

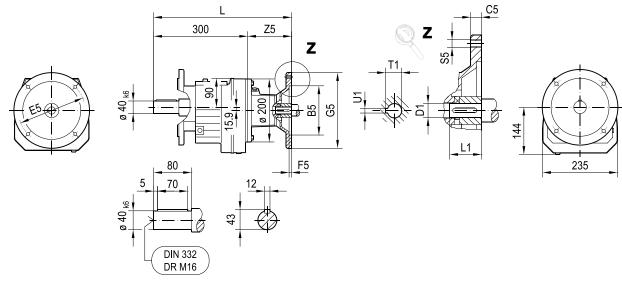


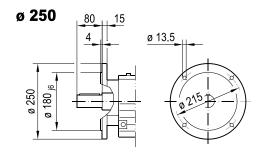
(→ [] 7.2.10)	B5	C5	E5	F5	G5	L	S5	Z 5	D1	L1	T1	U1
AM63	95	10	115	3.5	140	346	M8	66	11	23	12.8	4
AM71	110	10	130	4	160	346	M8	66	14	30	16.3	5
AM80	130	12	165	4.5	200	379	M10	99	19	40	21.8	6
AM90	130	12	165	4.5	200	379	M10	99	24	50	27.3	8
AM100	180	15	215	5	250	414	M12	134	28	60	31.3	8
AM112	180	15	215	5	250	414	M12	134	28	60	31.3	8
AM132S/M	230	16	265	5	300	471	M12	191	38	80	41.3	10
		•										

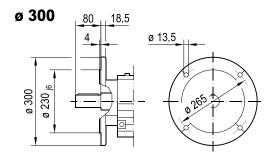

01 032 03 01


R77..

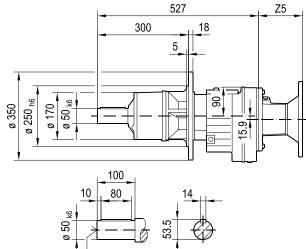
R77F..

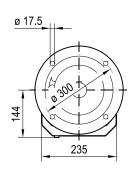


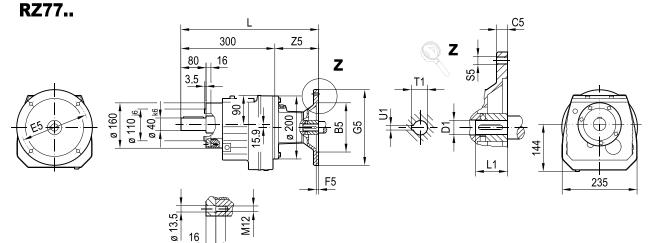


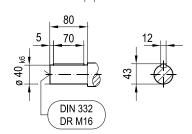

(→ []] 7.2.10)	B5	C5	E5	F5	G5	L	S5	Z5	D1	L1	T1	U1
AM63	95	10	115	3.5	140	360	M8	60	11	23	12.8	4
AM71	110	10	130	4	160	360	M8	60	14	30	16.3	5
AM80	130	12	165	4.5	200	392	M10	92	19	40	21.8	6
AM90	130	12	165	4.5	200	392	M10	92	24	50	27.3	8
AM100	180	15	215	5	250	426	M12	126	28	60	31.3	8
AM112	180	15	215	5	250	426	M12	126	28	60	31.3	8
AM132S/M	230	16	265	5	300	479	M12	179	38	80	41.3	10
AM132ML	230	16	265	5	300	479	M12	179	38	80	41.3	10

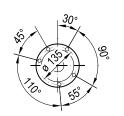
01 033 03 01


RF77..

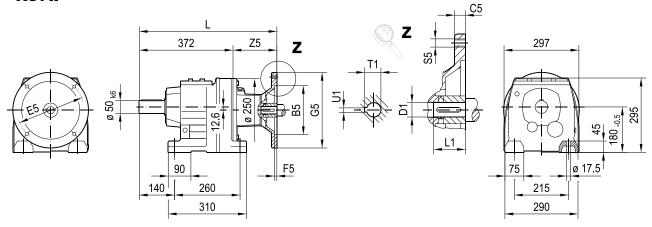


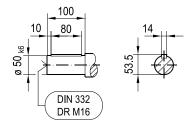



DIN 332 DR M16

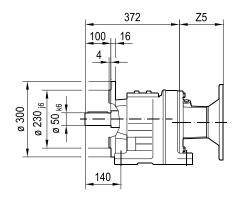

(→ [] 7.2.10)	B5	C5	E5	F5	G5	L	S5	Z 5	D1	L1	T1	U1
AM63	95	10	115	3.5	140	360	M8	60	11	23	12.8	4
AM71	110	10	130	4	160	360	M8	60	14	30	16.3	5
AM80	130	12	165	4.5	200	392	M10	92	19	40	21.8	6
AM90	130	12	165	4.5	200	392	M10	92	24	50	27.3	8
AM100	180	15	215	5	250	426	M12	126	28	60	31.3	8
AM112	180	15	215	5	250	426	M12	126	28	60	31.3	8
AM132S/M	230	16	265	5	300	479	M12	179	38	80	41.3	10
AM132ML	230	16	265	5	300	479	M12	179	38	80	41.3	10

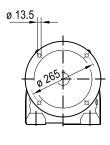
01 009 01 07


20

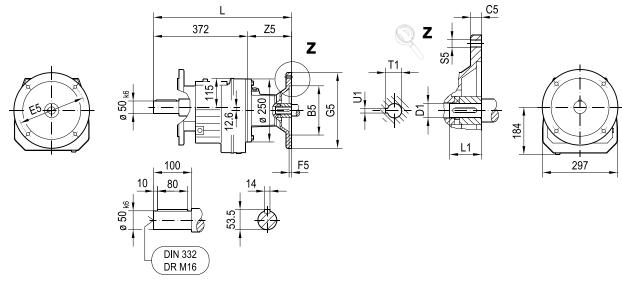


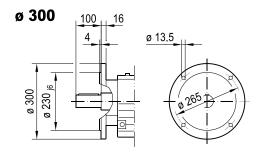
(→ [] 7.2.10)	B5	C5	E5	F5	G5	L	S5	Z5	D1	L1	T1	U1
AM63	95	10	115	3.5	140	360	M8	60	11	23	12.8	4
AM71	110	10	130	4	160	360	M8	60	14	30	16.3	5
AM80	130	12	165	4.5	200	392	M10	92	19	40	21.8	6
AM90	130	12	165	4.5	200	392	M10	92	24	50	27.3	8
AM100	180	15	215	5	250	426	M12	126	28	60	31.3	8
AM112	180	15	215	5	250	426	M12	126	28	60	31.3	8
AM132S/M	230	16	265	5	300	479	M12	179	38	80	41.3	10
AM132ML	230	16	265	5	300	479	M12	179	38	80	41.3	10

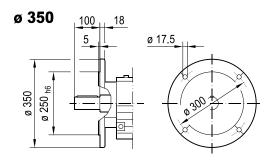

01 034 02 01


R87..

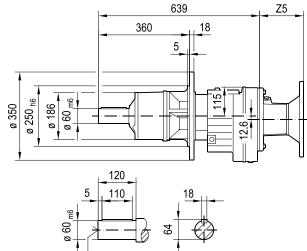
R87F..

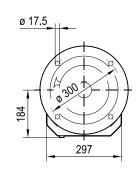


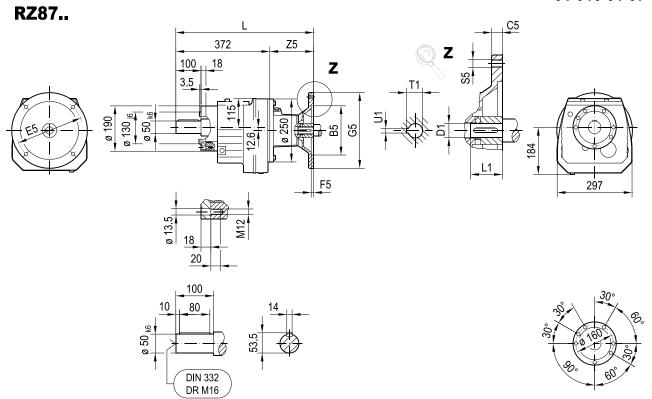



(→ [] 7.2.10)	B5	C5	E5	F5	G5	L	S5	Z5	D1	L1	T1	U1
AM80	130	12	165	4.5	200	459	M10	87	19	40	21.8	6
AM90	130	12	165	4.5	200	459	M10	87	24	50	27.3	8
AM100	180	15	215	5	250	493	M12	121	28	60	31.3	8
AM112	180	15	215	5	250	493	M12	121	28	60	31.3	8
AM132S/M	230	16	265	5	300	546	M12	174	38	80	41.3	10
AM132ML	230	16	265	5	300	546	M12	174	38	80	41.3	10
AM160	250	18	300	6	350	604	M16	232	42	110	45.3	12
AM180	250	18	300	6	350	604	M16	232	48	110	51.8	14

01 035 02 01

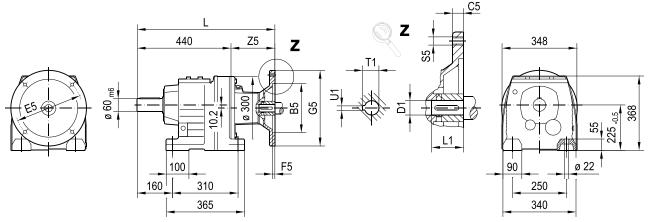

RF87..

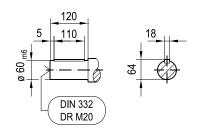




DIN 332 DR M20

(→ [7.2.10)	B5	C5	E5	F5	G5	L	S5	Z5	D1	L1	T1	U1
AM80	130	12	165	4.5	200	459	M10	87	19	40	21.8	6
AM90	130	12	165	4.5	200	459	M10	87	24	50	27.3	8
AM100	180	15	215	5	250	493	M12	121	28	60	31.3	8
AM112	180	15	215	5	250	493	M12	121	28	60	31.3	8
AM132S/M	230	16	265	5	300	546	M12	174	38	80	41.3	10
AM132ML	230	16	265	5	300	546	M12	174	38	80	41.3	10
AM160	250	18	300	6	350	604	M16	232	42	110	45.3	12
AM180	250	18	300	6	350	604	M16	232	48	110	51.8	14

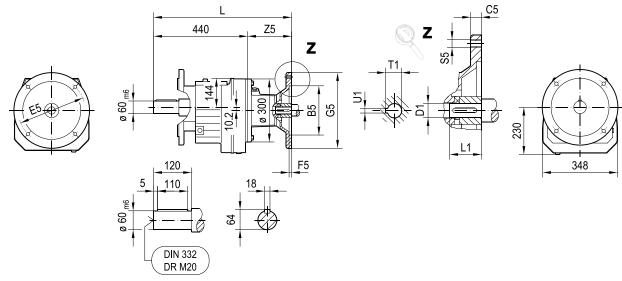

01 010 01 07

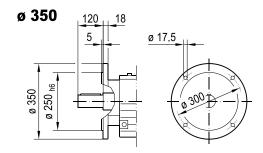


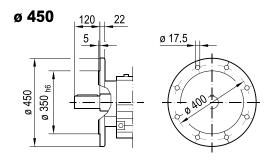
(→ [] 7.2.10)	B5	C5	E5	F5	G5	L	S5	Z 5	D1	L1	T1	U1
AM80	130	12	165	4.5	200	459	M10	87	19	40	21.8	6
AM90	130	12	165	4.5	200	459	M10	87	24	50	27.3	8
AM100	180	15	215	5	250	493	M12	121	28	60	31.3	8
AM112	180	15	215	5	250	493	M12	121	28	60	31.3	8
AM132S/M	230	16	265	5	300	546	M12	174	38	80	41.3	10
AM132ML	230	16	265	5	300	546	M12	174	38	80	41.3	10
AM160	250	18	300	6	350	604	M16	232	42	110	45.3	12
AM180	250	18	300	6	350	604	M16	232	48	110	51.8	14

01 036 02 01

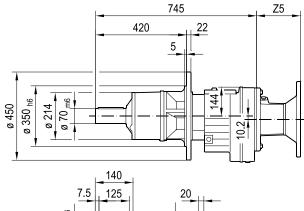
R97..

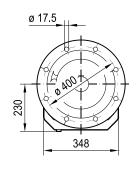


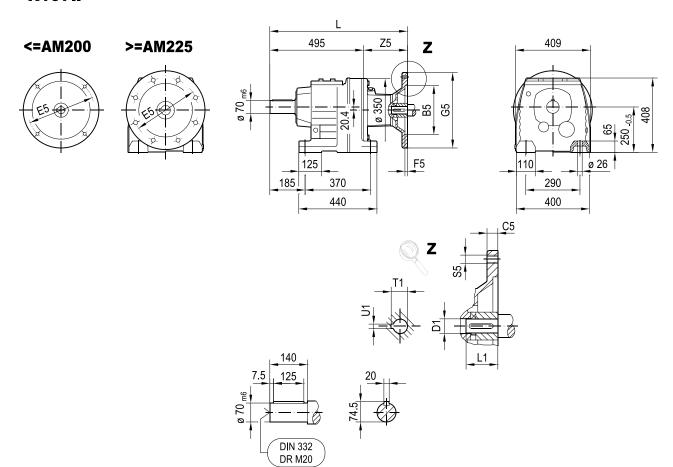



(→ [] 7.2.10)	B5	C5	E5	F5	G5	L	S5	Z5	D1	L1	T1	U1
AM100	180	15	215	5	250	556	M12	116	28	60	31.3	8
AM112	180	15	215	5	250	556	M12	116	28	60	31.3	8
AM132S/M	230	16	265	5	300	609	M12	169	38	80	41.3	10
AM132ML	230	16	265	5	300	609	M12	169	38	80	41.3	10
AM160	250	18	300	6	350	667	M16	227	42	110	45.3	12
AM180	250	18	300	6	350	667	M16	227	48	110	51.8	14
AM200	300	20	350	7	400	708	M16	268	55	110	59.3	16

01 037 02 01

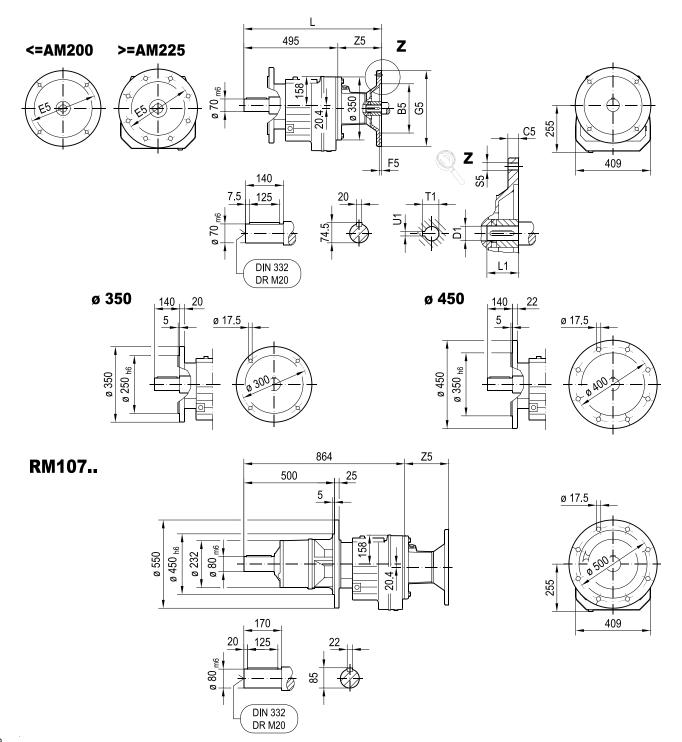

RF97..




DIN 332 DR M20

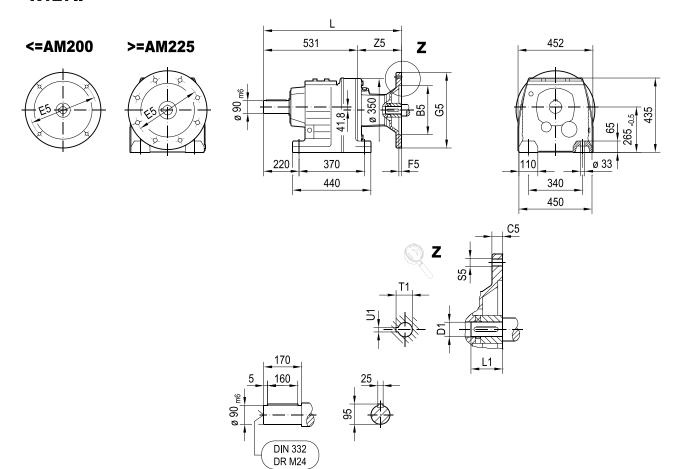
(→ [] 7.2.10)	B5	C5	E5	F5	G5	L	S5	Z 5	D1	L1	T1	U1
AM100	180	15	215	5	250	556	M12	116	28	60	31.3	8
AM112	180	15	215	5	250	556	M12	116	28	60	31.3	8
AM132S/M	230	16	265	5	300	609	M12	169	38	80	41.3	10
AM132ML	230	16	265	5	300	609	M12	169	38	80	41.3	10
AM160	250	18	300	6	350	667	M16	227	42	110	45.3	12
AM180	250	18	300	6	350	667	M16	227	48	110	51.8	14
AM200	300	20	350	7	400	708	M16	268	55	110	59.3	16

01 038 02 01


R107..

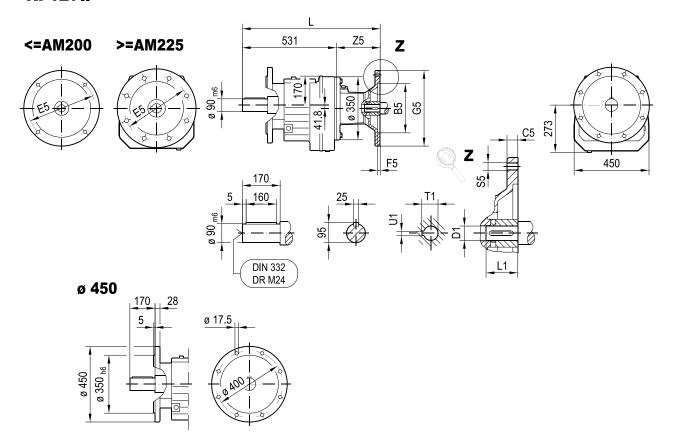
(→ [] 7.2.10)	B5	C5	E5	F5	G5	L	S5	Z 5	D1	L1	T1	U1
AM100	180	15	215	5	250	605	M12	110	28	60	31.3	8
AM112	180	15	215	5	250	605	M12	110	28	60	31.3	8
AM132S/M	230	16	265	5	300	658	M12	163	38	80	41.3	10
AM132ML	230	16	265	5	300	658	M12	163	38	80	41.3	10
AM160	250	18	300	6	350	716	M16	221	42	110	45.3	12
AM180	250	18	300	6	350	716	M16	221	48	110	51.8	14
AM200	300	20	350	7	400	757	M16	262	55	110	59.3	16
AM225	350	22	400	7	450	772	M16	277	60	140	64.4	18

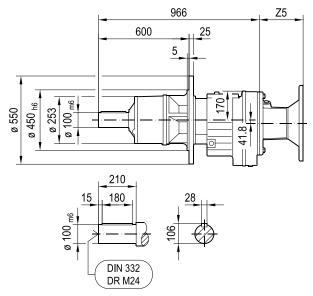
01 039 02 01

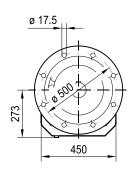

RF107...

(→ [] 7.2.10)	B5	C5	E5	F5	G5	L	S5	Z 5	D1	L1	T1	U1
AM100	180	15	215	5	250	605	M12	110	28	60	31.3	8
AM112	180	15	215	5	250	605	M12	110	28	60	31.3	8
AM132S/M	230	16	265	5	300	658	M12	163	38	80	41.3	10
AM132ML	230	16	265	5	300	658	M12	163	38	80	41.3	10
AM160	250	18	300	6	350	716	M16	221	42	110	45.3	12
AM180	250	18	300	6	350	716	M16	221	48	110	51.8	14
AM200	300	20	350	7	400	757	M16	262	55	110	59.3	16
AM225	350	22	400	7	450	772	M16	277	60	140	64.4	18

01 149 01 15


R127..


(→ [] 7.2.10)	B5	C5	E5	F5	G5	L	S5	Z 5	D1	L1	T1	U1
AM100	180	15	215	5	250	641	M12	110	28	60	31.3	8
AM112	180	15	215	5	250	641	M12	110	28	60	31.3	8
AM132S/M	230	16	265	5	300	694	M12	163	38	80	41.3	10
AM132ML	230	16	265	5	300	694	M12	163	38	80	41.3	10
AM160	250	18	300	6	350	752	M16	221	42	110	45.3	12
AM180	250	18	300	6	350	752	M16	221	48	110	51.8	14
AM200	300	20	350	7	400	793	M16	262	55	110	59.3	16
AM225	350	22	400	7	450	808	M16	277	60	140	64.4	18

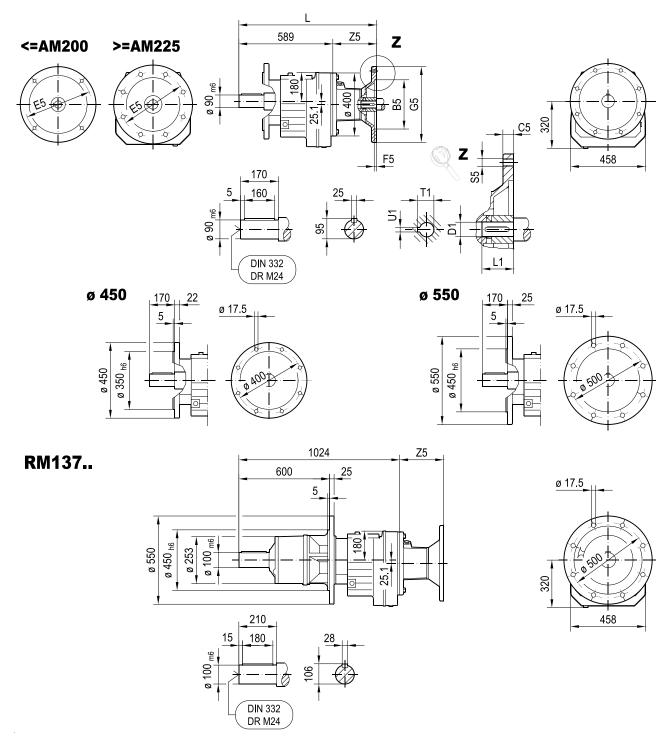

01 150 01 15

RF127..

RM127..

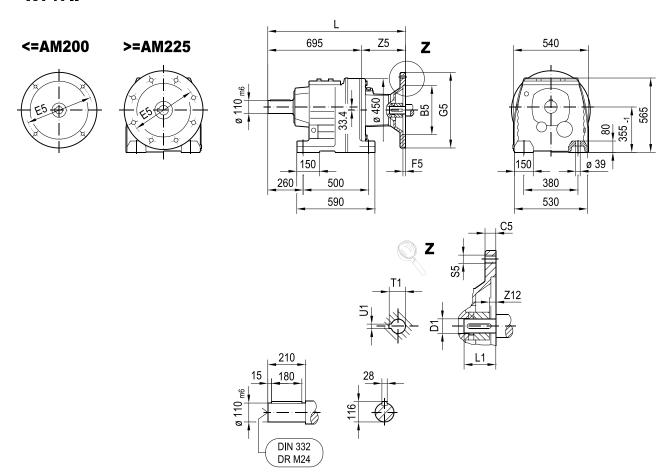
B5	C5	E5	F5	G5	L	S5	Z 5	D1	L1	T1	U1
180	15	215	5	250	641	M12	110	28	60	31.3	8
180	15	215	5	250	641	M12	110	28	60	31.3	8
230	16	265	5	300	694	M12	163	38	80	41.3	10
230	16	265	5	300	694	M12	163	38	80	41.3	10
250	18	300	6	350	752	M16	221	42	110	45.3	12
250	18	300	6	350	752	M16	221	48	110	51.8	14
300	20	350	7	400	793	M16	262	55	110	59.3	16
350	22	400	7	450	808	M16	277	60	140	64.4	18
	180 180 230 230 250 250 300	180 15 180 15 230 16 230 16 250 18 250 18 300 20	180 15 215 180 15 215 230 16 265 230 16 265 250 18 300 250 18 300 300 20 350	180 15 215 5 180 15 215 5 230 16 265 5 230 16 265 5 230 16 265 5 250 18 300 6 250 18 300 6 300 20 350 7	180 15 215 5 250 180 15 215 5 250 230 16 265 5 300 230 16 265 5 300 250 18 300 6 350 250 18 300 6 350 300 20 350 7 400	180 15 215 5 250 641 180 15 215 5 250 641 230 16 265 5 300 694 230 16 265 5 300 694 250 18 300 6 350 752 250 18 300 6 350 752 300 20 350 7 400 793	180 15 215 5 250 641 M12 180 15 215 5 250 641 M12 230 16 265 5 300 694 M12 230 16 265 5 300 694 M12 250 18 300 6 350 752 M16 250 18 300 6 350 752 M16 300 20 350 7 400 793 M16	180 15 215 5 250 641 M12 110 180 15 215 5 250 641 M12 110 230 16 265 5 300 694 M12 163 230 16 265 5 300 694 M12 163 250 18 300 6 350 752 M16 221 250 18 300 6 350 752 M16 221 300 20 350 7 400 793 M16 262	180 15 215 5 250 641 M12 110 28 180 15 215 5 250 641 M12 110 28 230 16 265 5 300 694 M12 163 38 230 16 265 5 300 694 M12 163 38 250 18 300 6 350 752 M16 221 42 250 18 300 6 350 752 M16 221 48 300 20 350 7 400 793 M16 262 55	180 15 215 5 250 641 M12 110 28 60 180 15 215 5 250 641 M12 110 28 60 230 16 265 5 300 694 M12 163 38 80 230 16 265 5 300 694 M12 163 38 80 250 18 300 6 350 752 M16 221 42 110 250 18 300 6 350 752 M16 221 48 110 300 20 350 7 400 793 M16 262 55 110	180 15 215 5 250 641 M12 110 28 60 31.3 180 15 215 5 250 641 M12 110 28 60 31.3 230 16 265 5 300 694 M12 163 38 80 41.3 230 16 265 5 300 694 M12 163 38 80 41.3 250 18 300 6 350 752 M16 221 42 110 45.3 250 18 300 6 350 752 M16 221 48 110 51.8 300 20 350 7 400 793 M16 262 55 110 59.3

01 040 02 01


R137..

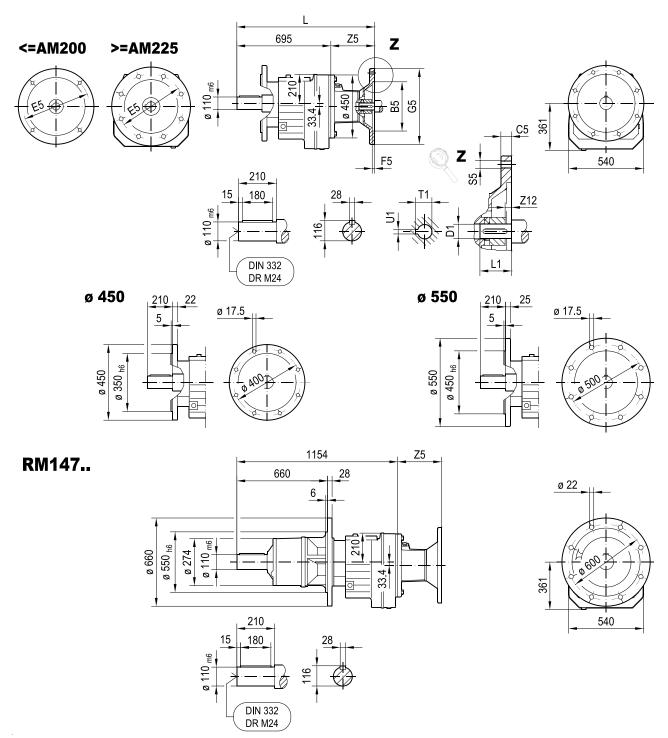
(→ []] 7.2.10)	B5	C5	E5	F5	G5	L	S5	Z 5	D1	L1	T1	U1
AM132S/M	230	16	265	5	300	745	M12	156	38	80	41.3	10
AM132ML	230	16	265	5	300	745	M12	156	38	80	41.3	10
AM160	250	18	300	6	350	803	M16	214	42	110	45.3	12
AM180	250	18	300	6	350	803	M16	214	48	110	51.8	14
AM200	300	20	350	7	400	844	M16	255	55	110	59.3	16
AM225	350	22	400	7	450	859	M16	270	60	140	64.4	18

01 041 02 01


RF137..

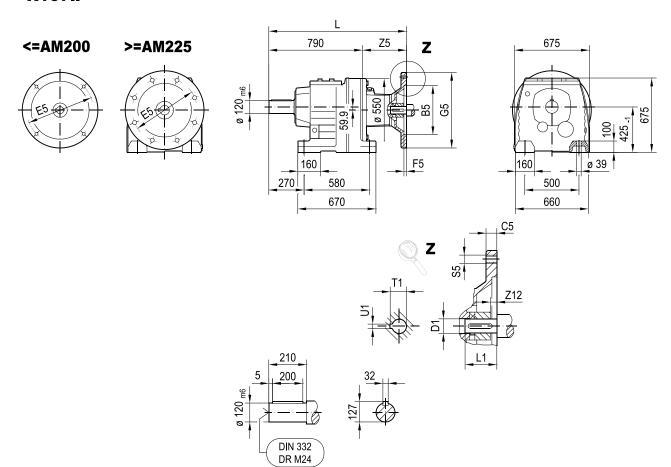
(→ [] 7.2.10)	B5	C5	E5	F5	G5	L	S5	Z5	D1	L1	T1	U1
AM132S/M	230	16	265	5	300	745	M12	156	38	80	41.3	10
AM132ML	230	16	265	5	300	745	M12	156	38	80	41.3	10
AM160	250	18	300	6	350	803	M16	214	42	110	45.3	12
AM180	250	18	300	6	350	803	M16	214	48	110	51.8	14
AM200	300	20	350	7	400	844	M16	255	55	110	59.3	16
AM225	350	22	400	7	450	859	M16	270	60	140	64.4	18

01 042 02 01


R147..

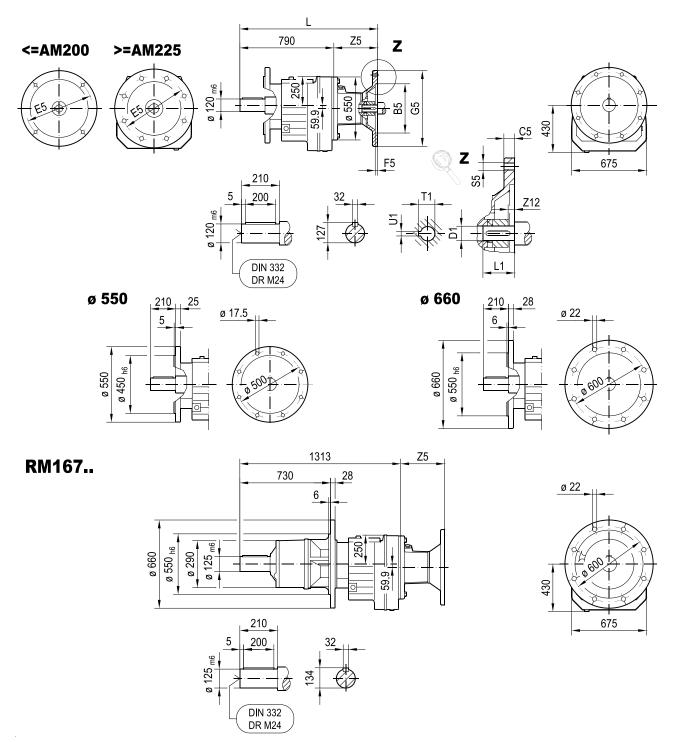
(→ [] 7.2.10)	B5	C5	E5	F5	G5	L	S5	Z5	Z12	D1	L1	T1	U1
AM132ML	230	16	265	5	300	843	M12	148	0	38	80	41.3	10
AM160	250	18	300	6	350	901	M16	206	0	42	110	45.3	12
AM180	250	18	300	6	350	901	M16	206	0	48	110	51.8	14
AM200	300	20	350	7	400	942	M16	247	0	55	110	59.3	16
AM225	350	22	400	7	450	957	M16	262	0	60	140	64.4	18
AM250	450	25	500	7	550	1031	M16	336	19	65	140	69.4	18
AM280	450	25	500	7	550	1031	M16	336	19	75	140	79.9	20

01 043 02 01


RF147..

(→ [] 7.2.10)	B5	C5	E5	F5	G5	L	S5	Z5	Z12	D1	L1	T1	U1
AM132ML	230	16	265	5	300	843	M12	148	0	38	80	41.3	10
AM160	250	18	300	6	350	901	M16	206	0	42	110	45.3	12
AM180	250	18	300	6	350	901	M16	206	0	48	110	51.8	14
AM200	300	20	350	7	400	942	M16	247	0	55	110	59.3	16
AM225	350	22	400	7	450	957	M16	262	0	60	140	64.4	18
AM250	450	25	500	7	550	1031	M16	336	19	65	140	69.4	18
AM280	450	25	500	7	550	1031	M16	336	19	75	140	79.9	20

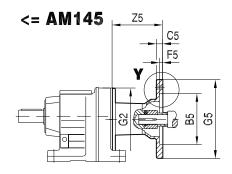
01 044 02 01

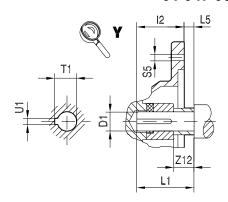

R167..

(→ [] 7.2.10)	B5	C5	E5	F5	G5	L	S5	Z 5	Z12	D1	L1	T1	U1
AM160	250	18	300	6	350	988	M16	198	0	42	110	45.3	12
AM180	250	18	300	6	350	988	M16	198	0	48	110	51.8	14
AM200	300	20	350	7	400	1029	M16	239	0	55	110	59.3	16
AM225	350	22	400	7	450	1044	M16	254	0	60	140	64.4	18
AM250	450	25	500	7	550	1118	M16	328	19	65	140	69.4	18
AM280	450	25	500	7	550	1118	M16	328	19	75	140	79.9	20

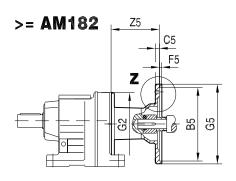
01 045 02 01

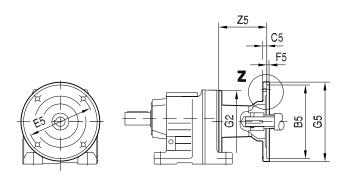
RF167...

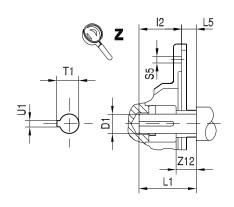



(→ [] 7.2.10)	B5	C5	E5	F5	G5	L	S5	Z 5	Z12	D1	L1	T1	U1
AM160	250	18	300	6	350	988	M16	198	0	42	110	45.3	12
AM180	250	18	300	6	350	988	M16	198	0	48	110	51.8	14
AM200	300	20	350	7	400	1029	M16	239	0	55	110	59.3	16
AM225	350	22	400	7	450	1044	M16	254	0	60	140	64.4	18
AM250	450	25	500	7	550	1118	M16	328	19	65	140	69.4	18
AM280	450	25	500	7	550	1118	M16	328	19	75	140	79.9	20

8.5 Dimension sheets for adapters for mounting NEMA motors (AM..)


01 047 03 01

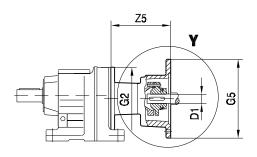


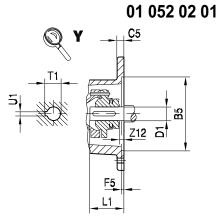


		B5	C5	E5	F5	G2	G5	12	L5	S5	Z 5	Z12	D1	L1	T1	U1
	AM56	114.3	11	149.2	4.5	120	170	52.55	-4.8	10.5	93.5	16.5	15.875	47.75	18.1	4.76
R27 R37	AM143	114.3	12	149.2	4.5	120	170	54.1	3.05	10.5	117	14.5	22.225	57.15	24.7	4.76
K31	AM145	114.3	12	149.2	4.5	120	170	54.1	3.05	10.5	117	14.5	22.225	57.15	24.7	4.76
	AM56	114.3	11	149.2	4.5	160	170	52.55	-4.8	10.5	87	16.5	15.875	47.75	18.1	4.76
	AM143	114.3	12	149.2	4.5	160	170	54.1	3.05	10.5	110.5	14.5	22.225	57.15	24.7	4.76
R47	AM145	114.3	12	149.2	4.5	160	170	54.1	3.05	10.5	110.5	14.5	22.225	57.15	24.7	4.76
R57 R67	AM182	215.9	10	184	5	160	228	66.675	3	15	147.5	16.5	28.575	69.85	31.7	6.35
	AM184	215.9	10	184	5	160	228	66.675	3	15	147.5	16.5	28.575	69.85	31.7	6.35
	AM213/215	215.9	11	184	5	160	228	79.55	6.3	15	200.5	15.8	34.925	85.85	38.7	7.94
	AM56	114.3	11	149.2	4.5	200	170	52.55	-4.8	10.5	81	16.5	15.875	47.75	18.1	4.76
	AM143	114.3	12	149.2	4.5	200	170	54.1	3.05	10.5	103.5	14.5	22.225	57.15	24.7	4.76
D 77	AM145	114.3	12	149.2	4.5	200	170	54.1	3.05	10.5	103.5	14.5	22.225	57.15	24.7	4.76
R77	AM182	215.9	10	184	5	200	228	66.675	3	15	139.5	16.5	28.575	69.85	31.7	6.35
	AM184	215.9	10	184	5	200	228	66.675	3	15	139.5	16.5	28.575	69.85	31.7	6.35
	AM213/215	215.9	11	184	5	200	228	79.55	6.3	15	188.5	15.8	34.925	85.85	38.7	7.94
	AM143	114.3	12	149.2	4.5	250	170	54.1	3.05	10.5	98.5	14.5	22.225	57.15	24.7	4.76
	AM145	114.3	12	149.2	4.5	250	170	54.1	3.05	10.5	98.5	14.5	22.225	57.15	24.7	4.76
	AM182	215.9	10	184	5	250	228	66.675	3	15	134.5	16.5	28.575	69.85	31.7	6.35
R87	AM184	215.9	10	184	5	250	228	66.675	3	15	134.5	16.5	28.575	69.85	31.7	6.35
	AM213/215	215.9	11	184	5	250	228	79.55	6.3	15	183.5	15.8	34.925	85.85	38.7	7.94
	AM254/256	215.9	12	184	5	250	228	95.3	6.3	15	234	9	41.275	101.6	45.8	9.53
	AM284/286	266.7	15	228.6	5	250	286	111.05	6.3	15	241	15.8	47.625	117.35	53.4	12.7

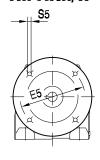
01 048 03 01

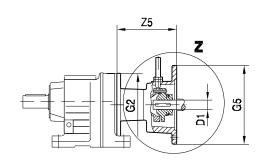


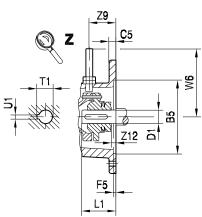



		B5	C5	E5	F5	G2	G5	12	L5	S5	Z 5	Z12	D1	L1	T1	U1
	AM182	215.9	10	184	5	300	228	66.675	3	15	129.5	16.5	28.575	69.85	31.7	6.35
	AM184	215.9	10	184	5	300	228	66.675	3	15	129.5	16.5	28.575	69.85	31.7	6.35
	AM213/215	215.9	11	184	5	300	228	79.55	6.3	15	178.5	15.8	34.925	85.85	38.7	7.94
R97	AM254/256	215.9	12	184	5	300	228	95.3	6.3	15	229	9	41.275	101.6	45.8	9.53
	AM284/286	266.7	15	228.6	5	300	286	111.05	6.3	15	236	15.8	47.625	117.35	53.4	12.7
	AM324/326	317.5	17	279.4	5	300	356	127.05	6	17.5	296	34.8	53.975	133.35	60	12.7
	AM364/365	317.5	17	279.4	5	300	356	143.05	6	17.5	296	34.8	60.325	149.35	67.6	15.875
	AM182	215.9	10	184	5	350	228	66.675	3	15	123.5	16.5	28.575	69.85	31.7	6.35
	AM184	215.9	10	184	5	350	228	66.675	3	15	123.5	16.5	28.575	69.85	31.7	6.35
D 40=	AM213/215	215.9	11	184	5	350	228	79.55	6.3	15	172.5	15.8	34.925	85.85	38.7	7.94
R107 R127	AM254/256	215.9	12	184	5	350	228	95.3	6.3	15	223	9	41.275	101.6	45.8	9.53
13127	AM284/286	266.7	15	228.6	5	350	286	111.05	6.3	15	230	15.8	47.625	117.35	53.4	12.7
	AM324/326	317.5	17	279.4	5	350	356	127.05	6.3	17.5	290	34.8	53.975	133.35	60	12.7
	AM364/365	317.5	17	279.4	5	350	356	143.05	6.3	17.5	290	34.8	60.325	149.35	67.6	15.875
	AM213/215	215.9	11	184	5	400	228	79.55	6.3	15	165.5	15.8	34.925	85.85	38.7	7.94
	AM254/256	215.9	12	184	5	400	228	95.3	6.3	15	216	9	41.275	101.6	45.8	9.53
R137	AM284/286	266.7	15	228.6	5	400	286	111.05	6.3	15	223	15.8	47.625	117.35	53.4	12.7
	AM324/326	317.5	17	279.4	5	400	356	127.05	6.3	17.5	283	34.8	53.975	133.35	60	12.7
	AM364/365	317.5	17	279.4	5	400	356	143.05	6.3	17.5	283	34.8	60.325	149.35	67.6	15.875
	AM213/215	215.9	11	184	5	450	228	79.55	6.3	15	157.5	15.8	34.925	85.85	38.7	7.94
	AM254/256	215.9	12	184	5	450	228	95.3	6.3	15	208	9	41.275	101.6	45.8	9.53
R147	AM284/286	266.7	15	228.6	5	450	286	111.05	6.3	15	215	15.8	47.625	117.35	53.4	12.7
	AM324/326	317.5	17	279.4	5	450	356	127.05	6.3	17.5	275	34.8	53.975	133.35	60	12.7
	AM364/365	317.5	17	279.4	5	450	356	143.05	6.3	17.5	275	34.8	60.325	149.35	67.6	15.875
	AM254/256	215.9	12	184	5	550	228	95.3	6.3	15	200	9	41.275	101.6	45.8	9.53
R167	AM284/286	266.7	15	228.6	5	550	286	111.05	6.3	15	207	15.8	47.625	117.35	53.4	12.7
13107	AM324/326	317.5	17	279.4	5	550	356	127.05	6.3	17.5	267	34.8	53.975	133.35	60	12.7
	AM364/365	317.5	17	279.4	5	550	356	143.05	6.3	17.5	267	34.8	60.325	149.35	67.6	15.875

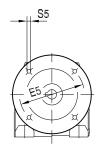
8.6 Dimension sheets for adapters with slip clutch (AR..)

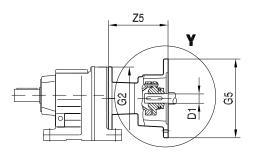


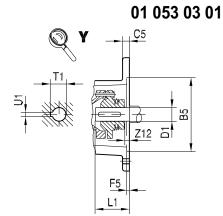




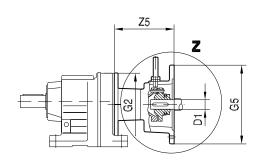
R.. AR../W

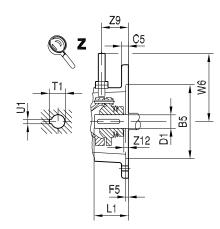




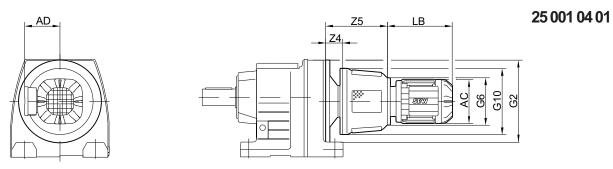


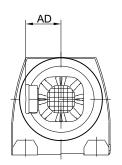
		B5	C5	E5	F5	G2	G5	S5	W6	Z 5	Z 9	Z12	D1	L1	T1	U1
	AR71	110	10	130	3.5		160	M8		104			14	30	16.3	5
R27 R37	AR80	130	12	165	4.5	120	200	M10	120	140.5	37	0	19	40	21.8	6
1407	AR90	130	12	105	4.5		200	IVITO		140.5			24	50	27.3	8
	AR71	110	10	130	3.5		160	M8	120	97.5			14	30	16.3	5
R47	AR80	130	12	165	4.5		200	M10		134	37	0	19	40	21.8	6
R57	AR90	130	12	103	4.5	160	200	IVITO		134			24	50	27.3	8
R67	AR100	180	5	215	5		250	M12	130	174.5	52	5.5	28	60	31.3	8
	AR112	100	3	213	3		230	IVIIZ	130	174.5	52	5.5	20	00	31.3	0
	AR71	110	10	130	3.5		160	M8	120	91.5			14	30	16.3	5
	AR80	130	12	165	4.5		200	M10		127	37	0	19	40	21.8	6
	AR90	130	12	103	4.5		200	IVITO		121			24	50	27.3	8
R77	AR100	180	15	215		200	250	M12	130	166.5	52	5.5	28	60	31.3	8
	AR112	100	13	213			230	IVIIZ	130	100.5	52	5.5	20	00	31.3	0
	AR132S/M	230	16	265	5		300	M12	145	234	72	5	38	80	41.3	10
	AR132ML	230	10	200	3		300	IVIIZ	143	254	- 12	3	50		41.5	10
	AR80	130	12	165	4.5		200	M10	120	122	37	0	19	40	21.8	6
	AR90	130	12	103	4.5		200	IVITO	120	122	31	U	24	50	27.3	8
	AR100	180	15	215	5		250	M12	130	161.5	52	5.5	28	60	31.3	8
R87	AR112	100	10	213	3	250	230	IVIIZ	130	101.5	52	5.5		- 00	31.3	
1307	AR132S/M	230	16	265	5	250	300	M12	145	229	72	5	38	80	41.3	10
	AR132ML	230	10	200	3		300	IVIIZ	1+3	229	12	3		- 00	71.3	10
	AR160	250	18	300	6		350	M16	165	306.5	105	35	42	110	45.3	12
	AR180	250	10	300	U		330	IVITO	103	300.5	103	33	48	110	51.8	14

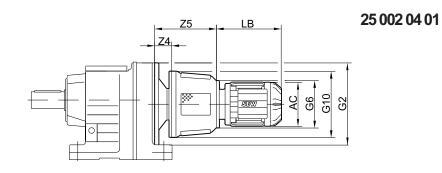




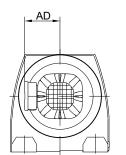
R.. AR../W

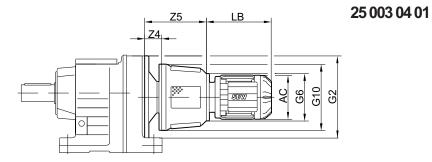


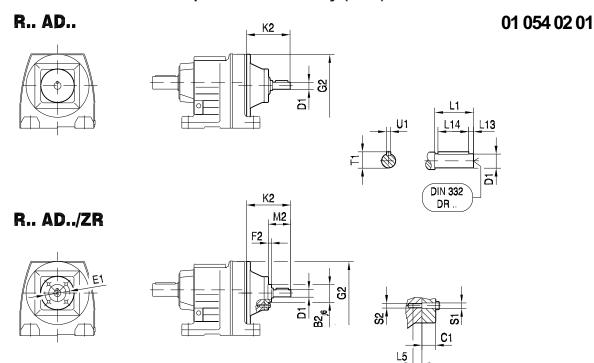



		B5	C5	E5	F5	G2	G5	S5	W6	Z 5	Z 9	Z12	D1	L1	T1	U1
	AR100	400	45	045	_		050	1440	400	450.5			-00	00	04.0	
	AR112	180	15	215	5		250	M12	130	156.5	52	5.5	28	60	31.3	8
D 07	AR132S/M	000	40	005	_	000	000	1440	445	004	70	_		00	44.0	40
R97	AR132ML	230	16	265	5	300	300	M12	145	224	72	5	38	80	41.3	10
	AR160	250	40	200	•		250	MAC	105	204 5	105	35	42	110	45.3	12
	AR180	250	18	300	6		350	M16	165	301.5	105	35	48	110	51.8	14
	AR100	400	45	045	_		250	1440	400	450.5			00	00	04.0	
	AR112	180	15	215	5			M12	130	150.5	52	5.5	28	60	31.3	8
R107	AR132S/M	220	40	200	_	250	200	MAO	4.45	240	70	_	20	00	44.0	40
R127	AR132ML	230	16	265	5	350	300	M12	145	218	72	5	38	80	41.3	10
	AR160	250	18	300	6		250	MAC	105	205.5	405	35	42	110	45.3	12
	AR180	250	18	300	О		350	M16	165	295.5	105	35	48	110	51.8	14
	AR132S/M	220	16	205	_		200	1440	4.45	244	70	_	38	00	41.3	40
D 407	AR132ML	230	16	265	5	400	300	M12	145	211	72	5	38	80	41.3	10
R137	AR160	250	18	300	6	400	350	M16	165	288.5	105	35	42	110	45.3	12
	AR180	250	10	300	0		350	IVI IO	100	200.5	105	33	48	110	51.8	14
	AR132S/M	230	16	265	5		300	M12	145	203	72	5	38	80	41.3	10
D 447	AR132ML	230	10	200	5	450	300	IVIIZ	145	203	12	5	30	00	41.3	10
R147	AR160	250	18	300	6	400	250	MAG	165	200 5	105	25	42	110	45.3	12
	AR180	250	18	300	6		350	M16	100	280.5	105	35	48	110	51.8	14
R167	AR160	250	18	300	6	550	350	M16	165	272.5	105	35	42	110	45.3	12
K76/	AR180	250	ĺβ	300	6	550	350	IVITO	100	2/2.5	105	35	48	110	51.8	14

8.7 Dimension sheets for adapters with hydraulic start-up coupling (R..AT..)



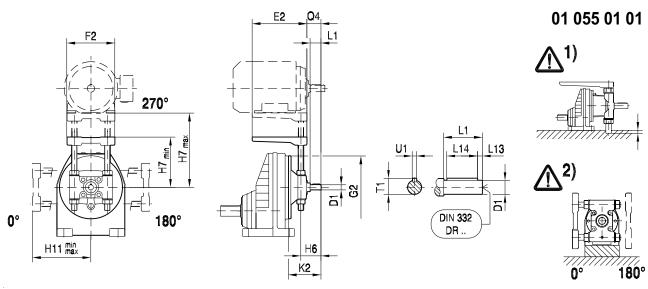

			AC	AD	G6	G10	LB	Z4	Z 5	G2
		DRN71M	139	118			222			
		DRN80MK					241			
		DRN80MS	156	128			259			
	AT311	DRN80M			000	000	287	0.7	000	
	AT312	DRN90S	470	440	200	280	281	97	286	
R67		DRN90L	179	140			313			160
		DRN100LM	197	157			359			
		DRN112M	221	170			387			
		DRN90L	179	140			313			
	AT321 AT322	DRN100LS	107	157	250	350	309	97	333	
	AISZZ	DRN100L	197	157			359			
		DRN71M	139	118			222			
		DRN80MK					241			
		DRN80MS	156	128			259			
	AT311	DRN80M			000	000	287		070	
	AT312	DRN90S	470	440	200	280	281	89	278	
		DRM90L	179	140			313			
D 77		DRN100LM	197	157			359			000
R77		DRN112M	221	170			387			200
	AT321	DRN132S	221	170	250	350	437	93	328	
		DRN90L	179	140			313			
		DRN100LS	407	457			309			
	AT421 AT422	DRN100L	197	157	250	350	359	133	368	
	A1422	DRN112M	224	470			387			
		DRN132S	221	170			437			
		DRN90S	170	140			281			
	AT311	DRM90L	179	140	200	280	313	84	272	
	AT312	DRN100LM	197	157	200	280	359	84	273	
		DRN112M	221	170			387			
	AT321	DRN132S	221	170	250	350	437	84	320	
		DRN90L	179	140			313			
		DRN100LS	407	457			309			
R87	AT421 AT422	DRN100L	197	157	250	350	359	128	363	250
	A1422	DRN112M	224	470			387			
		DRN132S	221	170			437			
		DRN132S	221	170			437			
		DRN132M	004	200			439			
	AT541 AT542	DRN132L	261	228	350	470	464	159	478	
	A 1 342	DRN160M	040	050			532			
		DRN160L	316	253			532			


			AC	AD	G6	G10	LB	Z4	Z 5	G2
		DRN90S	4=0				281			
	AT311	DRM90L	179	140			313			
	AT312	DRN100LM	197	157	200	280	359	79	268	
		DRN112M	221	170	1		387			
	AT321	DRN132S	221	170	250	350	437	79	315	1
		DRN90L	179	140			313			1
	AT421	DRN100LS	407	457	050	050	309	400	050	
D 07	AT422	DRN100L	197	157	250	350	359	123	358	300
R97		DRN112M	221	170			387			300
		DRN132S	221	170			437			
		DRN132M	261	220			439			
		DRN132L	261	228			464			
	AT541 AT542	DRN160M	240	050	350	470	532	154	473	
	A1042	DRN160L	316	253			532			
		DRN180M	357	268			557			
		DRN180L	357	200			557			
	AT311	DRN100LM	197	157	200	280	359	73	262	
	AT312	DRN112M	221	170	200	200	387	73	202	
	AT321	DRN132S	221	170	250	350	437	73	309	
		DRN100LS	197	157			309			
	AT421	DRN100L	137	137	250	350	359	117	352	
	AT422	DRN112M	221	170	230	330	387	117	332	
R107		DRN132S	221	170			437			350
R127		DRN132S	221	170			437			330
		DRN132M	261	228			439			
	AT541	DRN132L	201	220			464			
	AT541	DRN160M	316	253	350	470	532	148	467	
		DRN160L	0.0	200			532			
		DRN180M	357	268			557			
		DRN180L		200			557			
		DRN100LS	197	157			309			
	AT421	DRN100L			250	350	359	110	345	
	AT422	DRN112M	221	170			387			
		DRN132S					437			
		DRN132S	221	170	-		437			
R137		DRN132M	261	228			439			400
	AT541	DRN132L			_		464			
	AT542	DRN160M	316	253	350	470	532	141	460	
		DRN160L	-		-		532			
		DRN180M	357	268			557			
		DRN180L					557			

			AC	AD	G6	G10	LB	Z4	Z5	G2
		DRN132M	201	220			439			
		DRN132L	261	228			464			
D 447	AT541	DRN160M	240	252	250	470	532	400	450	450
R147	AT542	DRN160L	316	253	350	470	532	133	452	450
		DRN180M	257	200			557			
		DRN180L	357	268			557			
		DRN160M	040	050			532			
D 467	AT541	DRN160L	316	253	250	470	532	405	444	550
R167	AT542	DRN180M	257	200	350	470	557	125	444	550
		DRN180L	357	268			557			

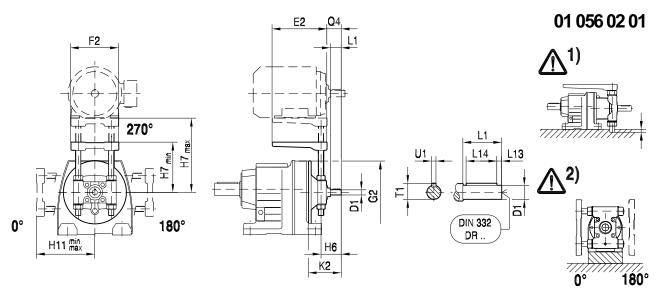
8.8 Dimension sheets for input shaft assembly (AD..)

		B2	C1	E1	F2	G2	K2	L5	M2	S1	S2	D1	L1	L13	L14	T1	U1
R27	AD1	-	-	-	-	400	102	-	-	-	-	16	40	4	32	18	5
R37	AD2, AD2/ZR	55	13.5	80	8	120	130	12	50	9	M8	19	40	4	32	21.5	6
R47	AD2, AD2/ZR	55	13.5	80	8		123	12	50	9	M8	19	40	4	32	21.5	6
R57 R67	AD3, AD3/ZR	70	15.5	105	8	160	159	16	60	11	M10	24	50	5	40	27	8
	AD2, AD2/ZR	55	13.5	80	8		116	12	50	9	M8	19	40	4	32	21.5	6
R77	AD3, AD3/ZR	70	15.5	105	8	200	151	16	60	11	M10	24	50	5	40	27	8
	AD4, AD4/ZR	100	16	130	13		224	20	95.5	13.5	M12	38	80	5	70	41	10
	AD2, AD2/ZR	55	13.5	80	8		111	12	50	9	M8	19	40	4	32	21.5	6
D 07	AD3, AD3/ZR	70	15.5	105	8	050	156	16	70	11	M10	28	60	5	50	31	8
R87	AD4, AD4/ZR	100	16	130	13	250	219	20	95.5	13.5	M12	38	80	5	70	41	10
	AD5, AD5/ZR	120	24	180	11		292	20	126	13.5	M12	42	110	10	70	45	12
	AD3, AD3/ZR	70	15.5	105	8		151	16	70	11	M10	28	60	5	50	31	8
D 07	AD4, AD4/ZR	100	16	130	13	300	214	20	95.5	13.5	M12	38	80	5	70	41	10
R97	AD5, AD5/ZR	120	24	180	11	300	287	20	126	13.5	M12	42	110	10	70	45	12
	AD6, AD6/ZR	130	22.5	200	11		327	26	130.5	17.5	M16	48	110	10	80	51.5	14
	AD3, AD3/ZR	70	15.5	105	8		145	16	70	11	M10	28	60	5	50	31	8
R107	AD4, AD4/ZR	100	16	130	13	350	208	20	95.5	13.5	M12	38	80	5	70	41	10
R127	AD5, AD5/ZR	120	24	180	11	350	281	20	126	13.5	M12	42	110	10	70	45	12
	AD6, AD6/ZR	130	22.5	200	11		321	26	130.5	17.5	M16	48	110	10	80	51.5	14
	AD4, AD4/ZR	100	16	130	13		201	20	95.5	13.5	M12	38	80	5	70	41	10
D 427	AD5, AD5/ZR	120	24	180	11	400	274	20	126	13.5	M12	42	110	10	70	45	12
R137	AD6, AD6/ZR	130	22.5	200	11	400	314	26	130.5	17.5	M16	48	110	10	80	51.5	14
	AD7, AD7/ZR	125	19	190	13		308	30	133	22	M20	55	110	10	90	59	16
	AD4, AD4/ZR	100	16	130	13		193	20	95.5	13.5	M12	38	80	5	70	41	10
	AD5, AD5/ZR	120	24	180	11		266	20	126	13.5	M12	42	110	10	70	45	12
R147	AD6, AD6/ZR	130	22.5	200	11	450	306	26	130.5	17.5	M16	48	110	10	80	51.5	14
	AD7, AD7/ZR	125	19	190	13		300	30	133	22	M20	55	110	10	90	59	16
	AD8, AD8/ZR	120	22.5	210	5		383	19.5	155	13.5	M12	70	140	15	110	74.5	20


8

R.. helical gear units

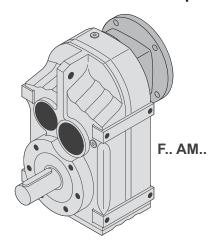
Dimension sheets for input shaft assembly (AD..)

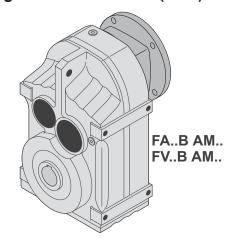

		B2	C1	E1	F2	G2	K2	L5	M2	S1	S2	D1	L1	L13	L14	T1	U1
	AD5, AD5/ZR	120	24	180	11		258	20	126	13.5	M12	42	110	10	70	45	12
D 407	AD6, AD6/ZR	130	22.5	200	11		298	26	130.5	17.5	M16	48	110	10	80	51.5	14
R167	AD7, AD7/ZR	125	19	190	13	550	292	30	133	22	M20	55	110	10	90	59	16
	AD8, AD8/ZR	120	22.5	210	5		374	19.5	155	13.5	M12	70	140	15	110	74.5	20

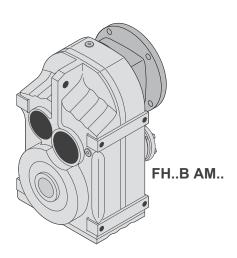
Dimension sheets for input shaft assembly with motor platform (AD../P) 8.9

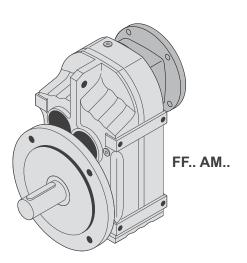
		E2	F2	G2	Н6	H7 min	H7 max	H11 min	H11 max	K2	Q4	D1	L1	L13	L14	T1	U1	<u>^</u>
						1111111	IIIax		IIIax									(→ 🖺 71)
DV 57	AD2/P	195	180	160	65	110	165	115	165	123	43	19	40	4	32	21.5	6	
RX57	AD3/P	230	240	160	80	110	175	120	175	159	54	24	50	5	40	27	8	1), 2)
DV 07	AD2/P	195	180	400	65	110	165	125	165	123	43	19	40	4	32	21.5	6	
RX67	AD3/P	230	240	160	80	110	175	130	175	159	54	24	50	5	40	27	8	1)
	AD2/P	195	180		65	130	165	140	200	116	43	19	40	4	32	21.5	6	
RX77	AD3/P	230	240	200	80	135	175	145	175	151	54	24	50	5	40	27	8	
	AD4/P	345	291		118	145	210	160	210	224	83	38	80	5	70	41	10	1), 2)
	AD2/P	195	180		65	160	200	170	200	111	43	19	40	4	32	21.5	6	
DV 0=	AD3/P	230	240	0-0	90	165	230	175	230	156	64	28	60	5	50	31	8	
RX87	AD4/P	345	291	250	118	170	210	195	280	219	83	38	80	5	70	41	10	
	AD5/P	430	355		153	175	250	200	250	292	113	42	110	10	70	45	12	1), 2)
	AD3/P	230	240		90	185	230	205	320	151	64	28	60	5	50	31	8	
RX97	AD4/P	345	291	300	118	195	280	220	280	214	83	38	80	5	70	41	10	
	AD5/P	430	355		153	195	250	225	325	287	113	42	110	10	70	45	12	
	AD3/P	230	240		90	210	320	225	320	145	64	28	60	5	50	31	8	
DV 407	AD4/P	345	291	050	118	220	280	270	360	208	83	38	80	5	70	41	10	
RX107	AD5/P	430	355	350	153	220	325	275	325	281	113	42	110	10	70	45	12	
	AD6/P	495	457		163	245	310	250	310	321	114	48	110	10	80	51.5	14	

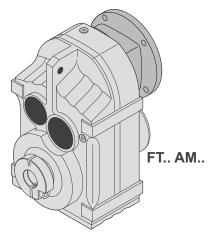
For bore dimensions and weight of the motor platform, refer to the chapter "Bore dimensions and weight" (\rightarrow $\stackrel{\text{le}}{=}$ 70).

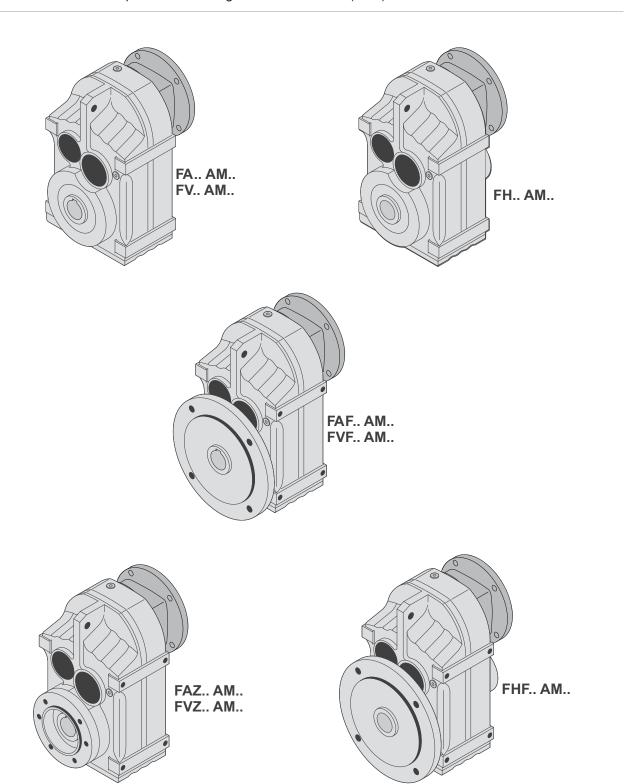


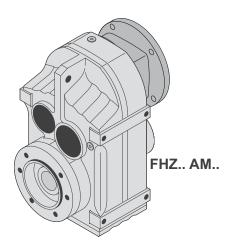

		E2	F2	G2	Н6	H7 min	H7 max	H11 min	H11 max	K2	Q4	D1	L1	L13	L14	T1	U1	<u>^</u> (→ <u></u> 71)
R27	AD2/P	195	180	120	65	100	165	120	165	130	43	19	40	4	32	21.5	6	1), 2)
R37	AD2/P	195	180	120	65	110	165	120	165	130	43	19	40	4	32	21.5	6	1), 2)
R47	AD2/P	195	180	160	65	125	165	135	165	123	43	19	40	4	32	21.5	6	
K47	AD3/P	230	240	160	80	130	175	140	175	159	54	24	50	5	40	27	8	1), 2)
R57	AD2/P	195	180	160	65	125	165	145	200	123	43	19	40	4	32	21.5	6	
K5/	AD3/P	230	240	160	80	130	175	155	230	159	54	24	50	5	40	27	8	1), 2)
R67	AD2/P	195	180	160	65	125	165	155	200	123	43	19	40	4	32	21.5	6	
K07	AD3/P	230	240	100	80	130	175	160	230	159	54	24	50	5	40	27	8	1), 2)
	AD2/P	195	180		65	135	200	165	200	116	43	19	40	4	32	21.5	6	1)
R77	AD3/P	230	240	200	80	145	175	170	230	151	54	24	50	5	40	27	8	
	AD4/P	345	291		118	150	210	175	210	224	83	38	80	5	70	41	10	1), 2)
	AD2/P	195	180		65	155	200	195	260	111	43	19	40	4	32	21.5	6	
D 07	AD3/P	230	240	250	90	165	230	185	230	156	64	28	60	5	50	31	8	
R87	AD4/P	345	291	250	118	165	210	205	280	219	83	38	80	5	70	41	10	
	AD5/P	430	355		153	210	250	215	250	292	113	42	110	10	70	45	12	1), 2)
	AD3/P	230	240		90	180	230	235	320	151	64	28	60	5	50	31	8	
R97	AD4/P	345	291	300	118	190	280	240	280	214	83	38	80	5	70	41	10	
	AD5/P	430	355		153	190	250	245	325	287	113	42	110	10	70	45	12	
	AD3/P	230	240		90	230	320	230	320	145	64	28	60	5	50	31	8	
R107	AD4/P	345	291	350	118	230	280	265	360	208	83	38	80	5	70	41	10	
R127	AD5/P	430	355	350	153	225	325	270	325	281	113	42	110	10	70	45	12	1)
	AD6/P	495	457		163	245	310	250	310	321	114	48	110	10	80	51.5	14	
	AD4/P	345	291		118	245	280	280	360	201	83	38	80	5	70	41	10	
R137	AD5/P	430	355	400	153	245	325	285	325	274	113	42	110	10	70	45	12	1)
	AD6/P	495	457		163	270	335	275	335	314	114	48	110	10	80	51.5	14	
	AD4/P	345	291		118	270	360	315	360	193	83	38	80	5	70	41	10	
D 147	AD5/P	430	355	150	153	275	325	330	405	266	113	42	110	10	70	45	12	
R147	AD6/P	495	457	450	163	295	360	310	360	306	114	48	110	10	80	51.5	14	
	AD7/P	650	570		170	300	365	300	365	300	112	55	110	10	90	59	16	3)
	AD5/P	430	355		153	345	405	385	495	258	113	42	110	10	70	45	12	
R167	AD6/P	495	457	550	163	375	475	375	475	298	114	48	110	10	80	51.5	14	
	AD7/P	650	570		170	375	475	380	475	292	112	55	110	10	90	59	16	

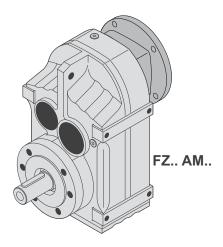

For bore dimensions and weight of the motor platform, refer to the chapter "Bore dimensions and weight" (\rightarrow \bigcirc 70).

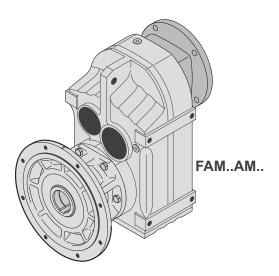

F.. parallel-shaft helical gear units 9

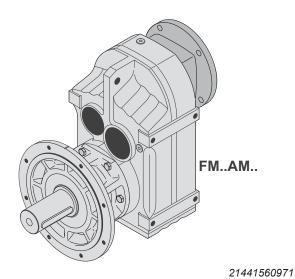

Selection tables for adapters for mounting IEC/NEMA motors (AM..) 9.1






9007220696297099




21441558539

F.. parallel-shaft helical gear units

Selection tables for adapters for mounting IEC/NEMA motors (AM..)

1		nin ⁻¹ , M _{a m}		ı				130 N
i	n_a	M _{a max G}	F _{Ra} 1)	φ _(/R)		A	M	
	min ⁻¹	Nm	N	•	63	71	80	90
					Ę	2 2		
4.16	337	87	1810	-	21	21	61	61
4.93	284	96	1860	-	25	25	73	73
5.27	266	100	1880	-	27	27	78	78
6.17	227	109	1940	-	31	31	91	91
6.91	203	114	2000	-	35	35	102	102
8.13	172	123	2080	-	41	41	121	121
9.40	149	130	2170	-	48	48	130	130
9.88	142	130	2400	-	50	50	130	130
10.55	133	130	2490	-	54	54	130	130
12.35	113	130	2700	-	63	63	130	130
13.84	101	130	2860	-	71	71	130	130
16.28	86	130	3110	-	83	83	130	130
18.84	74	130	3340	-	97	97	130	130
20.15	69	130	3450	-	103	103	130	130
23.25	60	130	3690	-	119	119	130	
27.18	52	130	3970	-	130	130		
29.56	47	130	4120	-	130	130		
·					Ę	3		
33.83	41	130	4380	-	130	130	130	130
38.33	37	130	4500	-	130	130	130	130
40.89	34	130	4500	-	130	130	130	130
46.78	30	130	4500	-	130	130	130	130
50.19	28	130	4500	-	130	130	130	130
56.62	25	130	4500	-	130	130	130	130
63.86	22	130	4500	-	130	130	130	130
72.37	19	130	4500	-	130	130	130	130
77.21	18	130	4500	-	130	130	130	130
88.32	16	130	4500	-	130	130	130	130
94.76	15	130	4500	-	130	130	130	130
109.90	13	130	4500	-	130	130	130	
129.09	11	130	4500	-	130	130		
140.74	9.9	130	4500	-	130	130		
F27, m /	kg					A	M	
	IE	C	s		63	71	80	90
			-23	2	7.9	8.1	10	11

F27, m /kg				A	λM	
	IEC	s	63	71	80	90
		∂3 3 2	7.9	8.1	10	11
		₽ 3	8.1	8.4	11	11
FA	NEMA	s	-	56	143	145
		∂3 3 2	-	8.5	10	11
		₽ 3	-	8.7	11	11
FAF: + 0.70 k	g / F: + 0.50	kg / FF: + 1.3 kg)			

i	n _a	M _{a max G}	F _{Ra} 1)	φ _(/R)		A	M	
	min ⁻¹	Nm	N	• (1.5)	63	71	80	90
						3 2		
						1	1	I
3.77	371	105	2470	12	19	19	55	55
4.22	332	110	2550	11	21	21	62	62
4.90	286	120	2630	11	25	25	72	72
5.21	269	125	2660	10	26	26	77	77
6.05	231	135	2750	10	31	31	90	90
6.74	208	140	2850	10	34	34	100	100
7.44	188	145	2940	10	38	38	110	110
8.01	175	170	2960	7	40	40	119	119
8.97	156	175	3080	7	45	45	133	133
10.42	134	185	3230	7	53	53	155	155
11.08	126	190	3290	7	56	56	165	165
12.87	109	200	3450	7	66	66	191	191
14.33	98	200	3650	6	73	73	200	200
15.81	89	200	3840	6	81	81	200	200
17.03	82	200	3990	6	87	87	200	200
19.27	73	200	4250	6	99	99	200	200
20.57	68	200	4390	6	106	106	200	200
23.63	59	200	4690	6	121	121	200	
						3		
23.88	59	200	4720	8	121	121	200	200
28.09	50	200	5090	8	142	142	200	200
31.69	44	200	5380	8	161	161	200	200
35.91	39	200	5700	8	182	182	200	200
38.31	37	200	5870	8	195	195	200	200
43.83	32	200	6240	8	200	200	200	200
47.02	30	200	6430	8	200	200	200	200
51.70	27	200	6710	7	200	200	200	200
54.54	26	200	6860	8	200	200	200	
58.32	24	200	7000	7	200	200	200	200
66.09	21	200	7000	7	200	200	200	200
70.50	20	200	7000	7	200	200	200	200
80.65	17	200	7000	7	200	200	200	200
86.53	16	200	7000	7	200	200	200	200
100.36	14	200	7000	7	200	200	200	200
117.88	12	200	7000	7	200	200	200	
128.51	11	200	7000	7	200	200		
F37, m			7.000	, ,	200		AM	
37, 1117	_	-						
	IE	C	S		63	71	80	90

F37, m /kg			AM							
	IEC	s	63	71	80	90				
		∂3 3 2	14	14	17	17				
		₽ 3	14	14	17	17				
FA	NEMA s		-	56	143	145				
		∂3 3 2	-	15	17	17				
		A 3	-	15	17	17				
FAF: + 1.5 kg	/ F: + 0.45 kg	g / FF: + 2.3 kg								

F.. parallel-shaft helical gear units

Selection tables for adapters for mounting IEC/NEMA motors (AM..)

	1	nin ⁻¹ , M _{am}		ı	l			400 N
i	n _a	M _{a max G}	F _{Ra} 1)	φ _(/R)			M.	1
	min ⁻¹	Nm	N	•	63	71	80	90
					6	2 2		
4.99	281	320	1160	9	25	25	73	73
5.76	243	340	1180	9	29	29	85	85
6.34	221	350	1230	8	32	32	94	94
7.44	188	380	1190	8	38	38	110	110
7.88	178	380	1280	8	40	40	117	117
8.96	156	330	1970	8	45	45	133	133
10.97	128	400	2060	6	55	55	162	162
12.66	111	400	2320	6	64	64	187	187
13.93	101	400	2510	6	71	71	205	205
16.36	86	400	2840	6	83	83	240	240
17.33	81	400	2960	6	88	88	255	255
19.70	71	400	3230	6	100	100	290	290
21.82	64	400	3460	6	111	111	320	320
25.72	54	400	3850	6	131	131	380	380
29.32	48	400	4170	6	150	150	400	400
30.86	45	400	4300	6	158	158	400	400
					,	3 3		
28.88	48	400	4130	7	145	145	400	400
34.29	41	400	4580	7	173	173	400	400
36.61	38	400	4750	7	185	185	400	400
42.86	33	400	5190	7	215	215	400	400
48.00	29	400	5520	7	240	240	400	400
56.49	25	400	6020	7	285	285	400	400
65.36	21	400	6490	7	330	330	400	400
68.09	21	400	6620	6	340	340	400	400
79.72	18	400	7160	6	400	400	400	400
89.29	16	400	7570	6	400	400	400	400
105.09	13	400	8180	6	400	400	400	400
121.57	12	400	8760	6	400	400	400	400
130.07	11	400	9040	6	400	400	400	400
150.06	9.3	400	9640	6	400	400	400	
175.38	8.0	400	10000	6	400	400		
190.76	7.3	400	10000	6	400	400		
F47, m /	/kg					A	M	
	IE	C	s		63	71	80	90
			0.0	•	10	40	0.4	0.1

F47, m /kg			AM							
	IEC	s	63	71	80	90				
		∂3 3 2	18	19	21	21				
		₽ 3	19	19	22	22				
FA	NEMA	s	-	56	143	145				
		∂3 3 2	-	19	21	21				
		₽ 3	-	20	22	22				
AF: + 2.7 k	g / F: + 0.80 k	g / FF: + 3.9 kg		•	1					

F57, n _e =	= 1400 n	nin ⁻¹ , M _{a n}	_{nax} /Nm								600 Nm
i	n _a	M _{a max G}	F _{Ra} 1)	φ _(/R)				AM			
	min ⁻¹	Nm	N		63	71	80	90	100	112	132S/M
						AN AN	2			1	
5.18	270	415	2020	9	26	26	76	76	210	210	415
5.98	234	420	2240	9	30	30	88	88	240	245	420
6.58	213	420	2430	8	33	33	97	97	255	270	420
7.73	181	420	2760	8	39	39	114	114	285	315	420
8.19	171	420	2880	8	41	41	121	121	295	335	405
9.31	150	420	3170	8	47	47	138	138	320	360	
10.64	132	600	2470	6	53	53	157	157	435	435	600
12.29	114	600	2810	6	62	62	182	182	495	500	600
13.52	104	600	3050	6	68	68	200	200	530	555	600
15.88	88	600	3470	6	80	80	235	235	590	600	600
16.81	83	600	3630	6	85	85	245	245	600	600	600
19.11	73	600	3980	6	97	97	280	280	600	600	
21.17	66	600	4280	6	107	107	310	310	600	600	
24.96	56	575	4970	6	127	127	370	370	575		
28.45	49	535	5690	6	144	144	390	390			
29.94	47	545	5790	6	152	152	395	395			
34.24	41	500	6580	6	174	174	400				
40.13	35	290	8750	6	200	200					
						433	3				
30.15	46	590	5460	7	151	151	440	440	590	590	590
35.79	39	600	5980	7	180	180	525	525	600	600	600
38.21	37	600	6210	7	192	192	560	560	600	600	600
44.73	31	600	6790	7	225	225	600	600	600	600	
50.10	28	600	7230	7	250	250	600	600	600	600	
58.97	24	600	7890	7	295	295	600	600	600		
68.22	21	600	8510	6	340	340	600	600			
72.98	19	600	8810	6	365	365	600	600			
83.46	17	600	9420	6	420	420	600	600	600	600	
93.47	15	600	9960	6	470	470	600	600	600	600	
110.01	13	600	10800	6	550	550	600	600	600		
127.27	11	600	11500	6	600	600	600	600			
136.16	10	600	11500	6	600	600	600	600			
157.09	8.9	600	11500	6	600	600	600				
183.60	7.6	600	11500	6	600	600					
199.70	7.0	600	11500	6	600	600					
FF7 /								A N/I			

F57, m /kg			AM									
	IEC	s	63	71	80	90	100	112	132S/M			
		∂38 2	26	26	29	29	33	33	40			
		A 3	27	27	29	29	34	34	41			
FA	NEMA	s	-	56	143	145	182	184	213/215			
			-	27	29	29	32	32	38			
		₽ 3	-	27	29	29	33	33	39			
ΕΔΕ· + 5.5 kg	/ F· + 0.20 kc	1/FF·+66ka			•							

FAF: + 5.5 kg / F: + 0.20 kg / FF: + 6.6 kg

		nin ⁻¹ , M _{am}						A 10.0			820 Ni
i	n _a	M _{a max G}	F _{Ra} 1)	Φ(/R)		ı	l.	AM	l.	I.	1
	min ⁻¹	Nm	N	'	63	71	80	90	100	112	132S/M
						٩	2				
3.97	353	500	1220	10			58	58	162	162	355
4.66	300	560	1020	9			68	68	190	190	415
5.25	267	590	1010	9			77	77	215	215	470
5.95	235	610	1090	9	30	30	88	88	240	240	515
6.78	206	620	1280	9	34	34	100	100	275	275	550
7.53	186	610	1570	8	38	38	111	111	300	305	585
8.60	163	570	2180	8	43	43	127	127	330	350	540
9.08	154	530	2620	8	45	45	134	134	340	370	515
9.66	145	820	1580	6			141	141	395	395	820
11.31	124	820	1960	6			166	166	460	460	820
12.76	110	820	2260	6			188	188	520	520	820
14.46	97	820	2580	6	72	72	210	210	590	590	820
16.48	85	820	2940	6	83	83	240	240	675	675	820
18.29	77	820	3230	6	92	92	270	270	740	750	820
20.90	67	820	3620	5	105	105	305	305	800	820	820
22.05	63	820	3780	5	111	111	325	325	820	820	820
25.13	56	820	4190	5	127	127	370	370	820	820	
27.41	51	820	4470	5	138	138	405	405	820	820	
32.08	44	820	5000	5	162	162	475	475	800		
36.30	39	820	5440	5	183	183	510	510			
						a gr	3				
34.01	41	740	5730	6	169	169	495	495	740	740	740
39.26	36	780	5980	6	196	196	570	570	780	780	780
43.20	32	820	6080	6	215	215	630	630	820	820	820
50.74	28	820	6710	6	250	250	740	740	820	820	820
53.73	26	820	6940	6	265	265	785	785	820	820	820
61.07	23	820	7480	6	305	305	820	820	820	820	
67.65	21	820	7930	6	335	335	820	820	820	820	
79.76	18	820	8680	6	395	395	820	820	820		
90.59	15	820	9290	6	450	450	820	820	820	820	820
95.94	15	820	9570	6	475	475	820	820	820	820	820
109.04	13	820	10200	6	545	545	820	820	820	820	
120.79	12	820	10800	6	600	600	820	820	820	820	
142.40	9.8	820	11700	6	710	710	820	820	820		
162.31	8.6	820	12400	6	810	810	820	820			
170.85	8.2	820	12700	6	820	820	820	820			
195.39	7.2	820	13000	6	820	820	820				
228.99	6.1	820	13000	6	820	820					

F67, m /kg				AM									
	IEC	s	63	71	80	90	100	112	132S/M				
		∂ β 2	30	30	32	32	37	37	44				
		₽ 3	31	31	33	33	38	38	45				
FA	NEMA	s	-	56	143	145	182	184	213/215				
		∂ 3 2	-	30	32	32	36	36	41				
		₽ 3	-	31	33	33	37	37	43				
FAF: + 6.3 kg / F: + 2.8 kg / FF: + 8.9 kg													

F77, n _e =	= 1400 m	nin ⁻¹ , M _{a m}	_{nax} /Nm									1500 Nm
i	n _a	M _{a max G}	F _{Ra} 1)	φ _(/R)				Α	M			
	min ⁻¹	Nm	N	•	63	71	80	90	100	112	132S/M	132ML
'						6	28 2					
4.28	327	1010	630	8					174	174	380	380
5.16	271	1080	640	8					210	210	460	460
5.76	243	1080	930	8			84	84	235	235	515	515
6.64	211	1080	1310	8			97	97	270	270	590	590
7.39	189	1080	1610	7			108	108	300	300	660	660
8.26	169	1080	1940	7	41	41	121	121	335	335	740	740
9.30	151	1080	2300	7	46	46	136	136	380	380	810	810
10.93	128	1500	2080	6					445	445	970	970
12.20	115	1500	2450	5			178	178	495	495	1090	1090
14.06	100	1500	2940	5			205	205	570	570	1250	1250
15.64	90	1500	3330	5			225	225	635	635	1400	1400
17.49	80	1500	3750	5	86	86	255	255	715	715	1500	1500
19.70	71	1500	4220	5	97	97	290	290	800	800	1500	1500
21.43	65	1500	4560	5	106	106	315	315	870	870	1500	
25.50	55	1500	5300	5	126	126	375	375	1010	1040	1500	
28.75	49	1430	6190	5	142	142	420	420	1080	1140		
31.51	44	1380	6870	5	156	156	460	460	1130	1160		
36.58	38	1110	8990	5	181	181	535	535	1040			
							3 3					
25.54	55	1450	5560	6			365	365	1020	1020	1450	1450
29.91	47	1500	6010	6			430	430	1200	1200	1500	1500
33.74	41	1500	6580	6			485	485	1360	1360	1500	1500
38.23	37	1500	7190	6	187	187	555	555	1500	1500	1500	1500
43.58	32	1500	7850	6	210	210	630	630	1500	1500	1500	1500
48.37	29	1500	8410	6	235	235	700	700	1500	1500	1500	
55.27	25	1500	9140	6	270	270	800	800	1500	1500	1500	
58.32	24	1500	9450	6	285	285	840	840	1500	1500	1500	
66.46	21	1500	10200	6	325	325	960	960	1500	1500		
72.50	19	1500	10700	6	355	355	1050	1050	1500	1500		
75.02	19	1500	11000	6	365	365	1090	1090	1500	1500	1500	
85.52	16	1500	11800	6	420	420	1240	1240	1500	1500	1500	
94.93	15	1500	12500	5	465	465	1380	1380	1500	1500	1500	
108.46	13	1500	13400	5	530	530	1500	1500	1500	1500	1500	
114.45	12	1500	13800	5	560	560	1500	1500	1500	1500	1500	
130.42	11	1500	14800	5	640	640	1500	1500	1500	1500		
142.27 166.47	9.8 8.4	1500 1500	15400 16700	5 5	695 810	695 810	1500 1500	1500 1500	1500 1500	1500		
188.40	7.4	1500	17700	5	920	920	1500	1500	1300			
198.31	7.4	1500	18100	5	920	920	1500	1500				
225.79	6.2	1500	19300	5	1100	1100	1500	1500				
262.93	5.3	1500	20000	5	1290	1290	1300					
281.71	5.0	1500	20000	5	1380	1380						
201./1	5.0	1500	20000	၂	1300	1360						

9

F.. parallel-shaft helical gear units

Selection tables for adapters for mounting IEC/NEMA motors (AM..)

F77, m /kg				АМ								
	IEC	s	63	71	80	90	100	112	132S/M	132ML		
		₽ 2	52	52	55	55	59	59	66	66		
		A 3	53	54	56	56	60	60	67	68		
FA	NEMA	s	-	56	143	145	182	184	213/215	-		
		<i>₽</i> 2	-	53	55	55	58	58	64	-		
		₽ 3	-	54	56	56	59	59	65	-		
FAF: + 6.6 kg	/ F: + 3.8 kg	/ FF: + 14 kg				•	1					

	= 1400 m	nin ⁻¹ , M _{a m}		1								3000 Ni
i	n _a	M _{a max G}	F _{Ra} 1)	φ _(/R)			1	A	M	ı	1	1
	min ⁻¹	Nm	N	•	80	90	100	112	132S/M	132ML	160	180
						d] 8 2					
4.12	340	1460	3020	7					365	365	755	900
4.92	285	1530	3310	7					435	435	900	1080
5.63	249	1530	3850	7			225	225	500	500	1030	1240
6.65	211	1530	4550	7			265	265	590	590	1220	1460
7.35	190	1530	5000	7	106	106	295	295	655	655	1350	1530
8.29	169	1530	5550	7	120	120	335	335	740	740	1530	1530
9.58	146	2880	275	7					850	850	1760	2100
11.46	122	3000	575	7					1020	1020	2110	2520
13.12	107	3000	1300	7			530	530	1160	1160	2410	2890
15.48	90	3000	2220	7			625	625	1380	1380	2850	3000
17.12	82	3000	2810	7	245	245	695	695	1530	1530	3000	3000
19.31	73	3000	3540	7	280	280	785	785	1720	1720	3000	3000
21.32	66	3000	4160	7	310	310	860	860	1900	1900	3000	3000
23.68	59	3000	4850	7	345	345	960	960	2120	2120	3000	
26.50	53	3000	5610	7	385	385	1080	1080	2320	2310	3000	
28.78	49	2450	8940	7	420	420	1170	1170	2370			
33.92	41	2610	9340	7	495	495	1370	1380	2440			
						٥	3 3					
29.20	48	2510	8740	8			1160	1160	2510	2510	2510	2510
35.19	40	2610	9610	8			1410	1410	2610	2610	2610	2610
39.30	36	2720	9910	8	560	560	1570	1570	2720	2720	2720	2720
45.28	31	2820	10500	8	645	645	1820	1820	2820	2820	2820	2820
50.36	28	2940	10800	7	725	725	2020	2020	2940	2940	2940	2940
56.75	25	3000	11600	7			2260	2260	3000	3000	3000	
68.40	20	3000	13300	7			2740	2740	3000	3000	3000	
76.39	18	3000	14300	7	1080	1080	3000	3000	3000	3000	3000	
88.01	16	3000	15800	7	1260	1260	3000	3000	3000	3000	3000	
97.89	14	3000	16900	7	1410	1410	3000	3000	3000	3000	3000	
109.49	13	3000	18100	7	1570	1570	3000	3000	3000	3000	3000	
123.29	11	3000	19400	7	1770	1770	3000	3000	3000	3000	3000	
134.16	10	3000	20400	7	1930	1930	3000	3000	3000			
159.61	8.8	3000	22500	7	2300	2300	3000	3000	3000			
179.97	7.8	3000	24100	7	2590	2590	3000	3000				
197.20	7.1	3000	25300	7	2840	2840	3000	3000				
228.93	6.1	3000	27300	7	3000	3000	3000					
255.37	5.5	3000	28900	7	3000	3000						
270.68	5.2	3000	29800	7	3000	3000						

F87, m /kg			AM									
	IEC	s	80	90	100	112	132S/M	132ML	160	180		
		<i>⊋</i> ββ 2	92	92	97	97	105	105	120	120		
		₽ 3	95	95	100	100	105	105	125	125		
FA	NEMA	s	143	145	182	184	213/215	-	254/256	284/286		
		∂3/3 2	92	92	96	96	100	-	115	120		
		₽\$\$ 3	95	95	99	99	105	-	120	120		
EAE . 40 l	E . E Z .	FF . 04 !										

F.. parallel-shaft helical gear units

Selection tables for adapters for mounting IEC/NEMA motors (AM..)

F97, n _e :	= 1400 n	nin ⁻¹ , M _{am}	_{nax} /Nm								4300 Nr		
i	n _a	M _{a max G}	F _{Ra} 1)	φ _(/R)	φ _(/R)								
	min ⁻¹	Nm	N	•	100	112	132S/M	132ML	160	180	200		
						a g	2						
3.87	362	1800	10300	9				340	705	840	1590		
4.57	306	2050	10200	9			400	400	830	1000	1880		
5.23	268	2150	10700	9			460	460	960	1150	2150		
6.17	227	2250	11400	9			545	545	1130	1350	2250		
7.07	198	2360	11900	9	280	280	625	625	1300	1550	2360		
8.22	170	2360	13100	8	330	330	730	730	1510	1810	2360		
9.06	155	2360	13900	9	365	365	800	800	1670	1980	2360		
11.16	125	4100	9710	6			980	980	2040	2450	4100		
12.77	110	4300	10100	6			1130	1130	2340	2800	4300		
15.06	93	4300	11700	6			1330	1330	2760	3310	4300		
17.25	81	4300	13100	6	690	690	1530	1530	3170	3790	4300		
20.07	70	4300	14700	6	810	810	1780	1780	3690	4300	4300		
22.11	63	4300	15700	6	890	890	1970	1970	4070	4300	4300		
24.92	56	4300	17100	6	1010	1010	2220	2220	4300	4300			
27.44	51	4300	18200	6	1110	1110	2450	2450	4300	4300			
30.39	46	4300	19500	6	1230	1230	2710	2710	4300				
33.91	41	4300	20900	6	1370	1370	3000	2980	4300				
36.64	38	3070	27000	6	1480	1480	3050						
43.28	32	3070	29300	6	1750	1750	3070						
						a a	3						
32.50	43	4300	20300	6			2840	2840	4300	4300	4300		
38.86	36	4300	22700	6			3400	3400	4300	4300	4300		
44.49	31	4300	24500	6	1770	1770	3910	3910	4300	4300	4300		
52.49	27	4300	26900	6	2090	2090	4300	4300	4300	4300	4300		
58.06	24	4300	28500	6	2320	2320	4300	4300	4300	4300	4300		
65.47	21	4300	30400	6	2620	2620	4300	4300	4300	4300			
72.29	19	4300	32000	6	2890	2890	4300	4300	4300	4300			
75.63	19	4300	32800	6			4300	4300	4300	4300	4300		
80.31	17	4300	33800	6	3220	3220	4300	4300	4300				
86.59	16	4300	35100	6	3440	3440	4300	4300	4300	4300	4300		
89.85	16	4300	35700	6	3600	3600	4300	4300	4300				
97.58	14	4300	37200	6	3910	3910	4300						
102.16	14	4300	38100	6	4080	4080	4300	4300	4300	4300	4300		
112.99	12	4300	40000	6	4300	4300	4300	4300	4300	4300	4300		
127.42	11	4300	40000	6	4300	4300	4300	4300	4300	4300			
140.71	9.9	4300	40000	6	4300	4300	4300	4300	4300	4300			
156.30	9.0	4300	40000	6	4300	4300	4300	4300	4300				
174.87	8.0	4300	40000	6	4300	4300	4300	4300	4300				
189.92	7.4	4300	40000	6	4300	4300	4300						
223.88	6.3	4300	40000	6	4300	4300	4300						
253.41	5.5	4300	40000	6	4300	4300							
276.77	5.1	4300	40000	6	4300	4300							

F.. parallel-shaft helical gear units Selection tables for adapters for mounting IEC/NEMA motors (AM..)

F97, m /kg			AM								
	IEC	s	100	112	132S/M	132ML	160	180	200		
		∂3 3 2	160	160	165	165	185	185	200		
		₽ 3	165	165	170	170	190	190	205		
FA	NEMA	s	182	184	213/215	-	254/256	284/286	324/326		
		∂3 3 2	160	160	165	-	180	180	195		
		₽ 3	165	165	170	-	185	185	205		
FAF: + 22 kg / F: + 7.5 kg / FF: + 40 kg											

F.. parallel-shaft helical gear units

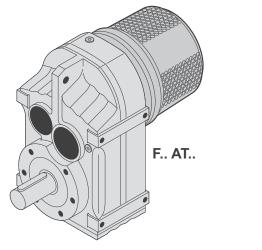
Selection tables for adapters for mounting IEC/NEMA motors (AM..)

F107, n _e = 1400 min ⁻¹ , M _{a max} /Nm											7840 Nm		
i	n _a	M _{a max G}	F _{Ra} 1)	φ _(/R)	AM								
	min ⁻¹	Nm	N		100	112	132S/M	132ML	160	180	200	225	
	∂ 33 2												
5.032)	278	4600	4520	7						1090	2060	2060	
6.22	225	4600	6920	7				540	1130	1350	2550	2550	
7.40	189	4600	8400	7			645	645	1350	1620	3050	3050	
8.37	167	4800	8720	7			735	735	1530	1830	3450	3450	
9.69	144	4910	9670	7			850	850	1770	2120	3840	3840	
9.962)	141	6500	6200	5						2160	4080	4080	
12.33	114	7000	6580	5				1070	2240	2690	5070	5070	
14.67	95	7680	6050	5			1280	1280	2670	3210	6040	6040	
16.58	84	7840	6870	5			1450	1450	3030	3630	6830	6830	
19.20	73	7840	8600	5			1690	1690	3520	4210	7600	7600	
21.76	64	7840	10100	5	860	860	1920	1920	3990	4780	7840	7840	
25.14	56	7840	12000	5	1000	1000	2230	2230	4620	5530	7840	7840	
27.57	51	7840	13200	5	1100	1100	2450	2450	5070	6000	7840	7840	
33.79	41	7400	17700	5	1360	1360	3010	3010	6220	6270			
						4	3						
31.80	44	7680	15800	6				2730	5720	6850	7680	7680	
37.61	37	7680	18300	6			3250	3250	6780	7680	7680	7680	
43.03	33	7680	20300	6			3730	3730	7680	7680	7680	7680	
50.73	28	7680	23000	6			4420	4420	7680	7680	7680	7680	
58.12	24	7680	25300	6	2280	2280	5080	5080	7680	7680	7680	7680	
67.62	21	7680	28000	6	2670	2670	5930	5930	7680	7680	7680	7680	
74.52	19	7680	29900	6	2950	2950	6540	6540	7680	7680	7680	7680	
83.99	17	7680	32200	6	3340	3340	7390	7390	7680	7680			
88.49	16	7680	33200	5			7680	7680	7680	7680	7680	7680	
92.47	15	7680	34100	6	3690	3690	7680	7680	7680	7680			
101.38	14	7680	36000	5	3980	3980	7680	7680	7680	7680	7680	7680	
117.94	12	7680	39300	5	4660	4660	7680	7680	7680	7680	7680	7680	
129.97	11	7680	41400	5	5160	5160	7680	7680	7680	7680	7680	7680	
146.49	9.6	7680	44200	5	5840	5840	7680	7680	7680	7680			
161.28	8.7	7680	46600	5	6430	6430	7680	7680	7680	7680			
178.64	7.8	7680	49100	5	7130	7130	7680	7680	7680				
199.31	7.0	7680	52000	5	7680	7680	7680	7680	7680				
215.37	6.5	7680	54000	5	7680	7680	7680						
254.40	5.5	7680	58600	5	7680	7680	7680						

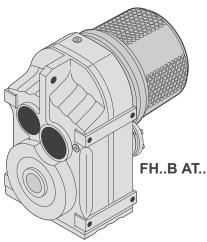
F107, m /kg		АМ								
	IEC	s	100	112	132S/M	132ML	160	180	200	225
		∂3 8 2	230	230	235	235	255	255	270	275
		₽ 3	240	240	245	245	260	265	280	285
FA	NEMA	s	182	184	213/215	-	254/256	284/286	324/326	364/365
		∂3/3) 2	230	230	230	-	250	250	265	265
		₽ 3	240	240	240	-	255	260	275	275
FAF: + 21 kg	FAF: + 21 kg / F: + 17 kg / FF: + 44 kg									

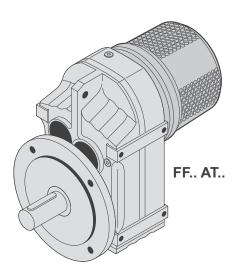
F127, n _e	= 1400	min ⁻¹ , M _a										12000 Nn
i	n _a	M _{a max G}	F _{Ra} 1)	φ _(/R)				Α	M			
	min ⁻¹	Nm	N	•	132S/M	132ML	160	180	200	225	250	280
						d	2 2					•
4.68	299	6000	5630	7					1910	1910	2990	2990
5.52	254	6000	7110	7				1190	2260	2260	3260	3530
6.80	206	7000	5670	7		585	1230	1470	2790	2790	3540	4350
7.88	178	6000	10600	6	685	685	1430	1720	3240	3240	3680	5060
8.86	158	7000	8410	6	770	770	1610	1930	3640	3640	5690	5690
10.19	137	9500	1090	5				2200	4170	4170	6010	6520
12.54	112	10000	2670	5		1080	2270	2720	5150	5150	6540	8040
14.55	96	11000	475	5	1260	1260	2640	3170	5980	5980	6790	9340
16.36	86	11000	3190	5	1420	1420	2980	3570	6730	6730	10500	10500
18.87	74	11000	6620	5	1650	1650	3450	4130	7650	7650	11000	11000
21.38	65	12000	4380	5	1880	1880	3910	4690	7890	7890	12000	12000
24.57	57	8500	18400	5	2170	2170	4510	5390	8160	8160		
26.86	52	8500	19800	5	2380	2380	4930	5900	8300	8300		
						d	3					
25.30	55	12000	7720	5				5410	10200	10200	12000	12000
31.33	45	12000	11100	5		2660	5610	6730	12000	12000	12000	12000
37.28	38	12000	14000	5	3200	3200	6700	8030	12000	12000	12000	12000
42.15	33	12000	16200	5	3630	3630	7590	9100	12000	12000	12000	12000
48.80	29	12000	18900	5	4230	4230	8810	10500	12000	12000	12000	12000
55.31	25	12000	21400	5	4810	4810	10000	11900	12000	12000	12000	12000
63.91	22	12000	24300	5	5580	5580	11500	12000	12000	12000		
70.07	20	12000	26300	5	6130	6130	12000	12000	12000	12000		
75.41	19	12000	27900	5	6500	6500	12000	12000	12000	12000	12000	12000
87.31	16	12000	31200	5	7570	7570	12000	12000	12000	12000	12000	12000
98.95	14	12000	34100	5	8610	8610	12000	12000	12000	12000	12000	12000
114.34	12	12000	37700	5	9990	9990	12000	12000	12000	12000		
125.37	11	12000	40000	5	10900	10900	12000	12000	12000	12000		
153.67	9.1	12000	45500	5	12000	12000	12000	12000				
170.83	8.2	12000	48500	5	12000	12000	12000					
F127, m	/kg							Α	М			

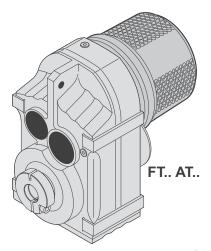
F127, m /kg						А	М				
	IEC	s	132S/M	132ML	160	180	200	225	250	280	
		∂3/3 2	385	385	400	400	410	415	450	450	
F.4		₽ 3	395	395	410	410	425	430	460	460	
FA	NEMA	s	213/215	-	254/256	284/286	324/326	364/365	-	-	
		∂3/3 2	380	-	395	395	410	410	-	-	
395 - 405 405 420									-	-	
FAF: + 37 kg / F: + 36 kg / FF: + 81 kg											

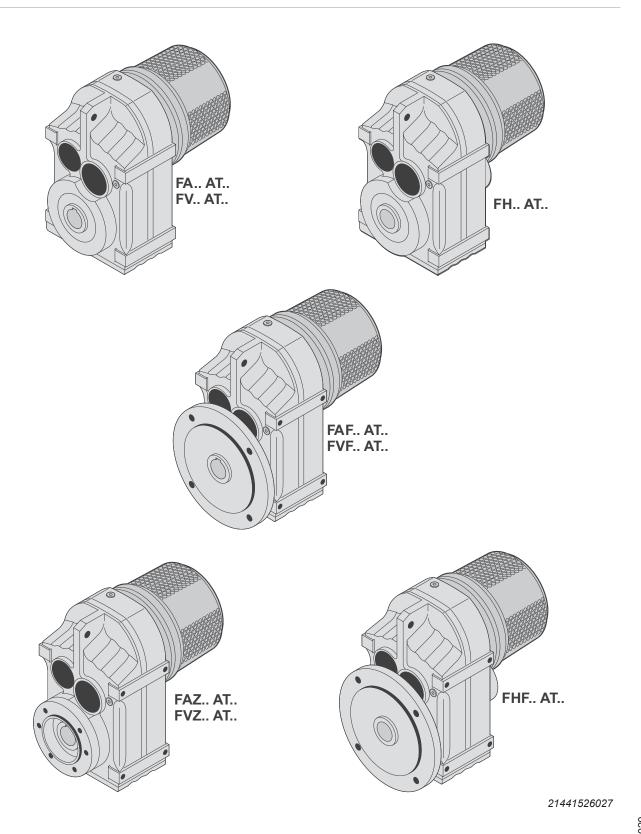

F.. parallel-shaft helical gear units

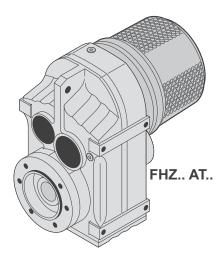
Selection tables for adapters for mounting IEC/NEMA motors (AM..)

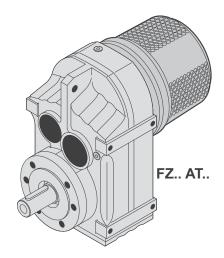

F157, n _e	= 1400	min ⁻¹ , M _a	_{max} /Nm							20000 Nm
i	n _a	M _{a max G}	F _{Ra} 1)	φ _(/R)			A	M		
	min ⁻¹	Nm	N	•	160	180	200	225	250	280
						₽§ 2		1		
11.92	117	17300	48200	5			4860	4860	7610	7610
13.96	100	17900	51200	5		3010	5710	5710	8230	8930
16.85	83	18700	54700	5	3040	3650	6910	6910	8780	10700
19.77	71	19400	57900	4	3590	4300	8120	8120	9220	12600
22.16	63	19900	60400	4	4030	4830	9110	9110	14200	14200
25.43	55	20000	64800	4	4640	5560	10200	10200	16300	16300
28.60	49	19100	71100	4	5230	6270	10400	10400	18300	18300
35.75	39	13600	92900	4	6550	7850	10900	10900		
43.94	32	11900	105200	4	8060	8310				
53.55	26	11000	115600	4	8530					
· ·		'				A 3		1	1	1
27.60	51	20000	67600	5			11100	11100	17400	17400
32.55	43	20000	73500	5		6940	13100	13100	18800	20000
40.06	35	20000	81400	5	7160	8590	16200	16200	20000	20000
46.48	30	20000	87400	5	8340	10000	18800	18800	20000	20000
52.24	27	20000	92300	5	9400	11200	20000	20000	20000	20000
60.25	23	20000	98500	5	10800	13000	20000	20000	20000	20000
68.28	21	20000	104200	5	12300	14700	20000	20000	20000	20000
78.46	18	20000	110700	5	14200	17000	20000	20000		
85.80	16	20000	115100	5	15500	18600	20000	20000		
96.53	15	20000	120000	5	17300	20000	20000	20000	20000	20000
108.49	13	20000	120000	5	19500	20000	20000	20000	20000	20000
125.14	11	20000	120000	5	20000	20000	20000	20000	20000	20000
141.80	9.9	20000	120000	5	20000	20000	20000	20000	20000	20000
162.96	8.6	20000	120000	5	20000	20000	20000	20000		
178.20	7.9	20000	120000	5	20000	20000	20000	20000		
217.62	6.4	20000	120000	5	20000	20000				
267.43	5.2	20000	120000	5	20000					
F157, m	/kg						A	M		
	IE	C	s		160	180	200	225	250	280
			చ్చికి	2	660	660	680	680	710	710
			48	3	670	670	690	690	720	720
FA	N	EMA	s		254/256	284/286	324/326	364/365	-	-
			-23	2	660	660	680	680	-	-
			28	3	660	660	680	680	-	-

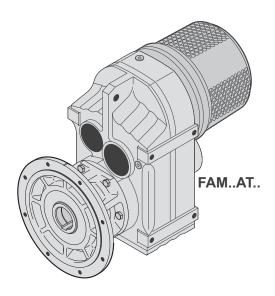

FAF: + 59 kg / F: + 21 kg / FF: + 125 kg

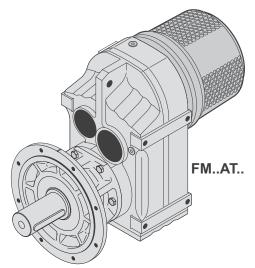

9.2 Selection tables for adapters with hydraulic start-up coupling (AT..)





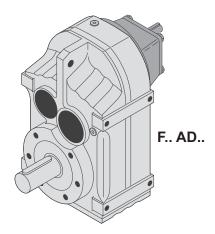


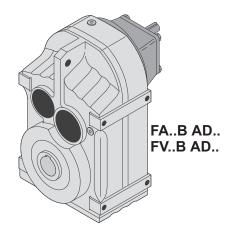


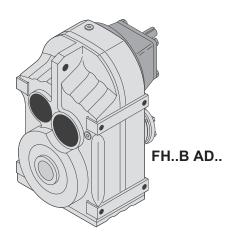

21441523595

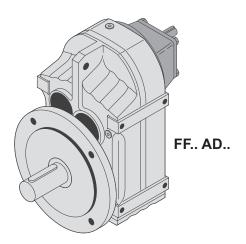
21441528459

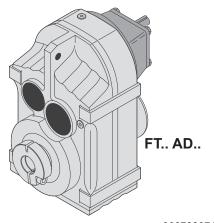
F..AT/DRN..4 9.2.1

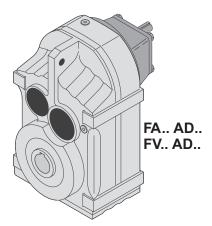

		P _{Mot}		- : }-		Sn %	K ^Q >
	DRN71M4	0.37	AT311	T11	0.42	12	
	DRN80MK4	0.55	AT312	T11D	0.55	11	
	DRN80M4	0.75	AT312	T11D	0.7	11	
F67	DRN90S4	1.1	AT312	T11D	0.72	15	
	DRN90L4	1.5	AT321	T21	0.85	9	
	DRN100LS4	2.2	AT321	T21	0.9	13	
	DRN100L4	3	AT322	T21D	1.53	11	
	DRN71M4	0.37	AT311	T11	0.42	12	
	DRN80MK4	0.55	AT312	T11D	0.55	11	
	DRN80M4	0.75	AT312	T11D	0.7	11	
F77	DRN90S4	1.1	AT312	T11D	0.72	15	
F//	DRN90L4	1.5	AT421	T21	0.85	9	
	DRN100LS4	2.2	AT421	T21	0.9	13	(→ 🖺 384)
	DRN100L4	3	AT422	T21D	1.53	11	
	DRN112M4	4	AT422	T21D	1.6	12	
	DRN90S4	1.1	AT312	T11D	0.72	15	
	DRN90L4	1.5	AT421	T21	0.85	9	
	DRN100LS4	2.2	AT421	T21	0.9	13	
	DRN100L4	3	AT422	T21D	1.53	11	
F87	DRN112M4	4	AT422	T21D	1.6	12	
F01	DRN132S4	5.5	AT541	T41	2	6	
	DRN132M4	7.5	AT541	T41	2.4	8	
	DRN132L4	9.2	AT541	T41	2.5	10	
	DRN160M4	11	AT541	T41	2.5	13	
	DRN160L4	15	AT542	T41D	4.2	8	

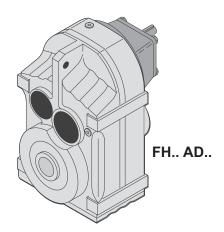

		P _{Mot}		-1:3-		Sn	k [□] ≯
تاھ		kW				%	
	DRN90S4	1.1	AT312	T11D	0.72	15	
	DRN90L4	1.5	AT421	T21	0.85	9	
	DRN100LS4	2.2	AT421	T21	0.9	13	
	DRN100L4	3	AT422	T21D	1.53	11	
	DRN112M4	4	AT422	T21D	1.6	12	
F97	DRN132S4	5.5	AT541	T41	2	6	
ГЭ1	DRN132M4	7.5	AT541	T41	2.4	8	
	DRN132L4	9.2	AT541	T41	2.5	10	
	DRN160M4	11	AT541	T41	2.5	13	
	DRN160L4	15	AT542	T41D	4.2	8	
	DRN180M4	18.5	AT542	T41D	4.3	10	
	DRN180L4	22	AT542	T41D	4.3	14	
	DRN100LS4	2.2	AT421	T21	0.9	13	
	DRN100L4	3	AT422	T21D	1.53	11	
	DRN112M4	4	AT422	T21D	1.6	12	
	DRN132S4	5.5	AT541	T41	2	6	(. 🖹 204)
E407	DRN132M4	7.5	AT541	T41	2.4	8	(→ 🖺 384)
F107	DRN132L4	9.2	AT541	T41	2.5	10	
	DRN160M4	11	AT541	T41	2.5	13	
	DRN160L4	15	AT542	T41D	4.2	8	
	DRN180M4	18.5	AT542	T41D	4.3	10	
	DRN180L4	22	AT542	T41D	4.3	14	
	DRN132M4	7.5	AT541	T41	2.4	8	
	DRN132L4	9.2	AT541	T41	2.5	10	
E407	DRN160M4	11	AT541	T41	2.5	13	
F127	DRN160L4	15	AT542	T41D	4.2	8	
	DRN180M4	18.5	AT542	T41D	4.3	10	
	DRN180L4	22	AT542	T41D	4.3	14	
	DRN160M4	11	AT541	T41	2.5	13	
	DRN160L4	15	AT542	T41D	4.2	8	
F157	DRN180M4	18.5	AT542	T41D	4.3	10	
	DRN180L4	22	AT542	T41D	4.3	14	

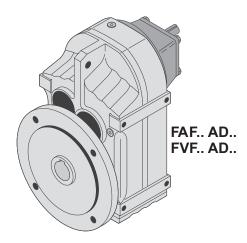

9.2.2 F..AT/DRN..2

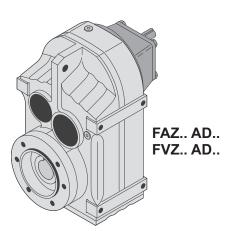

		P _{Mot}		4}-		Sn	k □>
	DRN71M2	0.55	AT311	T11	0.19	3	
	DRN80MS2	0.75	AT311	T11	0.22	4.5	
	DRN80M2	1.1	AT311	T11	0.27	6	
F67	DRN90S2	1.5	AT311	T11	0.29	8.5	
	DRN90L2	2.2	AT311	T11	0.31	11.5	
	DRN100LM2	3	AT311	T11	0.4	12	
	DRN112M2	4	AT312	T11D	0.52	10	
	DRN71M2	0.55	AT311	T11	0.19	3	
	DRN80MS2	0.75	AT311	T11	0.22	4.5	
	DRN80M2	1.1	AT311	T11	0.27	6	
	DRN90S2	1.5	AT311	T11	0.29	8.5	
F77	DRN90L2	2.2	AT311	T11	0.31	11.5	
	DRN100LM2	3	AT311	T11	0.4	12	
	DRN112M2	4	AT312	T11D	0.52	10	
	DRN132S2	5.5	AT321	T21	0.6	8	
	DRN132S2	5.5	AT421	T21	0.6	8	
	DRN90S2	1.5	AT311	T11	0.29	8.5	(→ 🗎 384)
	DRN90L2	2.2	AT311	T11	0.31	11.5	
E07	DRN100LM2	3	AT311	T11	0.4	12	
F87	DRN112M2	4	AT312	T11D	0.52	10	
	DRN132S2	5.5	AT321	T21	0.6	8	
	DRN132S2	5.5	AT421	T21	0.6	8	
	DRN90S2	1.5	AT311	T11	0.29	8.5	
	DRN90L2	2.2	AT311	T11	0.31	11.5	
F07	DRN100LM2	3	AT311	T11	0.4	12	
F97	DRN112M2	4	AT312	T11D	0.52	10	
	DRN132S2	5.5	AT321	T21	0.6	8	
	DRN132S2	5.5	AT421	T21	0.6	8	
	DRN100LM2	3	AT311	T11	0.4	12	
F407	DRN112M2	4	AT312	T11D	0.52	10	
F107	DRN132S2	5.5	AT321	T21	0.6	8	
	DRN132S2	5.5	AT421	T21	0.6	8	
F127	DRN132S2	5.5	AT421	T21	0.6	8	

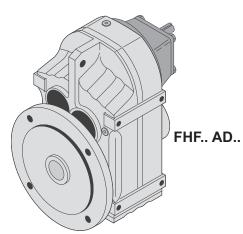

9.3 Selection tables for input shaft assembly (AD..)

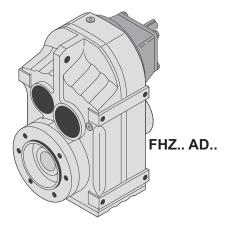


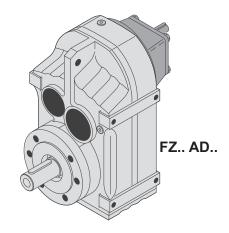


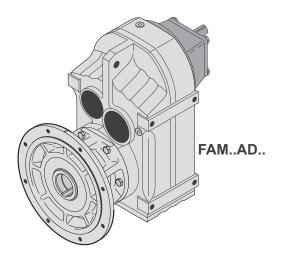


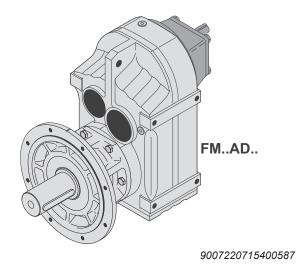



9007220715395723









9007220715398155

F.. parallel-shaft helical gear units

Selection tables for input shaft assembly (AD..)

FA27 AD	, n _e = 14	l00 min ⁻¹										130 Nm
i	n _a min ⁻¹	M _{amax} Nm	P _e kW	F _{Ra} ¹⁾ N	F _{Re} N	$\phi_{\text{(/R)}}$	\triangle			Þ	m kg	KEH
140.74	9.9	130	0.16	4500	755	-	-					
129.09	11	130	0.18	4500	755	-	-					
109.90	13	130	0.20	4500	755	-	-					
94.76	15	130	0.23	4500	750	-	-					
88.32	16	130	0.25	4500	750	-	-					
77.21	18	130	0.28	4500	745	-	-	FA	27	AD1	7.6	390
72.37	19	130	0.30	4500	745	-	-	FAF	27	AD1	8.3	390
63.86	22	130	0.33	4400	740	-	-	F	27	AD1	8.1	390
56.62	25	130	0.37	4180	735	-	-	FF	27	AD1	8.9	390
50.19	28	130	0.42	3980	580	-	-					
46.78	30	130	0.45	3860	570	-	-					
40.89	34	130	0.51	3640	555	-	-					
38.33	37	130	0.54	3530	545	-	-					
33.83	41	130	0.61	3340	525	-	-					
29.56	47	130	0.69	3140	1150	-	-					
27.18	52	130	0.75	3030	1130	-	-					
23.25	60	130	0.87	2820	1090	-	-					
20.15	69	130	1.0	2630	1040	-	-					
18.84	74	130	1.1	2550	1570	-	-					
16.28	86	130	1.2	2370	1550	-	-					
13.84	101	130	1.4	2180	1530	-	-	FA	27	AD2	8.5	390
12.35	113	130	1.6	2060	1520	-	-	FAF	27	AD2	9.2	390
10.55	133	130	1.9	1900	1490	-	-	F	27	AD2	9.0	390
9.88	142	130	2.0	1830	1480	-	-	FF	27	AD2	9.8	390
9.40	149	130	2.1	1660	1230	-	-		21	ADZ	3.0	330
8.13	172	123	2.3	1580	1230	-	-					
6.91	203	114	2.5	1530	1250	-	-					
6.17	227	109	2.7	1480	1250	-	-					
5.27	266	100	2.9	1440	1270	-	-					
4.93	284	96	3.0	1420	1270	-	-					
4.16	337	87	3.2	1380	1280	-	-					

FA37 AD	, n _e = 14	l00 min ⁻¹										200 Nm
i	n _a min ⁻¹	M _{amax} Nm	P _e kW	F _{Ra} ¹⁾ N	F _{Re} N	$\phi_{\text{(/R)}}$	\triangle			-	m kg	k∰}
128.51	11	200	0.26	4290	655	7	-					
117.88	12	200	0.28	4290	650	7	-					
100.36	14	200	0.33	4290	640	7	-					
86.53	16	200	0.37	4290	625	7	-	FA	37	AD1	14	390
80.65	17	200	0.40	4290	615	7	-	FAF	37	AD1	15	390
70.50	20	200	0.45	4290	600	7	-	F	37	AD1	14	390
66.09	21	200	0.48	4290	595	7	-	FF	37	AD1	16	390
58.32	24	200	0.54	4290	575	7	-					
54.54	26	200	0.58	4290	335	8	-					
51.70	27	200	0.61	4290	555	7	-					
47.02	30	200	0.68	4290	1490	8	-					
43.83	32	200	0.72	4290	1480	8	-		0.7	4.00	45	000
38.31	37	200	0.82	4290	1440	8	-	FA	37 37	AD2	15	390
35.91	39	200	0.88	4290	1420	8	-	FAF		AD2	16	390
31.69	44	200	0.99	4290	1380	8	-	FF	37 37	AD2	15 17	390
28.09	50	200	1.1	4060	1640	8	-	rr	31	AD2	17	390
23.88	59	200	1.3	3760	1620	8	-					

FA37 AD	, n _e = 14	100 min ⁻¹										200 Nm
i	n _a min ⁻¹	M _{amax} Nm	P _e kW	F _{Ra} 1) N	F _{Re} N	$\phi_{\text{(/R)}}$	\triangle			=	m kg	KEH
23.63	59	200	1.3	3740	1420	6	-					
20.57	68	200	1.5	3500	1400	6	-					
19.27	73	200	1.6	3390	1390	6	-					
17.03	82	200	1.8	3180	1370	6	-					
15.81	89	200	1.9	3070	1360	6	-					
14.33	98	200	2.1	2910	1340	6	-					
12.87	109	200	2.4	2750	1320	7	-					
11.08	126	190	2.6	2620	1320	7	-	FA	37	AD2	15	390
10.42	134	185	2.7	2580	1320	7	-	FAF	37	AD2	16	390
8.97	156	175	3.0	2460	1320	7	-	F	37	AD2	15	390
8.01	175	170	3.2	2360	1300	7	-	FF	37	AD2	17	390
7.44	188	121	2.5	2560	1200	10	-					
6.74	208	140	3.1	2270	1070	10	-					
6.05	231	135	3.4	2190	1070	10	-					
5.21	269	125	3.6	2120	1090	10	-					
4.90	286	120	3.7	2100	1100	11	-					
4.22	332	110	4.0	2030	1120	11	-					
3.77	372	105	4.2	1970	1110	12	-					

FA47 AD	, n _e = 14	00 min ⁻¹										400 Nm
i	n _a min ⁻¹	M _{amax} Nm	P _e kW	F _{Ra} ¹⁾ N	F _{Re} N	$\phi_{\text{(/R)}}$	\triangle	4		3	m kg	KP
190.76	7.3	400	0.35	5920	545	6	-					
175.38	8.0	400	0.37	5920	535	6	-					
150.06	9.3	400	0.43	5920	525	6	-	FA	47	AD1	19	390
130.07	11	400	0.49	5920	510	6	-	FAF	47	AD1	21	390
121.57	12	400	0.53	5920	500	6	-	F	47	AD1	19	390
105.09	13	400	0.61	5920	475	6	-	FF	47	AD1	22	390
89.29	16	400	0.71	5920	455	6	-		71	701		000
79.72	18	400	0.79	5920	430	6	-					
68.09	21	400	0.92	5920	400	6	-					
65.36	21	400	0.97	5920	1180	7	-					
56.49	25	400	1.1	5920	1600	7	-	FA	47	AD2	20	390
48.00*	29	400	1.3	5920	1580	7	-	FAF	47 47	AD2 AD2	20	390
42.86	33	400	1.4	5920	1570	7	-	F	47	AD2	20	390
36.61	38	400	1.7	5920	1550	7	-	FF	47	AD2	24	390
34.29	41	400	1.8	5920	1540	7	-	FF	41	ADZ	24	390
28.88	48	400	2.1	5790	1510	7	-					
30.86	45	400	2.0	5920	1230	6	-					
29.32	48	400	2.1	5830	1220	6	-					
25.72	54	400	2.4	5460	1200	6	-					
21.82	64	400	2.8	5030	1170	6	-					
19.70	71	400	3.1	4770	1150	6	-					
17.33	81	400	3.5	4450	1120	6	-					
16.36	86	400	3.7	4320	1110	6	-	FA	47	AD2	19	390
13.93	100	400	4.3	3950	1040	6	-	FAF	47	AD2	22	390
12.66	111	400	4.8	3740	1010	6	-	F	47	AD2	20	390
10.97	128	380	5.2	3580	1000	6	-	FF	47	AD2	23	390
8.96	156	250	4.2	3860	860	8	-					
7.88	178	230	4.4	3770	910	8	-					
7.44*	188	225	4.6	3710	920	8	-					
6.34	221	200	4.8	3610	960	8	-					
5.76	243	191	5.0	3520	960	9	-					
4.99	281	173	5.2	3430	1000	9	-					

Selection tables for input shaft assembly (AD..)

FA57 AD	, n _e = 14	100 min ⁻¹										600 Nm
i	n _a min ⁻¹	M _{amax} Nm	P _e kW	F _{Ra} ¹⁾ N	F _{Re} N	$\phi_{\text{(/R)}}$	\triangle			ı	m kg	
199.70	7.0	600	0.50	9200	1510	6	-					
183.60	7.6	600	0.54	9200	1500	6	-					
157.09	8.9	600	0.62	9200	1470	6	-					
136.16	10	600	0.71	9200	1440	6	-					
127.27	11	600	0.76	9200	1430	6	-					
110.01	13	600	0.87	9200	1380	6	-					
93.47	15	600	1.0	9200	1340	6	-	FA	57	AD2	27	390
83.46	17	600	1.1	9200	1640	6	-	FAF	57	AD2	33	390
72.98	19	600	1.3	9200	1480	6	-	F	57	AD2	27	390
68.22	21	600	1.4	9200	1470	6	-	FF	57	AD2	34	390
58.97	24	600	1.6	9200	1440	7	-					
50.10	28	600	1.9	9200	1420	7	-					
44.73	31	600	2.1	9160	1400	7	-					
38.21	37	600	2.4	8510	1370	7	-					
35.79	39 46	600	2.6	8250 7650	1350	7 7	-					
30.15		590	3.0		1320		-					
40.13	35	265	1.0	10700	605	6	-	FA	57	AD2	27	390
34.24	41	440	2.0	9020	1140	6	-	FAF	57	AD2	32	390
29.94	47	415	2.1	8660	1170	6	-	F	57	AD2	27	390
28.45	49	410	2.2	8500	1170	6	-	FF	57	AD2	33	390
24.96	56	575	3.5	7060	830	6	-					
21.17	66	600	4.3	6350	1760	6	-					
19.11	73	600	4.8	6020	1730	6	-					
16.81	83	600	5.4	5620	1700	6	-					
15.88	88	600	5.7	5450	1670	6	-					
13.52	104	600	6.7	4980	1580	6	-	FA	57	AD3	30	390
12.29	114	600	7.4	4710	1530	6	-	FAF	57	AD3	35	390
10.64	132	600	8.5	4320	1440	6	-	F	57	AD3	30	390
9.31	150	310	5.1	5490	1660	8	-	FF	57	AD3	36	390
8.19	171	400	7.4	4580	1250	8	-					
7.73	181	390	7.6	4510	1260	8	-					
6.58	213	355	8.2	4370	1300	8	-					
5.98	234	335	8.5	4290	1330	9	-					
5.18	270	305	8.9	4190	1380	9						

FA67 AD	, n _e = 14	100 min ⁻¹										820 Nm
i	n _a min ⁻¹	M _{amax} Nm	P _e kW	F _{Ra} 1) N	F _{Re} N	$\phi_{\text{(/R)}}$	\triangle			Þ	m kg	K [□] ≯
228.99	6.1	820	0.59	10300	1420	6	-					
195.39	7.2	820	0.68	10300	1390	6	-					
170.85	8.2	820	0.77	10300	1360	6	-					
162.31	8.6	820	0.81	10300	1370	6	-					
142.40	9.8	820	0.92	10300	1320	6	-					
120.79	12	820	1.1	10300	1630	6	-					
109.04	13	820	1.2	10300	1620	6	-	FA	67	AD2	31	390
95.94	15	820	1.3	10300	1620	6	-	FAF	67		37	
90.59	15	820	1.4	10300	1610	6	-	F	67 67	AD2 AD2	37 34	390
79.76	18	820	1.6	10300	1440	6	-	FF	67 67	AD2 AD2	34 40	390 390
67.65	21	820	1.9	10300	1420	6	-	ГГ	01	ADZ	40	390
61.07	23	820	2.1	10300	1400	6	-					
53.73	26	820	2.4	10300	1390	6	-					
50.74	28	820	2.5	10300	1380	6	-					
43.20	32	820	2.9	10300	1340	6	-					
39.26	36	780	3.1	10700	1340	6	-					
34.01	41	740	3.4	11000	1340	6	-					
36.30	39	590	2.5	12000	1100	5	-	FA	67	AD2	30	390
								FAF	67	AD2	36	390
								F	67	AD2	33	390
								FF	67	AD2	39	390

FA67 AD	, n _e = 14	l00 min ⁻¹										820 Nm
i	n _a min ⁻¹	M _{amax} Nm	P _e kW	F _{Ra} 1) N	F _{Re} N	$\phi_{\text{(/R)}}$	\triangle				m kg	KEH
32.08	44	820	3.9	10300	1760	5	-					
27.41	51	820	4.6	10300	1720	5	-					
25.13	56	820	5.0	10300	1700	5 5	-					
22.05	63	820	5.7	10300	1660	5	-					
20.90*	67	820	6.0	10300	1640	5	-					
18.29	77	820	6.8	10300	1590	6	-					
16.48	85	820	7.5	10300	1530	6	-					
14.46	97	820	8.6	10300	1460	6	-	FA	67	AD3	33	390
12.76	110	800	9.5	10500	1420	6	-		67	AD3	39	390
11.31	124	745	10.0	10900	1450	6	-		67	AD3	36	390
9.66	145	670	10.5	11500	1490	6	-		67	AD3	42	390
9.08	154	450	7.5	11800	1230	8	-		01	ADS	72	390
8.60	163	440	7.8	11700	1260	8	-					
7.53	186	410	8.2	11300	1310	8	-					
6.78	206	385	8.6	11000	1330	9	-					
5.95	235	355	9.0	10700	1380	9 9	-					
5.25	267	330	9.5	10300	1420	9	-					
4.66	301	305	9.9	10100	1450	9	-					
3.97	352	275	10.5	9680	1490	10	-					

FA77 AD	, n _e = 14	100 min ⁻¹										1500 Nm
i	n _a min ⁻¹	M _{amax} Nm	P _e kW	F _{Ra} 1) N	F _{Re} N	$\phi_{\text{(/R)}}$	\triangle			1	m kg	KEN
281.71	5.0	1500	0.87	15700	880	5	-					
262.93	5.3	1500	0.93	15700	880	5	-					
225.79	6.2	1500	1.1	15700	1540	5	-					
198.31	7.1	1500	1.2	15700	1540	5	-					
188.40	7.4	1500	1.3	15700	1540	5	-					
166.47	8.4	1500	1.4	15700	1510	5	-					
142.27	9.8	1500	1.7	15700	1500	5 5	-	- A	77	400	E 4	200
130.42	11	1500	1.8	15700	1490	5	-	FA FAF	77 77	AD2	54	390
114.45	12	1500	2.0	15700	1480	5 5	-	FAF	77 77	AD2	60 50	390
108.46* 94.93	13 15	1500 1500	2.2 2.5	15700 15700	1470 1450	5 5	-	FF	77 77	AD2 AD2	58 68	390 390
85.52	16	1500	2.5	15700	1430	6	-	ГГ	11	ADZ	00	390
75.02	19	1500	3.1	15700	1400	6	-					
72.50	19	1500	3.2	15700	1110	6	-					
66.46	21	1500	3.5	15700	1100	6	_					
58.32	24	1500	4.0	15700	1070	6	_					
55.27	25	1500	4.2	15700	1060	6	_					
48.37	29	1500	4.8	15700	1020	6	_					
43.58	32	1500	5.3	15700	2010	6	_					
38.23	37	1500	6.0	15700	1970	6	_	FA	77	AD3	57	390
33.74	42	1500	6.8	15700	1920	6	_	FAF	77	AD3	64	390
29.91	47	1500	7.7	15700	1860	6	_	F	77	AD3	61	390
25.54	55	1450	8.7	16100	1820	6	_	FF	77	AD3	72	390
36.58	38	1110	4.6	17900	1580	5	_	FA	77	AD3	56	390
31.51	44	1110	5.4	17900	1540	5	_	FAF	77	AD3	63	390
28.75	49	1200	6.3	17400	1400	5	_	F	77	AD3	60	390
20.70	10	1200	0.0	17 100	1100	Ü		FF	77	AD3	70	390
25.50*	55	1500	8.9	15700	3020	5	_					
21.43	65	1500	10.6	15700	2950	5	-					
19.70	71	1500	11.5	15700	2880	5	-					
17.49	80	1500	13.0	15700	2820	5	-					
15.64*	90	1500	14.5	15700	2750	5	-					
14.06	100	1500	16.1	15700	2680	5	-	FA	77	AD4	62	390
12.20	115	1500	18.6	14900	2560	5	-	FAF	77 77	AD4 AD4	62 69	390
10.93	128	1500	21	14200	2470	6	-	F	77	AD4 AD4	66	390
9.30	151	1080	17.6	13800	1300	7	-	FF	77	AD4 AD4	76	390
8.26	170	1080	19.8	13100	1110	7	-		••	707	, 0	000
7.39	190	1080	22	12500	900	7	-					
6.64	211	1080	25	12000	690	8	-					
5.76	243	1060	28	11400	475	8	-					
5.16	271	940	27	11400	1000	8	-					
4.28	327	790	28	11200	1550	8	-					

Selection tables for input shaft assembly (AD..)

FA87 AD	, n _e = 14	100 min ⁻¹									3000 Nm
i	n _a min ⁻¹	M _{amax} Nm	P _e kW	F _{Ra} 1) N	F _{Re} N	φ _(/R)	\triangle		 	m kg	k⊞≯
270.68	5.2	3000	1.8	19800	1350	7	-				
255.37	5.5	3000	1.9	19800	1350	7	-				
228.93	6.1	3000	2.1	19800	1330	7	-				
197.20 179.97	7.1 7.8	3000 3000	2.4 2.6	19800 19800	1310 1300	7 7	-	FA 87	AD2	93	390
159.61	8.8	3000	2.0	19800	1290	7	-	FAF 87	AD2	93 105	390
134.16	10	3000	3.5	19800	1260	7	_	F 87	AD2	99	390
123.29	11	3000	3.8	19800	1240	7	-	FF 87	AD2	115	390
109.49	13	3000	4.2	19800	1220	7	-				
97.89	14	3000	4.7	19800	1190	7	-				
88.01	16	3000	5.3	19800	1160	7	-				
76.39	18	3000	6.1	19800	1110	7	-				
68.40	20	3000	6.8	19600	2020	7	-	FA 87	AD3	97	390
56.75	25	3000	8.2	17700	1940	7	-	FAF 87	AD3	110	390
50.36	28	2940	9.0	16800	1540	7	-	F 87	AD3	105	390
45.28	31	2820	9.6	16200	1540	8	-	FF 87	AD3	120	390
39.30	36	2720	10.6	15400	1510	8	-				
35.19	40	2610	11.4	14900	3530	8	-	FA 87	AD4	105	390
29.20	48	2510	13.2	13800	3470	8	-	FAF 87	AD4	115	390
								F 87	AD4	110	390
								FF 87	AD4	125	390
33.92	41	2560	11.5	14800	2540	7	-	FA 87	AD4	100	390
28.78	49	2390	12.6	14100	2610	7	-	FAF 87	AD4	115	390
								F 87 FF 87	AD4 AD4	105 120	390 390
				44400				FF 01	AD4	120	390
26.50	53	3000	17.2	11100	5210	7	-				
23.68 21.32*	59 66	3000 3000	19.2 21	10300 9520	5140 5060	7 7	-				
19.31	73	3000	24	8840	4980	7	-				
17.12	82	3000	26	8040	4890	7	_				
15.48	90	3000	29	7390	4790	7	_		4.0.5	445	000
13.12*	107	3000	35	6370	4580	7	-	FA 87	AD5	115	390
11.46	122	3000	40	5580	4420	7	-	FAF 87 F 87	AD5 AD5	130	390
9.58	146	2880	45	5050	4280	7	-	FF 87	AD5 AD5	120 135	390 390
8.29	169	1530	28	8890	4450	7	-	1-1- 01	ADS	133	390
7.35	190	1530	31	8280	4340	7	-				
6.65	211	1530	35	7790	4220	7	-				
5.63	248	1530	41	7020	3980	7	-				
4.92 4.12	284 340	1510 1260	46 46	6510 6830	3760 4210	7 7	-				
4.12	340	1200	40	0030	4210		-				

FA97 AD	, n _e = 14	00 min ⁻¹										4300 Nm
i	n _a min ⁻¹	M _{amax} Nm	P _e kW	F _{Ra} ¹⁾ N	F _{Re} N	$\phi_{\text{(/R)}}$	\triangle			-	m kg	KEN
276.77	5.1	4300	2.5	29900	2180	6	-					
253.41	5.5	4300	2.7	29900	2170	6	-					
223.88	6.2	4300	3.0	29900	2150	6	-					
189.92	7.4	4300	3.6	29900	2130	6	-					
174.87	8.0	4300	3.9	29900	2110	6	-					
156.30	9.0	4300	4.3	29900	2090	6	-					
140.71	9.9	4300	4.8	29900	2070	6	-	FA	97	AD3	160	390
127.42	11	4300	5.3	29900	2050	6	-	FAF	97	AD3	185	390
112.99	12	4300	5.9	29900	2020	6	-	F	97	AD3	170	390
102.16	14	4300	6.5	29900	1990	6	-	FF	97	AD3	200	390
97.58	14	4300	6.8	29900	1520	6	-					
89.85	16	4300	7.4	29900	1490	6	-					
86.59	16	4300	7.7	29900	1930	6	-					
80.31	17	4300	8.3	29900	1450	6	-					
75.63	19	4300	8.8	29900	1880	6	-					
72.29	19	4300	9.2	29900	1410	6	-					
65.47	21	4300	10.1	29000	3410	6	-					
58.06	24	4300	11.4	27200	3370	6	-	FA	97	AD4	165	390
52.49	27	4300	12.6	25800	3320	6	-	FAF	97	AD4	190	390
44.49	31	4300	14.9	23600	3220	6	-	F	97	AD4	175	390
38.86	36	4300	17.1	21900	3140	6	-	FF	97	AD4	205	390
32.50	43	4300	20	19800	3000	6	-					

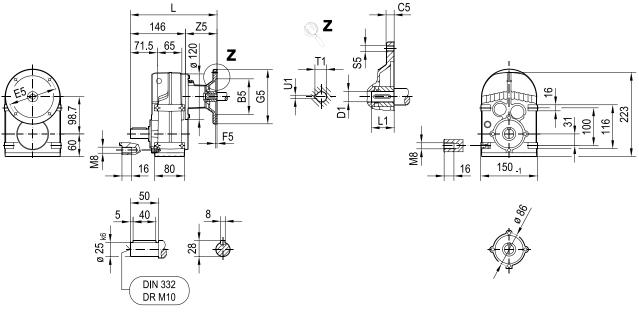
FA97 AD.	, n _e = 14	00 min ⁻¹									4300 Nm
i	n _a min ⁻¹	M _{amax} Nm	P _e kW	F _{Ra} 1) N	F _{Re} N	$\phi_{\text{(/R)}}$	\triangle			m kg	K
43.28	32	3070	10.8	27600	2700	6	-	FA 9	7 AD4	160	390
36.64	38	3070	12.7	25500	2620	6	-	FAF 9		185	390
								F 97		170 200	390 390
33.91	41	4300	10.2	20300	4940	6		FF 9	AD4	200	390
30.39	46	4300	19.2 21	19000	4940 4870	6 6	-				
27.44*	51	4300	24	17900	4750		-	FA 9	7 ADE	180	390
	51 56			16800		6	-				
24.92		4300	26		4670	6	-			200	390
22.11	63	4300	29	15600	4570	6	-	F 97		185	390
20.07	70	4300	32	14600	4470	6	-	FF 97	7 AD5	220	390
17.25*	81	4300	38	13200	4290	6	-				
15.06	93	4300	43	11900	4110	6	-				
12.77	110	4300	51	10500	6840	6	-				
11.16	125	4100	56	10000	6800	6	-				
9.06	154	2360	39	13400	6470	9	-	FA 0	7 ADC	400	200
8.22	170	2360	43	12600	6350	8	-	FA 9		190	390
7.07	198	2360	50	11500	6130	9	-	FAF 9		215	390
6.17	227	2250	55	11100	6130	9	-	F 97		200	390
5.23	268	1930	56	11300	6490	9	-	FF 9	7 AD6	230	390
4.57	306	1690	56	11400	6780	9	-				
3.87	362	1430	56	11400	7140	9	-				

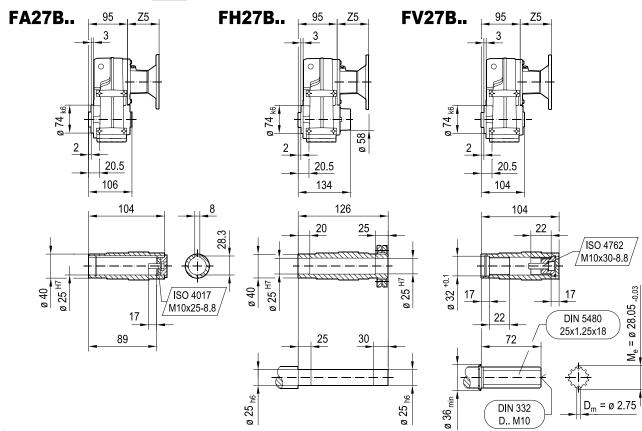
FA107 A) , n _e = 1	1400 min ⁻¹										7840 Nm
i	n _a min ⁻¹	M _{amax} Nm	P _e kW	F _{Ra} 1) N	F _{Re} N	$\phi_{\text{(/R)}}$	\triangle			3	m kg	KEN
254.40*	5.5	7680	4.8	49800	1850	5	-					
215.37	6.5	7680	5.6	49800	1820	5	-					
199.31	7.0	7680	6.0	49800	1800	5	-	FA	107	AD3	235	390
178.64	7.8	7680	6.7	49800	1780	5 5	-	FAF	107	AD3	260	390
161.28*	8.7	7680	7.4	49800	1720	5	-	F	107	AD3	255	390
146.49	9.6	7680	8.1	49800	1690	5	-	FF	107	AD3	280	390
129.97	11	7680	9.2	49800	1650	5	-					
117.94	12	7680	10.1	49800	1610	5	-					
101.38*	14	7680	11.8	49800	3570	5	-					
92.47*	15	7680	12.8	49800	3030	6	-					
88.49	16	7680	13.5	49800	3510	5	-	FA	107	AD4	245	390
83.99	17	7680	14.1	49800	2980	6	-	FAF	107	AD4	265	390
74.52	19	7680	15.9	49800	2920	6	-	F	107	AD4	260	390
67.62	21	7680	17.5	49800	2860	6	-	FF	107	AD4	290	390
58.12*	24	7680	20	47800	2760	6	-					
50.73	28	7680	23	45100	2650	6	-					
43.03	33	7680	28	42000	5730	6	-	FA	107	AD5	255	390
37.61	37	7680	31	39500	5600	6	-	FAF	107	AD5	280	390
31.80	44	7680	37	36500	5440	6	-	F	107	AD5	275	390
								FF	107	AD5	300	390
33.79*	41	7400	33	38300	6580	5	-					
27.57	51	7840	43	33300	5940	5	-					
25.14	56	7840	47	31500	5710	5	-					
21.76*	64	7840	54	28800	5270	5 5	-					
19.20*	73	7090	56	29600	6050	5 5	-					
16.58	84	6120	56	30600	6480	5	-	FA	107	AD6	260	390
14.67	95	5410	56	30800	6780	5	-	FAF	107	AD6	280	390
12.33	114	4540	56	30800	7140	5	M4	F	107	AD6	275	390
9.96	141	4000	61	29600	7220	5	M2,4-6	FF	107	AD6	305	390
9.69	144	3580	56	29300	6050	7	-					
8.37	167	3090	56	29100	6480	7	-					
7.40	189	2730	56	28800	6780	7	-					
6.22	225	2290	56	28200	7140	7	M4					
5.03	279	2020	61	26800	7220	7	-					

F.. parallel-shaft helical gear units

Selection tables for input shaft assembly (AD..)

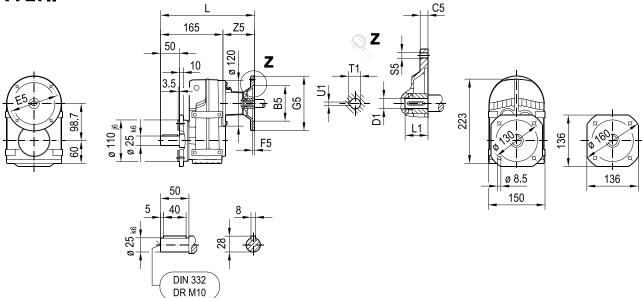
FA127 A) , n _e = ′	1400 min ⁻¹									12000 Nm
i	n _a min ⁻¹	M _{amax} Nm	P _e kW	F _{Ra} ¹⁾ N	F _{Re} N	$\phi_{\text{(/R)}}$	\triangle			m kg	KEN
170.83	8.2	12000	10.9	90000	3180	5	-				
153.67*	9.1	12000	12.1	90000	3140	5	-	FA 127	AD4	395	390
125.37	11	12000	14.8	90000	3010	5	-	FAF 127	AD4 AD4	430	390
114.34	12	12000	16.2	88000	2970	5	-	F 127	AD4 AD4	430	390
98.95	14	12000	18.8	83000	2880	5	-	FF 127	AD4	475	390
87.31*	16	12000	21	78900	2800	5	-	11. 12/	704	475	330
75.41*	19	12000	25	74300	2690	5	-				
70.07	20	12000	26	72100	4930	5	-	FA 407	ADE	405	200
63.91	22	12000	29	69400	4850	5	-	FA 127 FAF 127	AD5 AD5	405 440	390 390
55.31	25	12000	33	65200	4710	5	-	F 127	AD5	440	390
48.80	29	12000	38	61300	4590	5	M2	FF 127	AD5	485	390
42.15	33	12000	44	56800	4420	5	M1-6	11 121	AD3	+00	390
37.28	38	12000	50	53200	7220	5	M1-6	FA 127	AD6	415	390
								FAF 127	AD6	455	390
								F 127	AD6	455	390
								FF 127	AD6	495	390
31.33	45	12000	59	48300	17000	5	M1-6	FA 127	AD7	415	390
25.30	55	12000	73	42400	16600	5	M1-6	FAF 127	AD7	455	390
								F 127	AD7	450	390
								FF 127	AD7	495	390
26.86	52	8500	48	55300	4990	5	_	FA 127	AD6	405	390
24.57	57	8500	52	53300	4770	5	_	FAF 127	AD6	440	390
	-					-		F 127	AD6	440	390
								FF 127	AD6	485	390
21.38	65	12000	85	38000	23800	5	M1-6				
18.87	74	10800	86	39600	24200	5	M1-6				
16.36	86	11000	102	35400	23900	5	M1-6				
14.55	96	11000	114	32600	23600	5	M1-6	FA 40=	480	405	000
12.54	112	10000	120	33300	23900	5	M1-6	FA 127	AD8	425	390
10.19	137	9040	134	32700	23900	5	M1-6	FAF 127	AD8	465	390
8.86	158	7000	119	36400	22800	6	M1-6	F 127 FF 127	AD8	460	390
7.88	178	6000	115	37000	23500	6	M1-6	FF 12/	AD8	510	390
6.80	206	6030	134	34700	23200	7	M1-6				
5.52	254	4900	134	34500	23900	7	M1-6				
4.68	299	4150	134	34100	24400	7	M1-6				

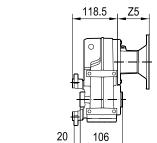

FA157 A) , n _e = ′	1400 min ⁻¹										20000 Nm
i	n _a min ⁻¹	M _{amax} Nm	P _e kW	F _{Ra} ¹⁾ N	F _{Re} N	$\phi_{(/R)}$	\triangle				m kg	k⊞≯
267.43	5.2	20000	11.7	93800	6140	5	-					
217.62*	6.4	20000	14.3	93800	6070	5	-					
178.20*	7.9	20000	17.4	93800	5960	5	-					
162.96	8.6	20000	19.0	93800	5920	5	-					
141.80*	9.9	20000	22	93800	5840	5	-	FA	157	AD5	660	391
125.14	11	20000	25	93800	5760	5	-	FAF	157	AD5	720	391
108.49	13	20000	29	93800	5660	5	-	F	157	AD5	680	391
96.53*	14	20000	32	93800	5560	5	-	FF	157	AD5	790	391
85.80*	16	20000	36	91800	3770	5	-					
78.46	18	20000	39	88300	3610	5	-					
68.28*	21	20000	45	83000	3300	5	-					
60.25	23	18200	46	82100	3850	5	-					
52.24	27	20000	59	73600	6370	5	M2,5-6	FA FAF F FF	157 157 157 157	AD6 AD6 AD6 AD6	680 740 700 810	391 391 391 391
46.48*	30	20000	66	69600	16200	5	M2-3,5-6	FA	157	AD7	670	391
40.06	35	20000	77	64900	15400	5	M1-6	FAF	157	AD7	730	391
32.55	43	20000	94	58500	13600	5	M1-6	F	157	AD7	690	391
								FF	157	AD7	800	391
27.60	51	20000	111	53800	25300	5	M1-6	FA	157	AD8	700	391
								FAF	157	AD8	750	391
								F	157	AD8	720	391
								FF	157	AD8	820	391


FA157 AI	D , n _e = ′	1400 min ⁻¹									20000 Nm
i	n _a min ⁻¹	M _{amax} Nm	P _e kW	F _{Ra} ¹⁾ N	F _{Re} N	$\phi_{\text{(/R)}}$	\triangle			m kg	KEN
53.55	26	9820	28	94700	3140	4	-	FA 157 FAF 157 F 157 FF 157	AD5 AD5	650 710 680 780	391 391 391 391
43.94* 35.75*	32 39	11500 13200	40 56	84800 74900	5220 2920	4 4	-	FA 157 FAF 157 F 157 FF 157	AD6 AD6	670 730 690 800	391 391 391 391
28.60* 25.43 22.16 19.77 16.85 13.96 11.92	49 55 63 71 83 100 117	18300 16300 19700 18800 18400 17700 17100	97 97 134 143 165 191 217	58200 58900 48400 47300 44100 41100 38700	22900 23500 21700 21800 21500 21200 20800	4 4 4 5 5 5	- M2,5-6 M1-6 M1-6 M1-6 M1-6 M1-6	FA 157 FAF 157 F 157 FF 157	AD8 AD8	690 750 710 820	391 391 391 391

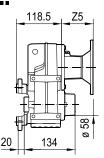
9.4 Dimension sheets for adapters for mounting IEC motors (AM..)

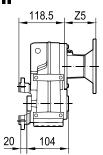
42 040 04 01

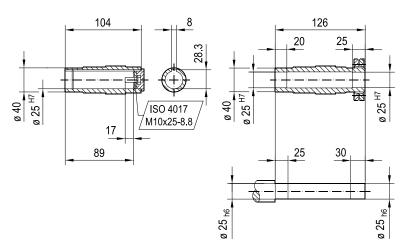


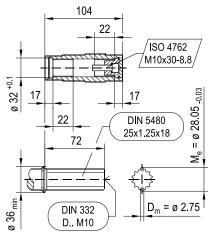

(→ []] 7.2.10)	B5	C5	E5	F5	G5	L	S5	Z 5	D1	L1	T1	U1
AM63	95	10	115	3.5	140	218	M8	72	11	23	12.8	4
AM71	110	10	130	4	160	218	M8	72	14	30	16.3	5
AM80	130	12	165	4.5	200	252	M10	106	19	40	21.8	6
AM90	130	12	165	4.5	200	252	M10	106	24	50	27.3	8

42 041 04 01

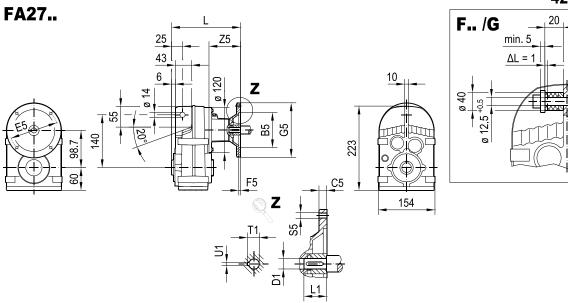


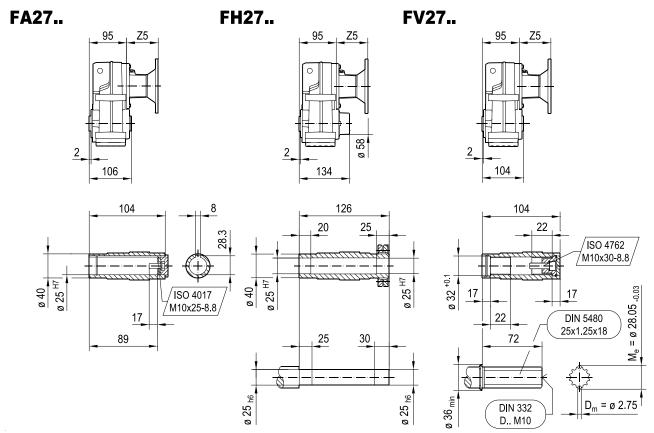





FHF27..

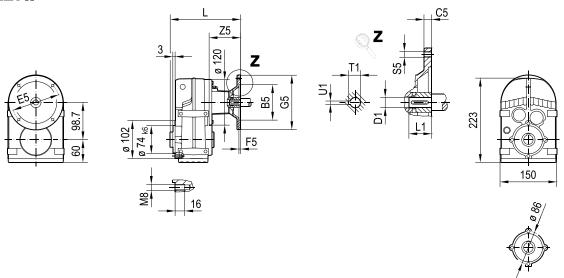
FVF27..

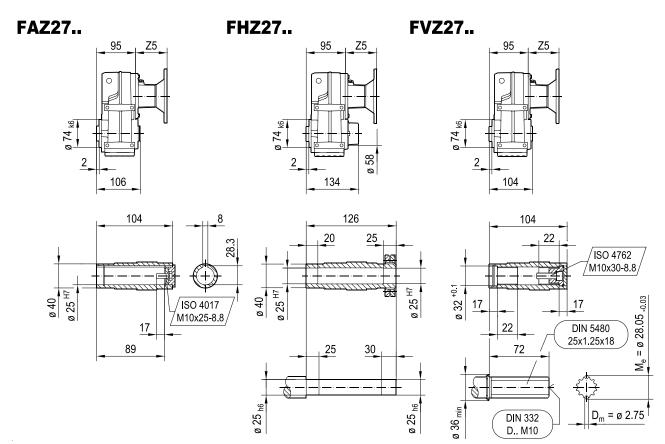




(→ []] 7.2.10)	B5	C5	E5	F5	G5	L	S5	Z5	D1	L1	T1	U1
AM63	95	10	115	3.5	140	237	M8	72	11	23	12.8	4
AM71	110	10	130	4	160	237	M8	72	14	30	16.3	5
AM80	130	12	165	4.5	200	271	M10	106	19	40	21.8	6
AM90	130	12	165	4.5	200	271	M10	106	24	50	27.3	8

ΔL = 1

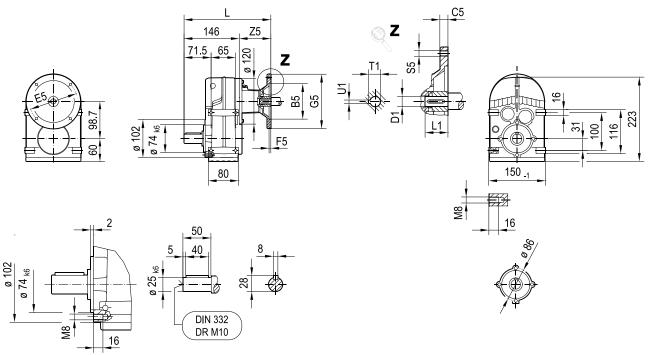


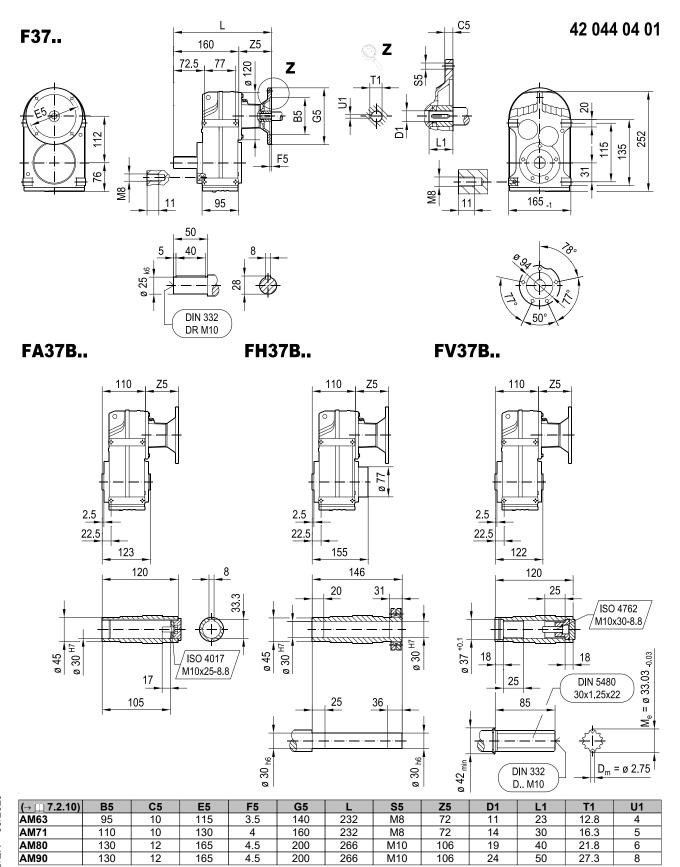


(→ [] 7.2.10)	B5	C5	E5	F5	G5	L	S5	Z5	D1	L1	T1	U1
AM63	95	10	115	3.5	140	167	M8	72	11	23	12.8	4
AM71	110	10	130	4	160	167	M8	72	14	30	16.3	5
AM80	130	12	165	4.5	200	201	M10	106	19	40	21.8	6
AM90	130	12	165	4.5	200	201	M10	106	24	50	27.3	8

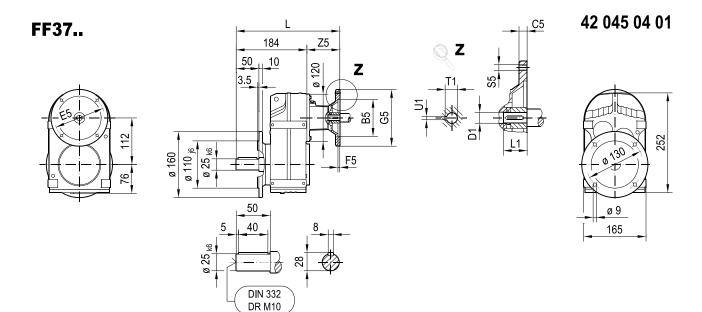
42 043 04 01

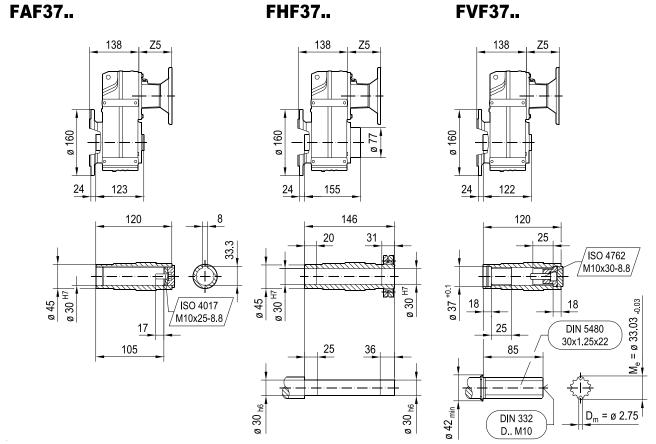
FAZ27..



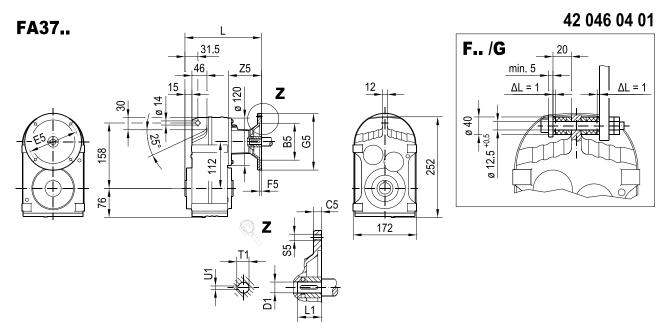

(→ [7.2.10)	B5	C5	E5	F5	G5	L	S5	Z5	D1	L1	T1	U1
AM63	95	10	115	3.5	140	167	M8	72	11	23	12.8	4
AM71	110	10	130	4	160	167	M8	72	14	30	16.3	5
AM80	130	12	165	4.5	200	201	M10	106	19	40	21.8	6
AM90	130	12	165	4.5	200	201	M10	106	24	50	27.3	8

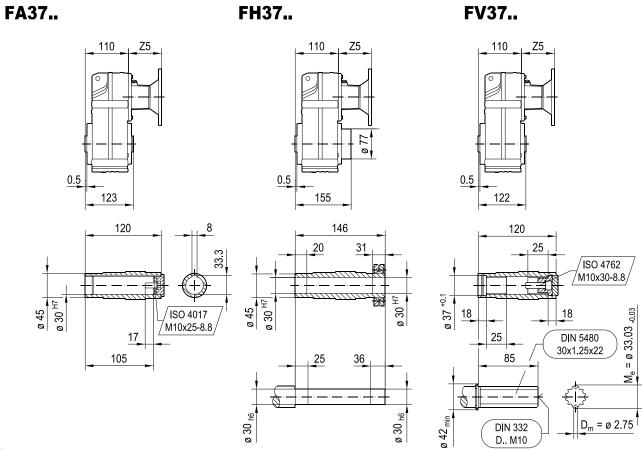
42 025 01 16


FZ27..

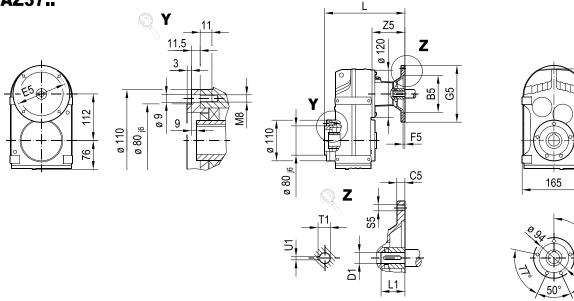


(→ [] 7.2.10)	B5	C5	E5	F5	G5	L	S5	Z 5	D1	L1	T1	U1
AM63	95	10	115	3.5	140	218	M8	72	11	23	12.8	4
AM71	110	10	130	4	160	218	M8	72	14	30	16.3	5
AM80	130	12	165	4.5	200	252	M10	106	19	40	21.8	6
AM90	130	12	165	4.5	200	252	M10	106	24	50	27.3	8





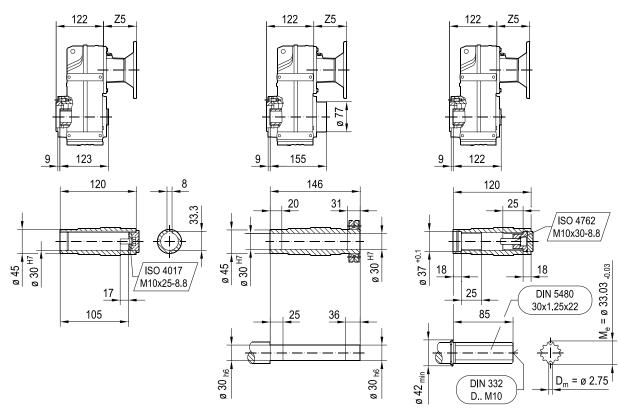
(→ [] 7.2.10)	B5	C5	E5	F5	G5	L	S5	Z5	D1	L1	T1	U1
AM63	95	10	115	3.5	140	256	M8	72	11	23	12.8	4
AM71	110	10	130	4	160	256	M8	72	14	30	16.3	5
AM80	130	12	165	4.5	200	290	M10	106	19	40	21.8	6
AM90	130	12	165	4.5	200	290	M10	106	24	50	27.3	8


(→ [] 7.2.10)	B5	C5	E5	F5	G5	L	S5	Z 5	D1	L1	T1	U1
AM63	95	10	115	3.5	140	182	M8	72	11	23	12.8	4
AM71	110	10	130	4	160	182	M8	72	14	30	16.3	5
AM80	130	12	165	4.5	200	216	M10	106	19	40	21.8	6
AM90	130	12	165	4.5	200	216	M10	106	24	50	27.3	8

D.. M10

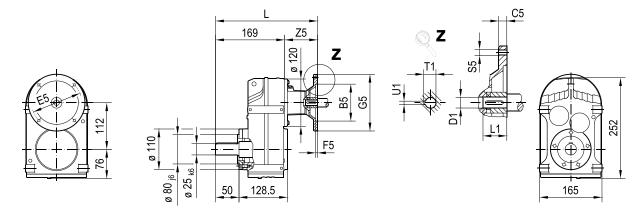
FAZ37..

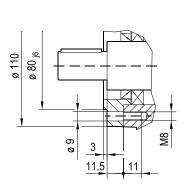
42 047 04 01

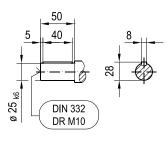

252

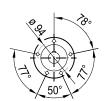
FAZ37..

FHZ37..

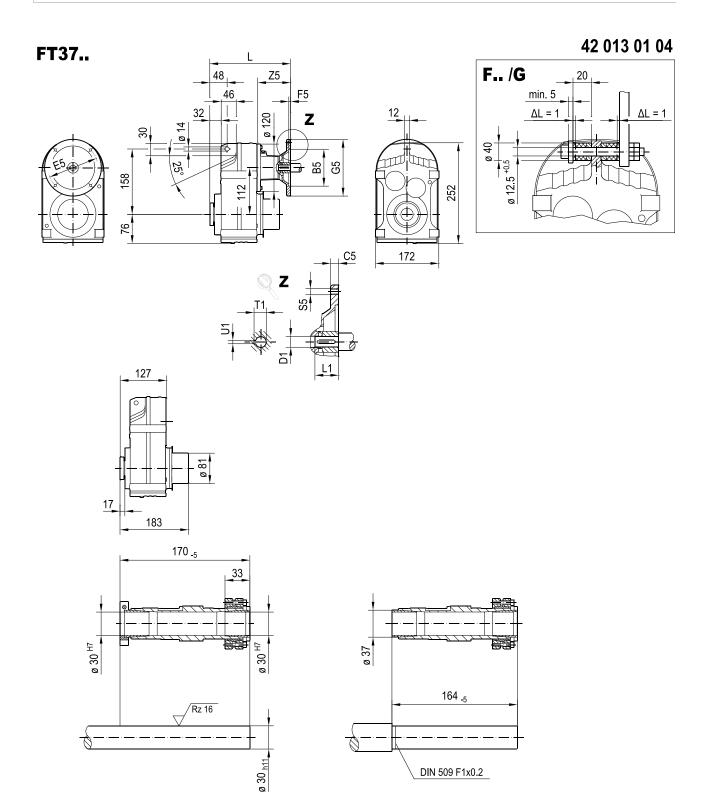

FVZ37...

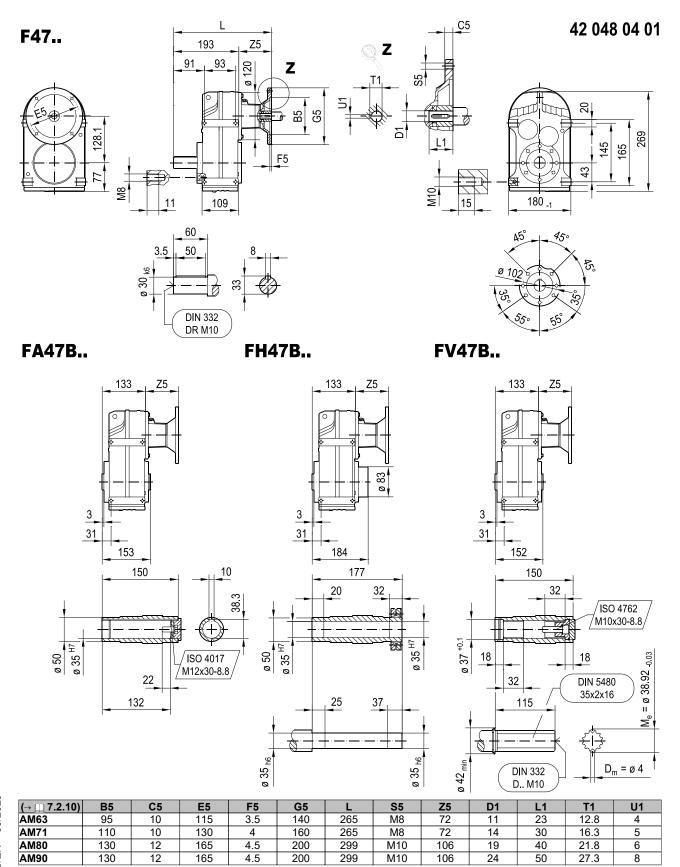



(→ [] 7.2.10)	B5	C5	E5	F5	G5	L	S5	Z5	D1	L1	T1	U1
AM63	95	10	115	3.5	140	194	M8	72	11	23	12.8	4
AM71	110	10	130	4	160	194	M8	72	14	30	16.3	5
AM80	130	12	165	4.5	200	228	M10	106	19	40	21.8	6
AM90	130	12	165	4.5	200	228	M10	106	24	50	27.3	8

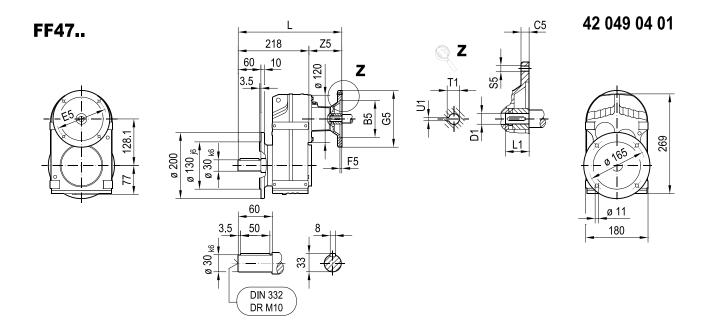

FZ37..

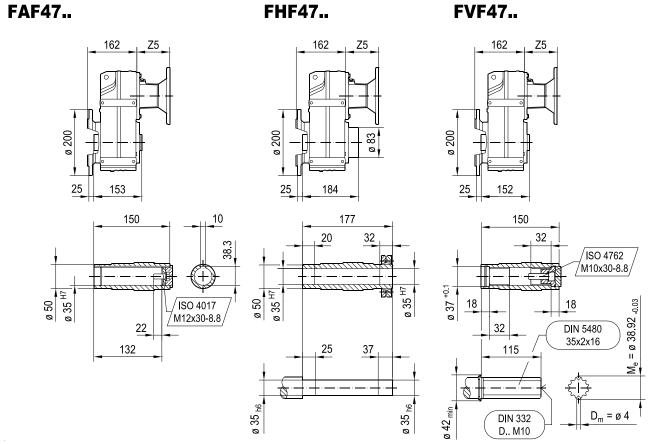
42 026 00 16

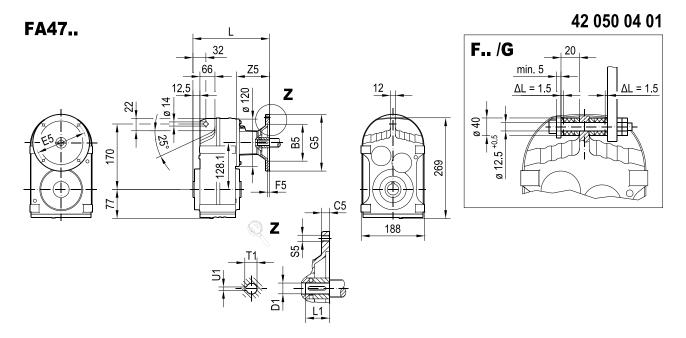


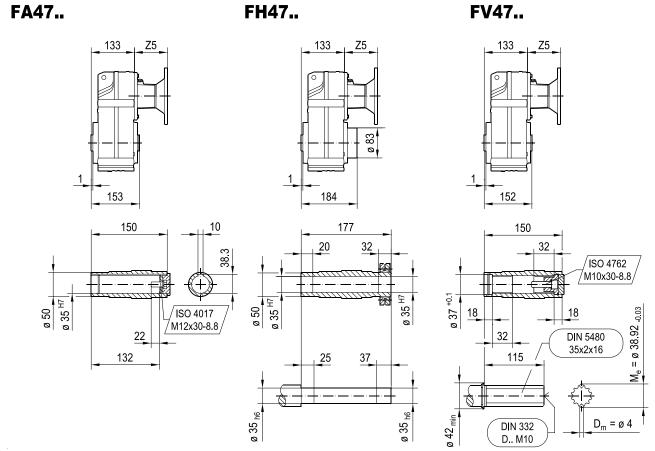


(→ [] 7.2.10)	B5	C5	E5	F5	G5	L	S5	Z5	D1	L1	T1	U1
AM63	95	10	115	3.5	140	241	M8	72	11	23	12.8	4
AM71	110	10	130	4	160	241	M8	72	14	30	16.3	5
AM80	130	12	165	4.5	200	275	M10	106	19	40	21.8	6
AM90	130	12	165	4.5	200	275	M10	106	24	50	27.3	8

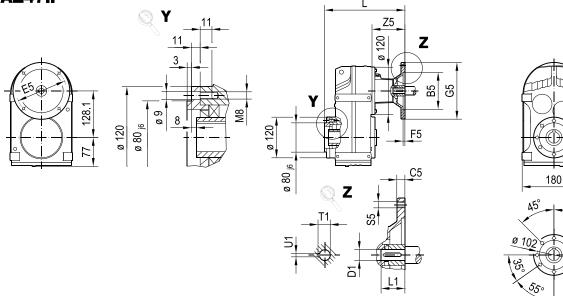



(→ [] 7.2.10)	B5	C5	E5	F5	G5	L	S5	Z 5	D1	L1	T1	U1
AM63	95	10	115	3.5	140	199	M8	72	11	23	12.8	4
AM71	110	10	130	4	160	199	M8	72	14	30	16.3	5
AM80	130	12	165	4.5	200	233	M10	106	19	40	21.8	6
AM90	130	12	165	4.5	200	233	M10	106	24	50	27.3	8




Dimension sheets for adapters for mounting IEC motors (AM..)

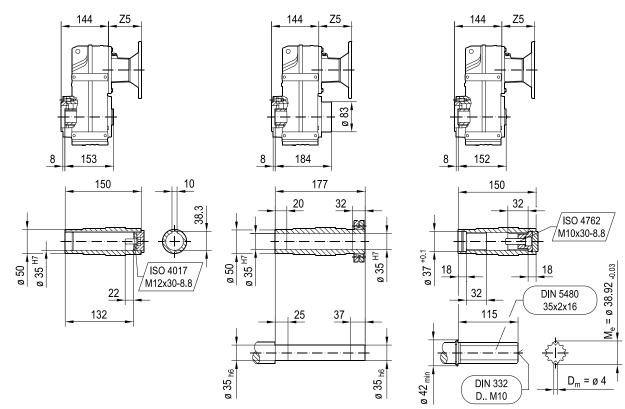
(→ [] 7.2.10)	B5	C5	E5	F5	G5	L	S5	Z 5	D1	L1	T1	U1
AM63	95	10	115	3.5	140	290	M8	72	11	23	12.8	4
AM71	110	10	130	4	160	290	M8	72	14	30	16.3	5
AM80	130	12	165	4.5	200	324	M10	106	19	40	21.8	6
AM90	130	12	165	4.5	200	324	M10	106	24	50	27.3	8



(→ [] 7.2.10)	B5	C5	E5	F5	G5	L	S5	Z 5	D1	L1	T1	U1
AM63	95	10	115	3.5	140	205	M8	72	11	23	12.8	4
AM71	110	10	130	4	160	205	M8	72	14	30	16.3	5
AM80	130	12	165	4.5	200	239	M10	106	19	40	21.8	6
AM90	130	12	165	4.5	200	239	M10	106	24	50	27.3	8

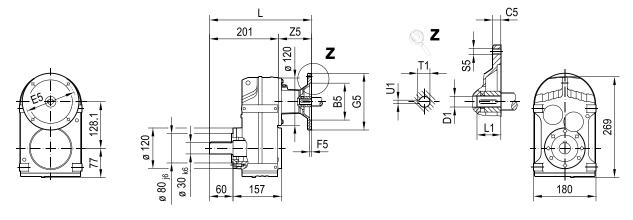
FAZ47..

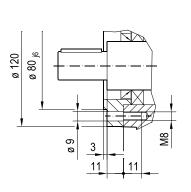
42 051 03 01

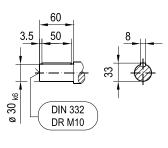

269

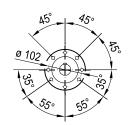
FAZ47..

FHZ47..

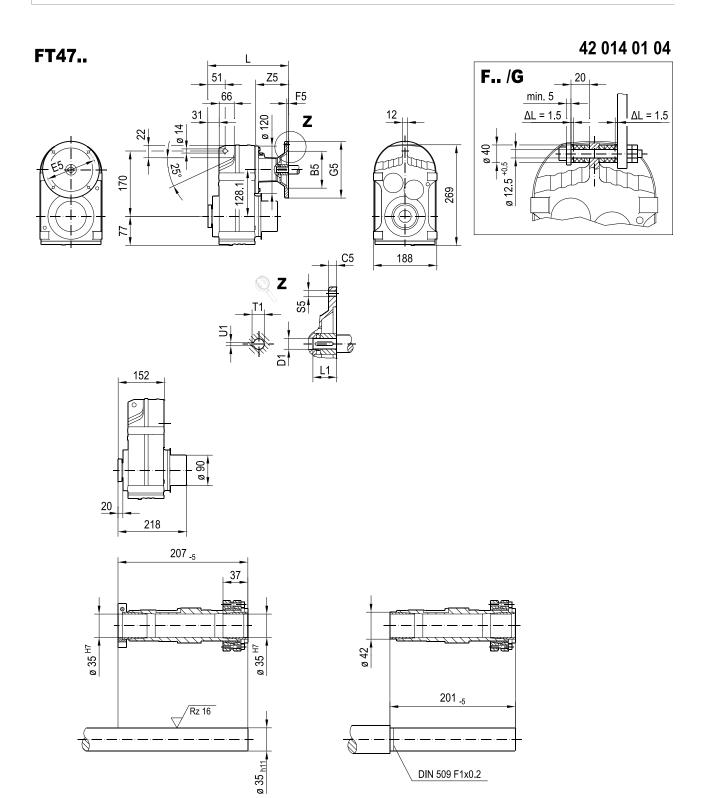

FVZ47..

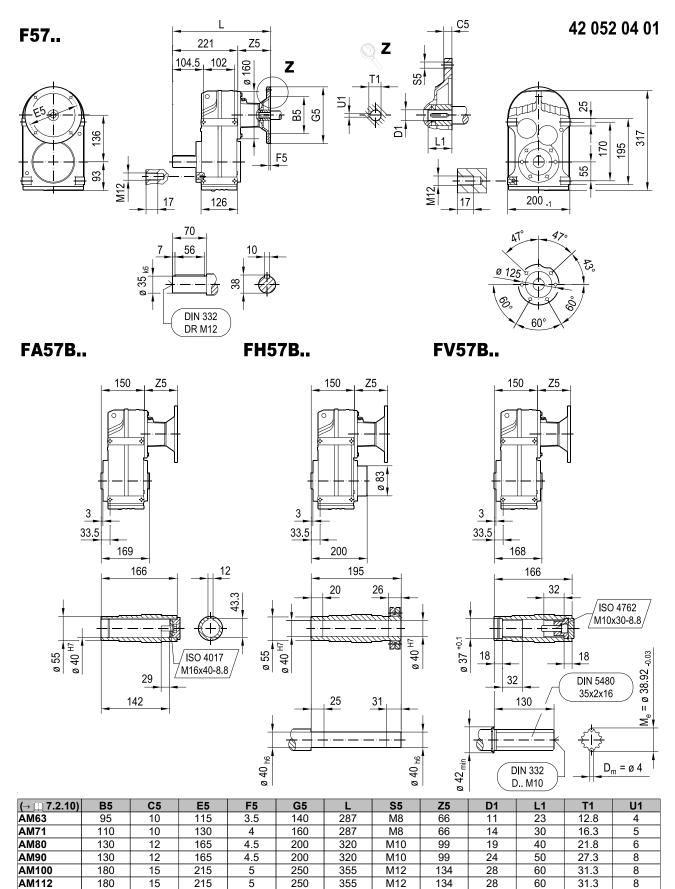



(→ [] 7.2.10)	B5	C5	E5	F5	G5	L	S5	Z 5	D1	L1	T1	U1
AM63	95	10	115	3.5	140	216	M8	72	11	23	12.8	4
AM71	110	10	130	4	160	216	M8	72	14	30	16.3	5
AM80	130	12	165	4.5	200	250	M10	106	19	40	21.8	6
AM90	130	12	165	4.5	200	250	M10	106	24	50	27.3	8


FZ47..

42 027 00 16





(→ [] 7.2.10)	B5	C5	E5	F5	G5	L	S5	Z 5	D1	L1	T1	U1
AM63	95	10	115	3.5	140	273	M8	72	11	23	12.8	4
AM71	110	10	130	4	160	273	M8	72	14	30	16.3	5
AM80	130	12	165	4.5	200	307	M10	106	19	40	21.8	6
AM90	130	12	165	4.5	200	307	M10	106	24	50	27.3	8

(→ [] 7.2.10)	B5	C5	E5	F5	G5	L	S5	Z 5	D1	L1	T1	U1
AM63	95	10	115	3.5	140	224	M8	72	11	23	12.8	4
AM71	110	10	130	4	160	224	M8	72	14	30	16.3	5
AM80	130	12	165	4.5	200	258	M10	106	19	40	21.8	6
AM90	130	12	165	4.5	200	258	M10	106	24	50	27.3	8

AM132S/M

230

16

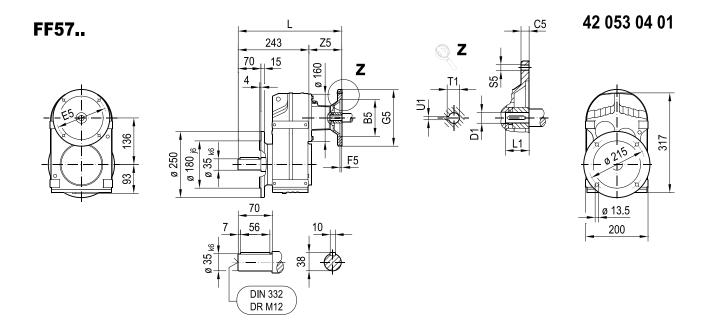
265

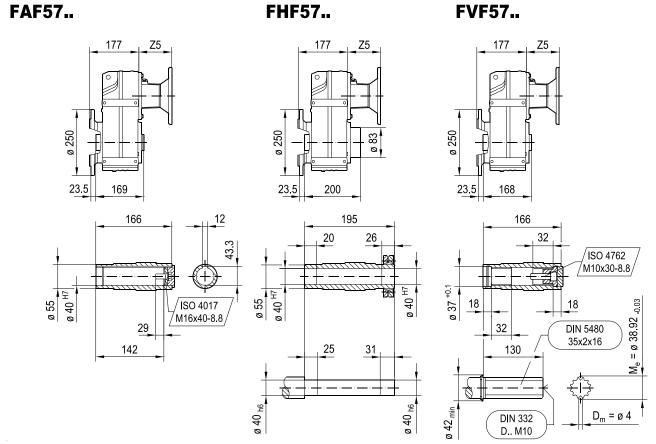
5

300

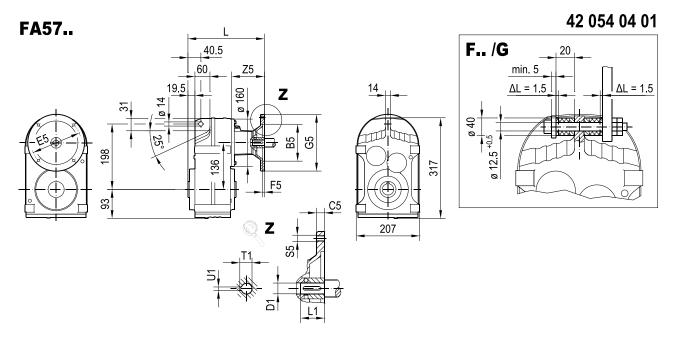
412

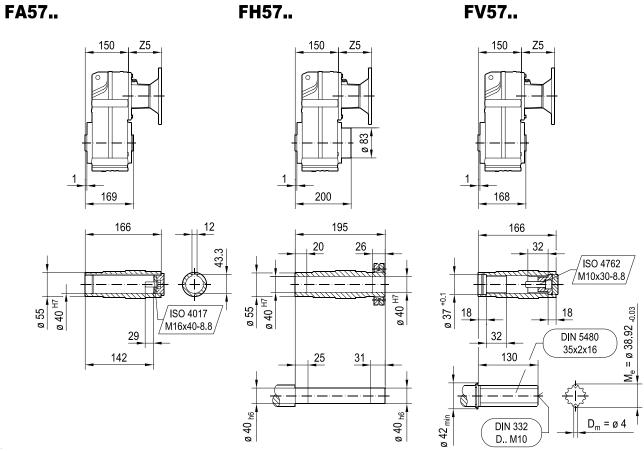
M12


191

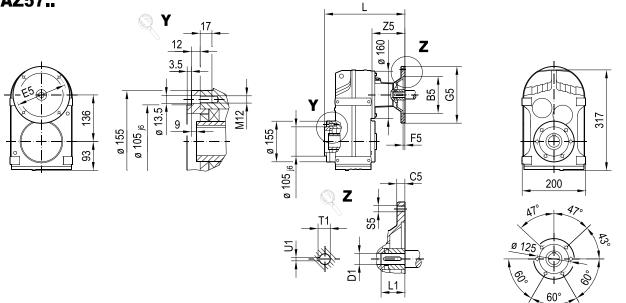

10

41.3

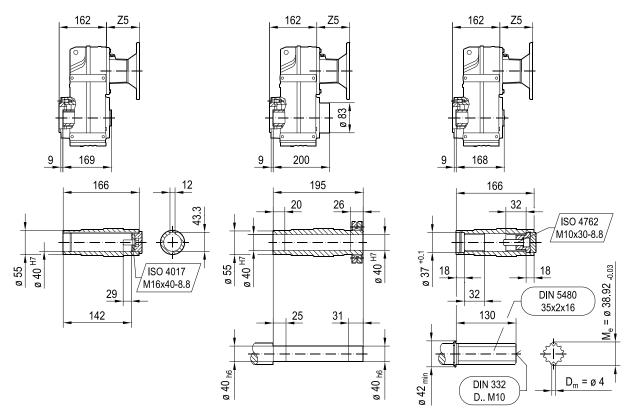

38


Dimension sheets for adapters for mounting IEC motors (AM..)

(→ [] 7.2.10)	B5	C5	E5	F5	G5	L	S5	Z 5	D1	L1	T1	U1
AM63	95	10	115	3.5	140	309	M8	66	11	23	12.8	4
AM71	110	10	130	4	160	309	M8	66	14	30	16.3	5
AM80	130	12	165	4.5	200	342	M10	99	19	40	21.8	6
AM90	130	12	165	4.5	200	342	M10	99	24	50	27.3	8
AM100	180	15	215	5	250	377	M12	134	28	60	31.3	8
AM112	180	15	215	5	250	377	M12	134	28	60	31.3	8
AM132S/M	230	16	265	5	300	434	M12	191	38	80	41.3	10

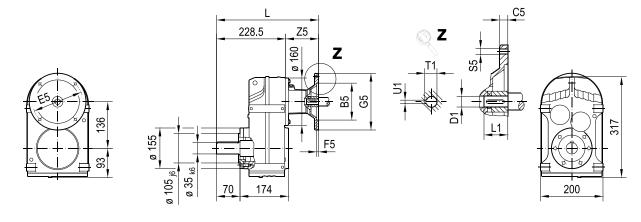


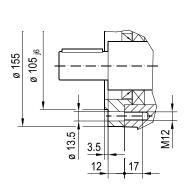
(→ []] 7.2.10)	B5	C5	E5	F5	G5	L	S5	Z 5	D1	L1	T1	U1
AM63	95	10	115	3.5	140	216	M8	66	11	23	12.8	4
AM71	110	10	130	4	160	216	M8	66	14	30	16.3	5
AM80	130	12	165	4.5	200	249	M10	99	19	40	21.8	6
AM90	130	12	165	4.5	200	249	M10	99	24	50	27.3	8
AM100	180	15	215	5	250	284	M12	134	28	60	31.3	8
AM112	180	15	215	5	250	284	M12	134	28	60	31.3	8
AM132S/M	230	16	265	5	300	341	M12	191	38	80	41.3	10

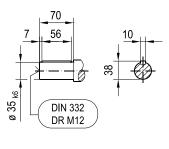

42 055 04 01

FAZ57..

FHZ57..

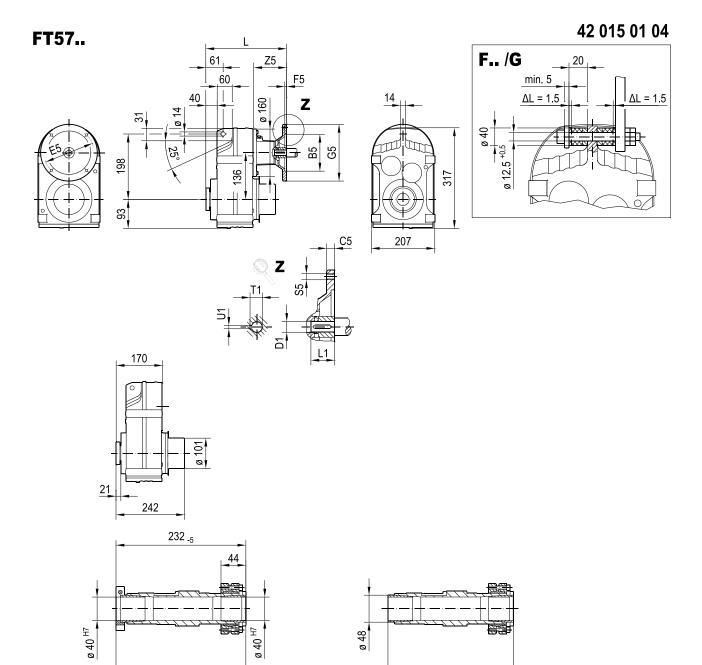

FVZ57..

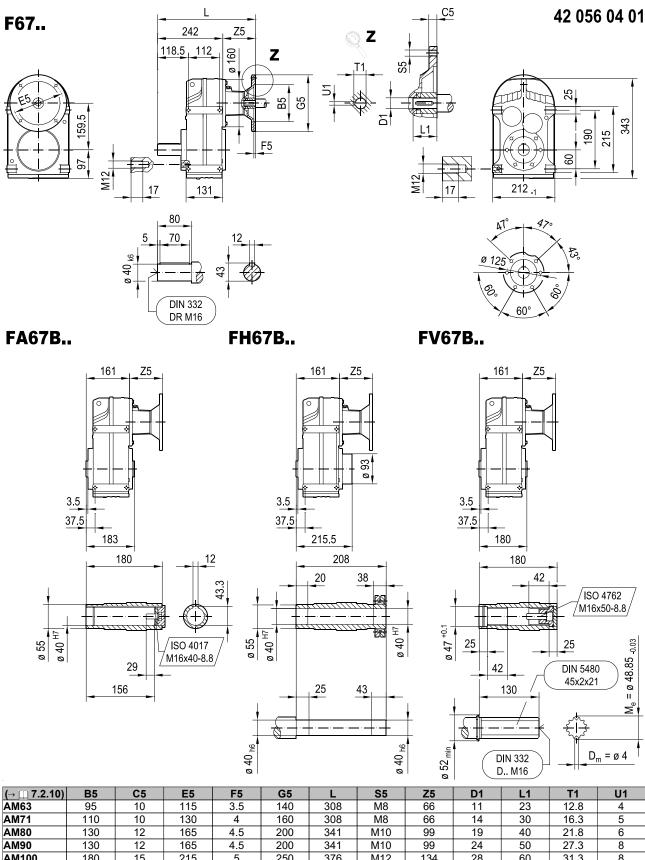



(→ [] 7.2.10)	B5	C5	E5	F5	G5	L	S5	Z5	D1	L1	T1	U1
AM63	95	10	115	3.5	140	228	M8	66	11	23	12.8	4
AM71	110	10	130	4	160	228	M8	66	14	30	16.3	5
AM80	130	12	165	4.5	200	261	M10	99	19	40	21.8	6
AM90	130	12	165	4.5	200	261	M10	99	24	50	27.3	8
AM100	180	15	215	5	250	296	M12	134	28	60	31.3	8
AM112	180	15	215	5	250	296	M12	134	28	60	31.3	8
AM132S/M	230	16	265	5	300	353	M12	191	38	80	41.3	10

FZ57..

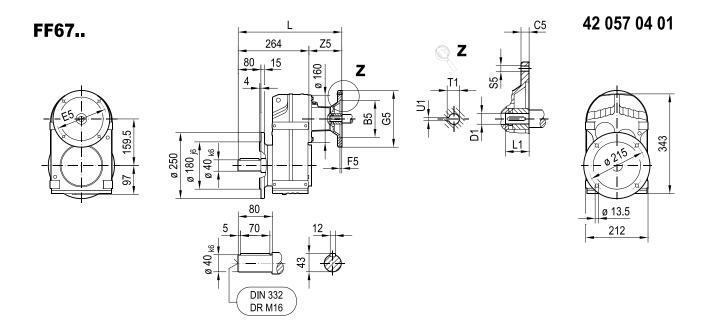
42 028 00 16

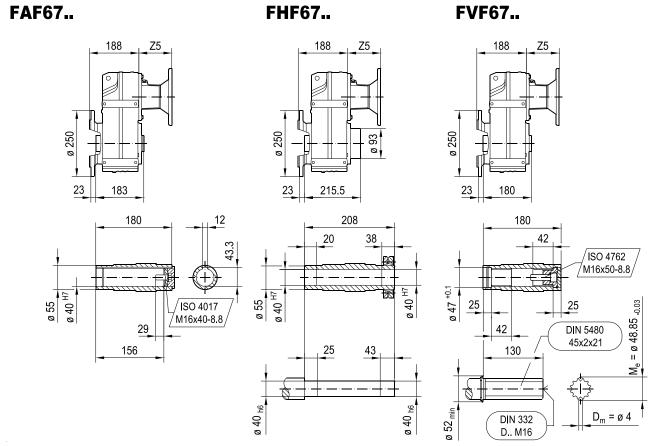



(→ [] 7.2.10)	B5	C5	E5	F5	G5	L	S5	Z 5	D1	L1	T1	U1
AM63	95	10	115	3.5	140	295	M8	66	11	23	12.8	4
AM71	110	10	130	4	160	295	M8	66	14	30	16.3	5
AM80	130	12	165	4.5	200	328	M10	99	19	40	21.8	6
AM90	130	12	165	4.5	200	328	M10	99	24	50	27.3	8
AM100	180	15	215	5	250	363	M12	134	28	60	31.3	8
AM112	180	15	215	5	250	363	M12	134	28	60	31.3	8
AM132S/M	230	16	265	5	300	420	M12	191	38	80	41.3	10

				ø 40 h11			DIN	509 F1x0.2	<u>. </u>			
(→ [] 7.2.10)	B5	C5	E5	F5	G5	L	S5	Z 5	D1	L1	T1	U1
AM63	95	10	115	3.5	140	236	M8	66	11	23	12.8	4
AM71	110	10	130	4	160	236	M8	66	14	30	16.3	5
AM80	130	12	165	4.5	200	269	M10	99	19	40	21.8	6
AM90	130	12	165	4.5	200	269	M10	99	24	50	27.3	8
AM100	180	15	215	5	250	304	M12	134	28	60	31.3	8
AM112	180	15	215	5	250	304	M12	134	28	60	31.3	8
AM132S/M	230	16	265	5	300	361	M12	191	38	80	41.3	10

224 _5


/Rz 16

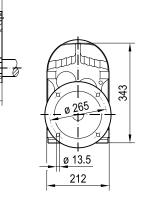


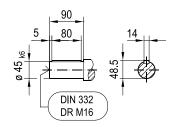
29154650/EN - 03/2020

(→ [] 7.2.10)	B5	C5	E5	F5	G5	L	S5	Z5	D1	L1	T1	U1
AM63	95	10	115	3.5	140	308	M8	66	11	23	12.8	4
AM71	110	10	130	4	160	308	M8	66	14	30	16.3	5
AM80	130	12	165	4.5	200	341	M10	99	19	40	21.8	6
AM90	130	12	165	4.5	200	341	M10	99	24	50	27.3	8
AM100	180	15	215	5	250	376	M12	134	28	60	31.3	8
AM112	180	15	215	5	250	376	M12	134	28	60	31.3	8
AM132S/M	230	16	265	5	300	433	M12	191	38	80	41.3	10

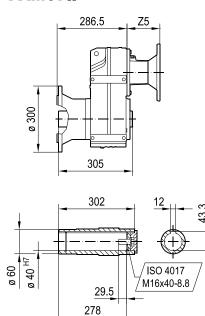
(→ [] 7.2.10)	B5	C5	E5	F5	G5	L	S5	Z 5	D1	L1	T1	U1
AM63	95	10	115	3.5	140	330	M8	66	11	23	12.8	4
AM71	110	10	130	4	160	330	M8	66	14	30	16.3	5
AM80	130	12	165	4.5	200	363	M10	99	19	40	21.8	6
AM90	130	12	165	4.5	200	363	M10	99	24	50	27.3	8
AM100	180	15	215	5	250	398	M12	134	28	60	31.3	8
AM112	180	15	215	5	250	398	M12	134	28	60	31.3	8
AM132S/M	230	16	265	5	300	455	M12	191	38	80	41.3	10

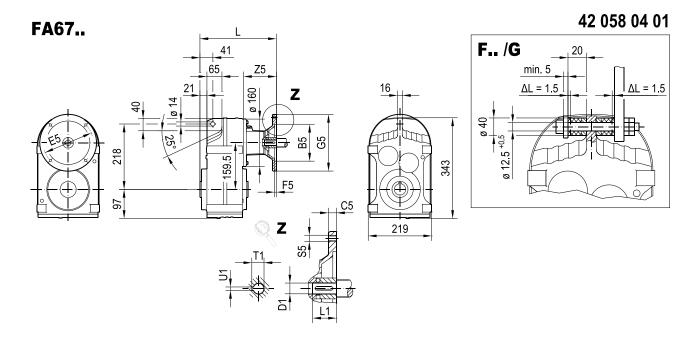

C5

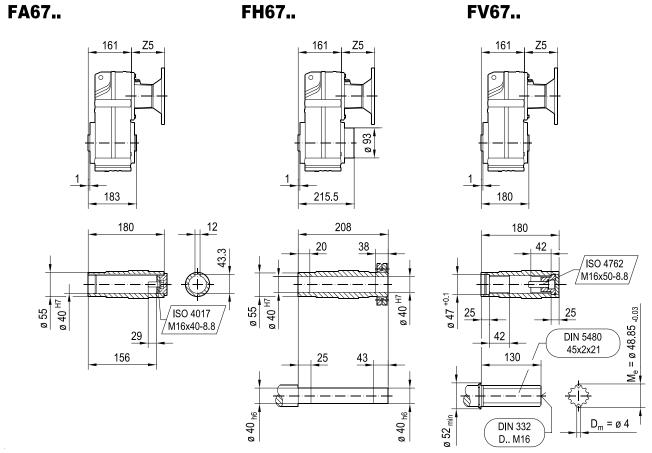

<u>L1</u>


Z

FM67..

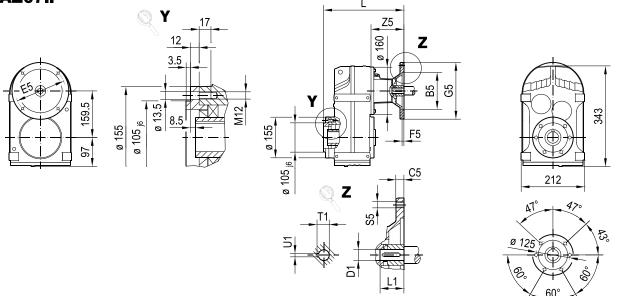





FAM67..

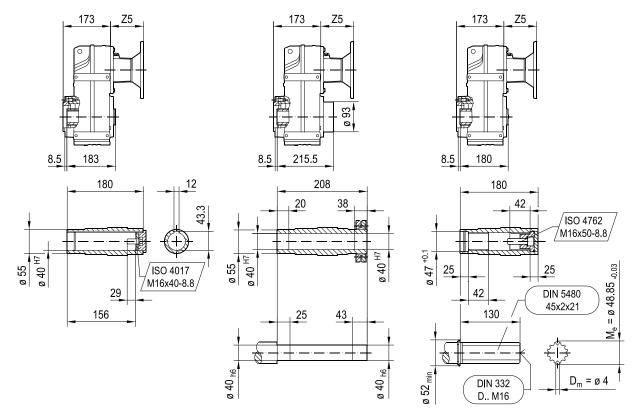
8	
20	
3/	
ĭ	
Z	
씾	
35	
72	
7,5	
Χí	

(→ [] 7.2.10)	B5	C5	E5	F5	G5	L	S5	Z 5	D1	L1	T1	U1
AM63	95	10	115	3.5	140	439	M8	66	11	23	12.8	4
AM71	110	10	130	4	160	439	M8	66	14	30	16.3	5
AM80	130	12	165	4.5	200	472	M10	99	19	40	21.8	6
AM90	130	12	165	4.5	200	472	M10	99	24	50	27.3	8
AM100	180	15	215	5	250	507	M12	134	28	60	31.3	8
AM112	180	15	215	5	250	507	M12	134	28	60	31.3	8
AM132S/M	230	16	265	5	300	564	M12	191	38	80	41.3	10

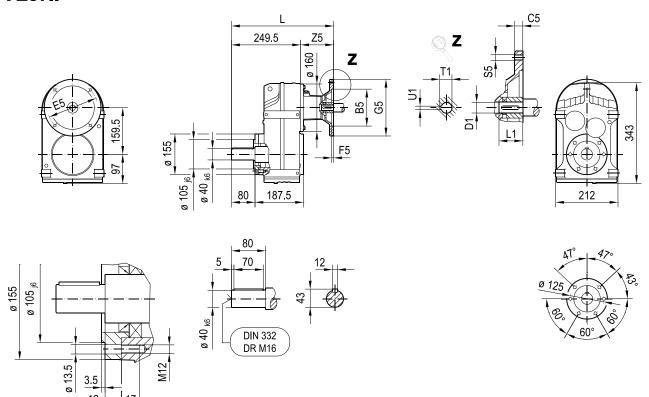


(→ [] 7.2.10)	B5	C5	E5	F5	G5	L	S5	Z5	D1	L1	T1	U1
AM63	95	10	115	3.5	140	227	M8	66	11	23	12.8	4
AM71	110	10	130	4	160	227	M8	66	14	30	16.3	5
AM80	130	12	165	4.5	200	260	M10	99	19	40	21.8	6
AM90	130	12	165	4.5	200	260	M10	99	24	50	27.3	8
AM100	180	15	215	5	250	295	M12	134	28	60	31.3	8
AM112	180	15	215	5	250	295	M12	134	28	60	31.3	8
AM132S/M	230	16	265	5	300	352	M12	191	38	80	41.3	10

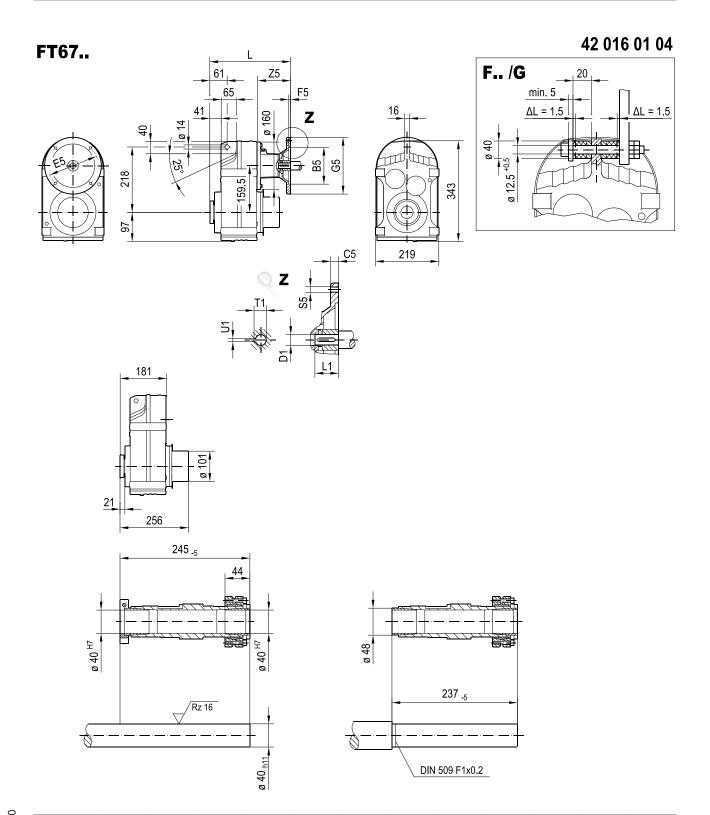
FAZ67..


42 059 04 01

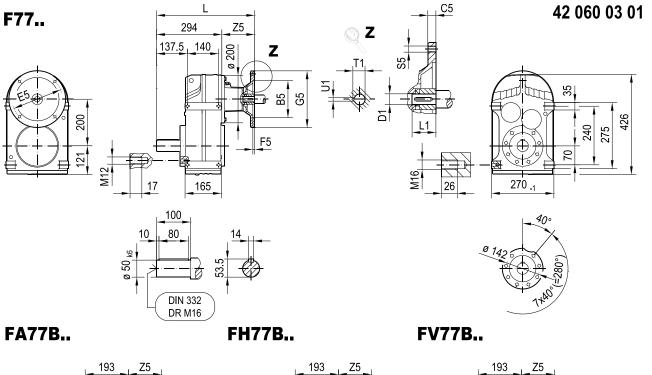
FAZ67..


FHZ67..

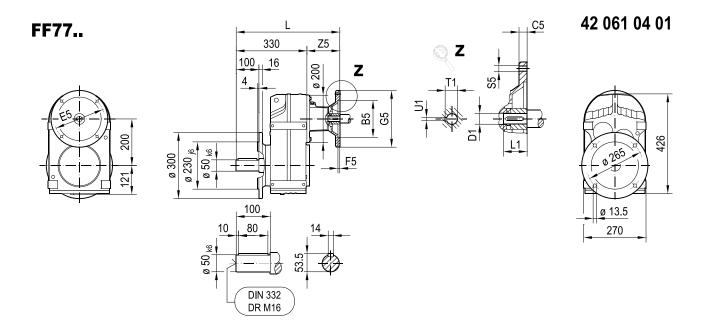
FVZ67..

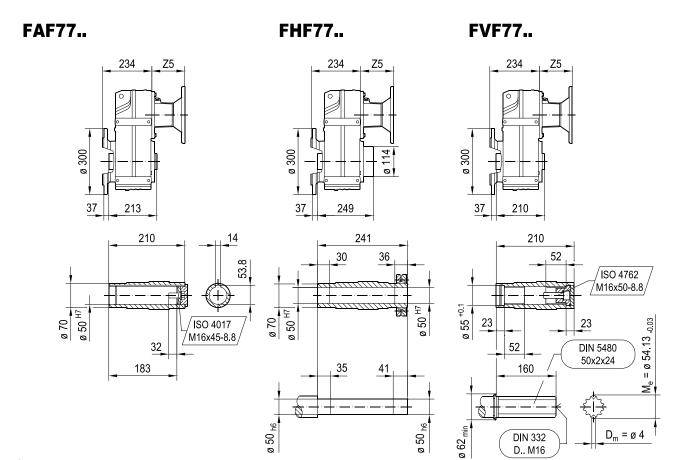


(→ [7.2.10)	B5	C5	E5	F5	G5	L	S5	Z5	D1	L1	T1	U1
AM63	95	10	115	3.5	140	239	M8	66	11	23	12.8	4
AM71	110	10	130	4	160	239	M8	66	14	30	16.3	5
AM80	130	12	165	4.5	200	272	M10	99	19	40	21.8	6
AM90	130	12	165	4.5	200	272	M10	99	24	50	27.3	8
AM100	180	15	215	5	250	307	M12	134	28	60	31.3	8
AM112	180	15	215	5	250	307	M12	134	28	60	31.3	8
AM132S/M	230	16	265	5	300	364	M12	191	38	80	41.3	10


FZ67.. 42 029 00 16

(→ [] 7.2.10)	B5	C5	E5	F5	G5	L	S5	Z 5	D1	L1	T1	U1
AM63	95	10	115	3.5	140	316	M8	66	11	23	12.8	4
AM71	110	10	130	4	160	316	M8	66	14	30	16.3	5
AM80	130	12	165	4.5	200	349	M10	99	19	40	21.8	6
AM90	130	12	165	4.5	200	349	M10	99	24	50	27.3	8
AM100	180	15	215	5	250	384	M12	134	28	60	31.3	8
AM112	180	15	215	5	250	384	M12	134	28	60	31.3	8
AM132S/M	230	16	265	5	300	441	M12	191	38	80	41.3	10

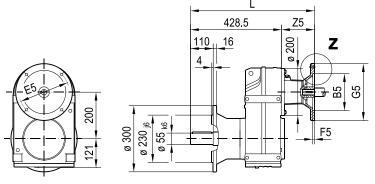

(→ []] 7.2.10)	B5	C5	E5	F5	G5	L	S5	Z5	D1	L1	T1	U1
AM63	95	10	115	3.5	140	247	M8	66	11	23	12.8	4
AM71	110	10	130	4	160	247	M8	66	14	30	16.3	5
AM80	130	12	165	4.5	200	280	M10	99	19	40	21.8	6
AM90	130	12	165	4.5	200	280	M10	99	24	50	27.3	8
AM100	180	15	215	5	250	315	M12	134	28	60	31.3	8
AM112	180	15	215	5	250	315	M12	134	28	60	31.3	8
AM132S/M	230	16	265	5	300	372	M12	191	38	80	41.3	10

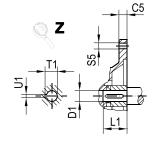


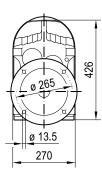
193 Z5	193 Z5	193 Z5
4	4	4
36.5	36.5	36.5
213	249	210
210 14 80 80 80 80 80 80 80 80 80 80	241 30 36 15 05 35 41 94 05 9 05 9 05	210 52 ISO 4762 M16x50-8.8 23 23 23 EXAMPLE 160 DIN 5480 50x2x24 DIN 5480 50x2x24 DIN 5480 50x2x24 DIN 332 DIN 332 DIN 3480 DIN

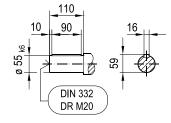
(→ [] 7.2.10)	B5	C5	E5	F5	G5	L	S5	Z5	D1	L1	T1	U1
AM63	95	10	115	3.5	140	354	M8	60	11	23	12.8	4
AM71	110	10	130	4	160	354	M8	60	14	30	16.3	5
AM80	130	12	165	4.5	200	386	M10	92	19	40	21.8	6
AM90	130	12	165	4.5	200	386	M10	92	24	50	27.3	8
AM100	180	15	215	5	250	420	M12	126	28	60	31.3	8
AM112	180	15	215	5	250	420	M12	126	28	60	31.3	8
AM132S/M	230	16	265	5	300	473	M12	179	38	80	41.3	10
AM132ML	230	16	265	5	300	473	M12	179	38	80	41.3	10

29154650/EN - 03/2020

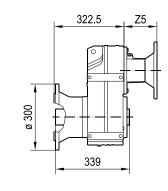


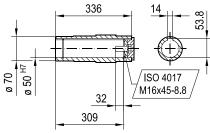

(→ []] 7.2.10)	B5	C5	E5	F5	G5	L	S5	Z5	D1	L1	T1	U1
AM63	95	10	115	3.5	140	390	M8	60	11	23	12.8	4
AM71	110	10	130	4	160	390	M8	60	14	30	16.3	5
AM80	130	12	165	4.5	200	422	M10	92	19	40	21.8	6
AM90	130	12	165	4.5	200	422	M10	92	24	50	27.3	8
AM100	180	15	215	5	250	456	M12	126	28	60	31.3	8
AM112	180	15	215	5	250	456	M12	126	28	60	31.3	8
AM132S/M	230	16	265	5	300	509	M12	179	38	80	41.3	10
AM132ML	230	16	265	5	300	509	M12	179	38	80	41.3	10

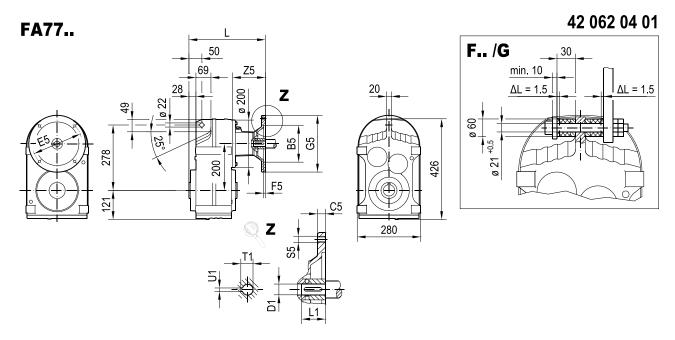

D.. M16


42 092 00 18

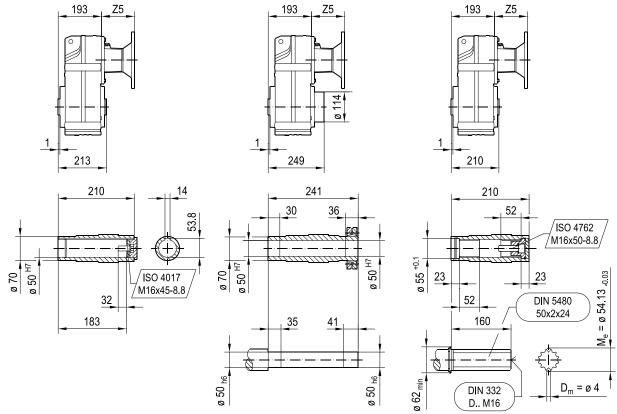
FM77..





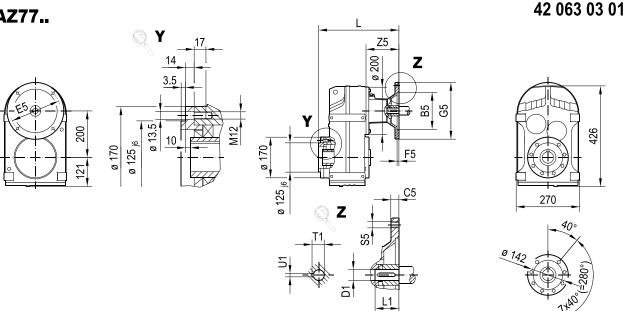


FAM77..

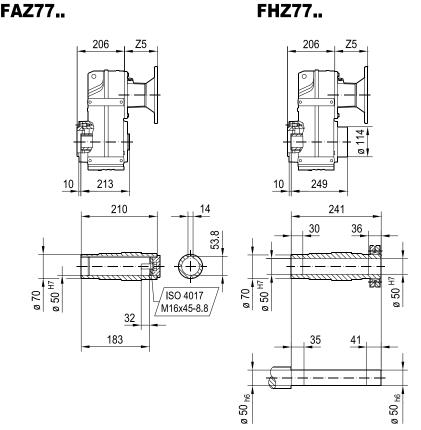


(→ [7.2.10)	B5	C5	E5	F5	G5	٦	S5	Z5	D1	L1	T1	U1
AM63	95	10	115	3.5	140	489	M8	60	11	23	12.8	4
AM71	110	10	130	4	160	489	M8	60	14	30	16.3	5
AM80	130	12	165	4.5	200	521	M10	92	19	40	21.8	6
AM90	130	12	165	4.5	200	521	M10	92	24	50	27.3	8
AM100	180	15	215	5	250	555	M12	126	28	60	31.3	8
AM112	180	15	215	5	250	555	M12	126	28	60	31.3	8
AM132S/M	230	16	265	5	300	608	M12	179	38	80	41.3	10
AM132ML	230	16	265	5	300	608	M12	179	38	80	41.3	10

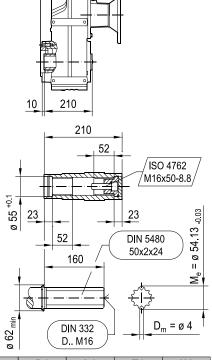
FA77.. FH77.. FV77..



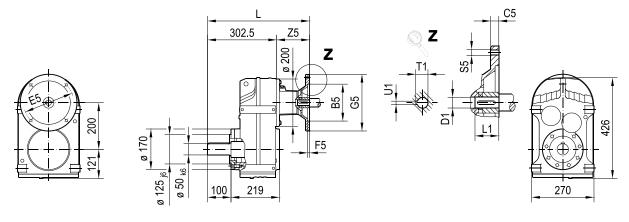
(→ []] 7.2.10)	B5	C5	E5	F5	G5	L	S5	Z5	D1	L1	T1	U1
AM63	95	10	115	3.5	140	253	M8	60	11	23	12.8	4
AM71	110	10	130	4	160	253	M8	60	14	30	16.3	5
AM80	130	12	165	4.5	200	285	M10	92	19	40	21.8	6
AM90	130	12	165	4.5	200	285	M10	92	24	50	27.3	8
AM100	180	15	215	5	250	319	M12	126	28	60	31.3	8
AM112	180	15	215	5	250	319	M12	126	28	60	31.3	8
AM132S/M	230	16	265	5	300	372	M12	179	38	80	41.3	10
AM132ML	230	16	265	5	300	372	M12	179	38	80	41.3	10

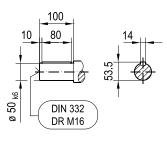

F.. parallel-shaft helical gear units

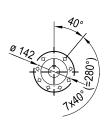
Dimension sheets for adapters for mounting IEC motors (AM..)



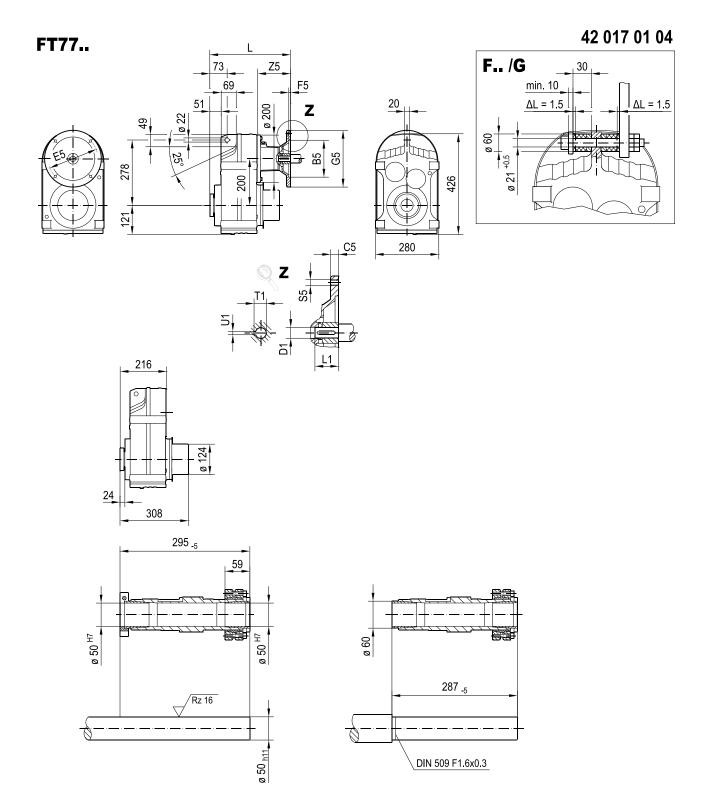
FAZ77..

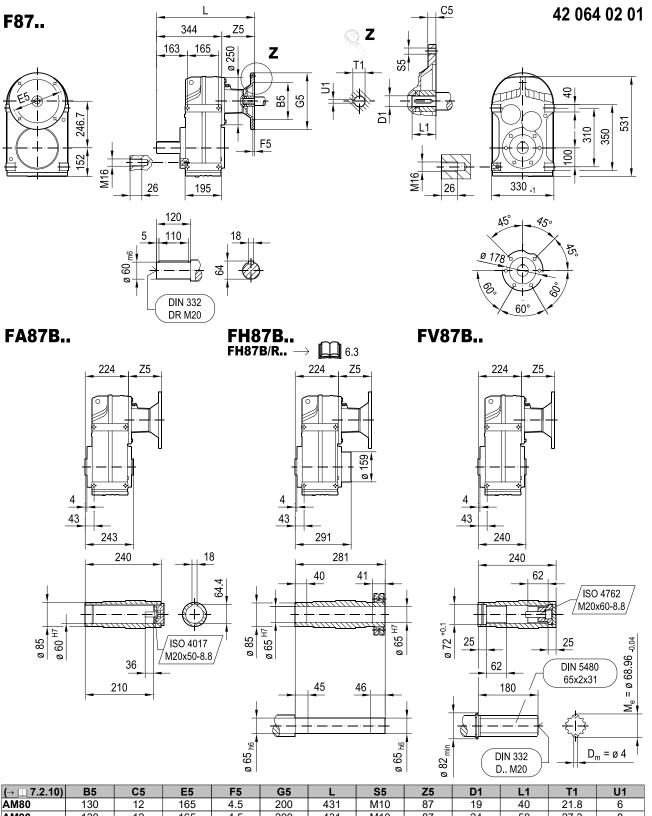

FVZ77..


(→ [] 7.2.10)	B5	C5	E5	F5	G5	L	S5	Z5	D1	L1	T1	U1
AM63	95	10	115	3.5	140	266	M8	60	11	23	12.8	4
AM71	110	10	130	4	160	266	M8	60	14	30	16.3	5
AM80	130	12	165	4.5	200	298	M10	92	19	40	21.8	6
AM90	130	12	165	4.5	200	298	M10	92	24	50	27.3	8
AM100	180	15	215	5	250	332	M12	126	28	60	31.3	8
AM112	180	15	215	5	250	332	M12	126	28	60	31.3	8
AM132S/M	230	16	265	5	300	385	M12	179	38	80	41.3	10
AM132ML	230	16	265	5	300	385	M12	179	38	80	41.3	10

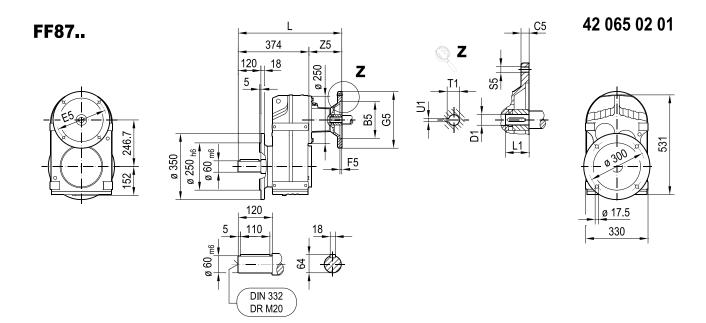

FZ77..

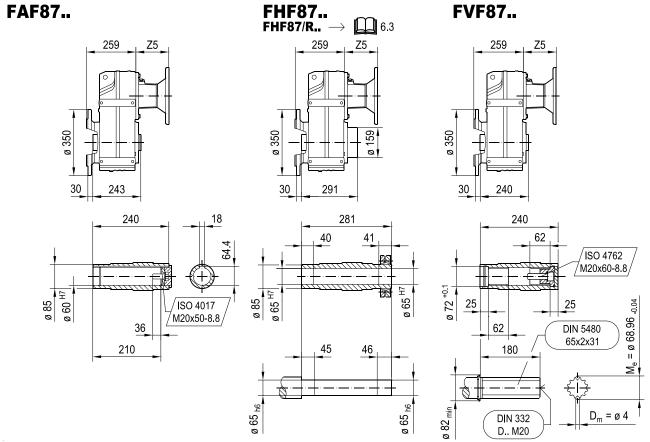
42 030 00 16





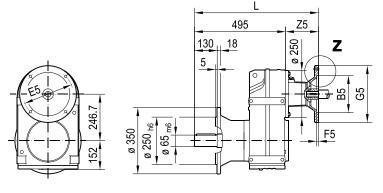
(→ 🛄 7.2.10)	B5	C5	E5	F5	G5	L	S5	Z5	D1	L1	T1	U1
AM63	95	10	115	3.5	140	363	M8	60	11	23	12.8	4
AM71	110	10	130	4	160	363	M8	60	14	30	16.3	5
AM80	130	12	165	4.5	200	395	M10	92	19	40	21.8	6
AM90	130	12	165	4.5	200	395	M10	92	24	50	27.3	8
AM100	180	15	215	5	250	429	M12	126	28	60	31.3	8
AM112	180	15	215	5	250	429	M12	126	28	60	31.3	8
AM132S/M	230	16	265	5	300	482	M12	179	38	80	41.3	10
AM132ML	230	16	265	5	300	482	M12	179	38	80	41.3	10


(→ []] 7.2.10)	B5	C5	E5	F5	G5	L	S5	Z 5	D1	L1	T1	U1
AM63	95	10	115	3.5	140	276	M8	60	11	23	12.8	4
AM71	110	10	130	4	160	276	M8	60	14	30	16.3	5
AM80	130	12	165	4.5	200	308	M10	92	19	40	21.8	6
AM90	130	12	165	4.5	200	308	M10	92	24	50	27.3	8
AM100	180	15	215	5	250	342	M12	126	28	60	31.3	8
AM112	180	15	215	5	250	342	M12	126	28	60	31.3	8
AM132S/M	230	16	265	5	300	395	M12	179	38	80	41.3	10
AM132ML	230	16	265	5	300	395	M12	179	38	80	41.3	10



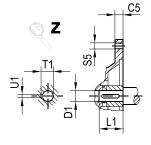
29154650/EN - 03/2020

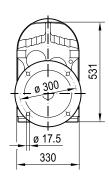
B5	C5	E5	F5	G5	L	S5	Z5	D1	L1	T1	U1
130	12	165	4.5	200	431	M10	87	19	40	21.8	6
130	12	165	4.5	200	431	M10	87	24	50	27.3	8
180	15	215	5	250	465	M12	121	28	60	31.3	8
180	15	215	5	250	465	M12	121	28	60	31.3	8
230	16	265	5	300	518	M12	174	38	80	41.3	10
230	16	265	5	300	518	M12	174	38	80	41.3	10
250	18	300	6	350	576	M16	232	42	110	45.3	12
250	18	300	6	350	576	M16	232	48	110	51.8	14
	130 130 180 180 230 230 250	130 12 130 12 180 15 180 15 230 16 230 16 250 18	130 12 165 130 12 165 180 15 215 180 15 215 230 16 265 230 16 265 250 18 300	130 12 165 4.5 130 12 165 4.5 180 15 215 5 180 15 215 5 230 16 265 5 230 16 265 5 250 18 300 6	130 12 165 4.5 200 130 12 165 4.5 200 180 15 215 5 250 180 15 215 5 250 230 16 265 5 300 230 16 265 5 300 250 18 300 6 350	130 12 165 4.5 200 431 130 12 165 4.5 200 431 180 15 215 5 250 465 180 15 215 5 250 465 230 16 265 5 300 518 230 16 265 5 300 518 250 18 300 6 350 576	130 12 165 4.5 200 431 M10 130 12 165 4.5 200 431 M10 180 15 215 5 250 465 M12 180 15 215 5 250 465 M12 230 16 265 5 300 518 M12 230 16 265 5 300 518 M12 250 18 300 6 350 576 M16	130 12 165 4.5 200 431 M10 87 130 12 165 4.5 200 431 M10 87 180 15 215 5 250 465 M12 121 180 15 215 5 250 465 M12 121 230 16 265 5 300 518 M12 174 230 16 265 5 300 518 M12 174 250 18 300 6 350 576 M16 232	130 12 165 4.5 200 431 M10 87 19 130 12 165 4.5 200 431 M10 87 24 180 15 215 5 250 465 M12 121 28 180 15 215 5 250 465 M12 121 28 230 16 265 5 300 518 M12 174 38 230 16 265 5 300 518 M12 174 38 250 18 300 6 350 576 M16 232 42	130 12 165 4.5 200 431 M10 87 19 40 130 12 165 4.5 200 431 M10 87 24 50 180 15 215 5 250 465 M12 121 28 60 180 15 215 5 250 465 M12 121 28 60 230 16 265 5 300 518 M12 174 38 80 230 16 265 5 300 518 M12 174 38 80 250 18 300 6 350 576 M16 232 42 110	130 12 165 4.5 200 431 M10 87 19 40 21.8 130 12 165 4.5 200 431 M10 87 24 50 27.3 180 15 215 5 250 465 M12 121 28 60 31.3 180 15 215 5 250 465 M12 121 28 60 31.3 230 16 265 5 300 518 M12 174 38 80 41.3 230 16 265 5 300 518 M12 174 38 80 41.3 250 18 300 6 350 576 M16 232 42 110 45.3



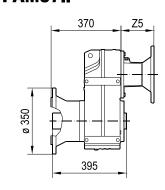
(→ [] 7.2.10)	B5	C5	E5	F5	G5	L	S5	Z 5	D1	L1	T1	U1
AM80	130	12	165	4.5	200	461	M10	87	19	40	21.8	6
AM90	130	12	165	4.5	200	461	M10	87	24	50	27.3	8
AM100	180	15	215	5	250	495	M12	121	28	60	31.3	8
AM112	180	15	215	5	250	495	M12	121	28	60	31.3	8
AM132S/M	230	16	265	5	300	548	M12	174	38	80	41.3	10
AM132ML	230	16	265	5	300	548	M12	174	38	80	41.3	10
AM160	250	18	300	6	350	606	M16	232	42	110	45.3	12
AM180	250	18	300	6	350	606	M16	232	48	110	51.8	14

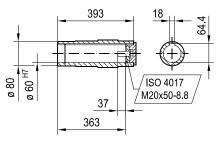
42 093 00 18

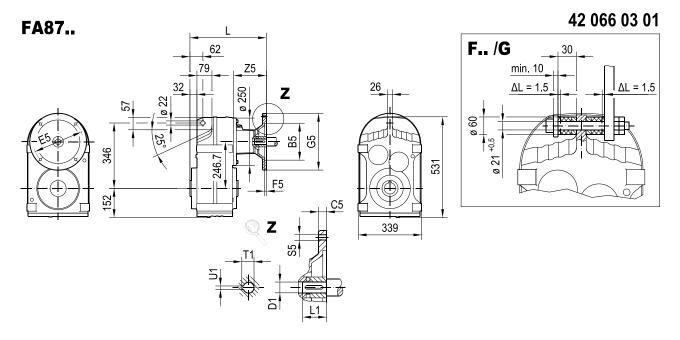

FM87..

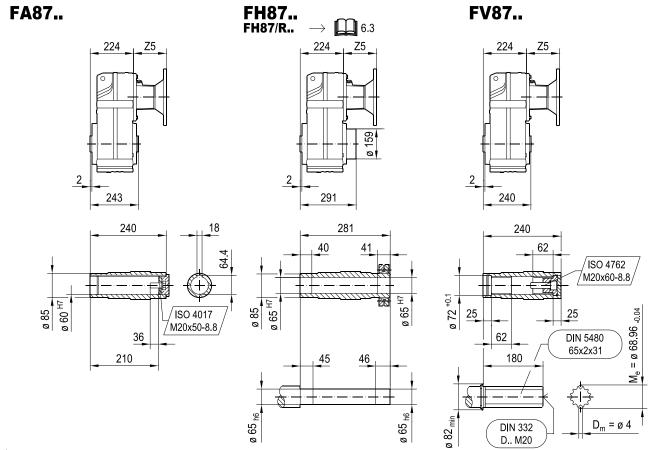


130

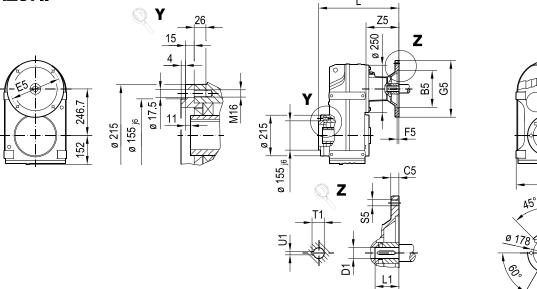

100


DIN 332 DR M20





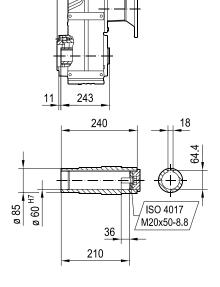
(→ [] 7.2.10)	B5	C5	E5	F5	G5	L	S5	Z5	D1	L1	T1	U1
AM80	130	12	165	4.5	200	582	M10	87	19	40	21.8	6
AM90	130	12	165	4.5	200	582	M10	87	24	50	27.3	8
AM100	180	15	215	5	250	616	M12	121	28	60	31.3	8
AM112	180	15	215	5	250	616	M12	121	28	60	31.3	8
AM132S/M	230	16	265	5	300	669	M12	174	38	80	41.3	10
AM132ML	230	16	265	5	300	669	M12	174	38	80	41.3	10
AM160	250	18	300	6	350	727	M16	232	42	110	45.3	12
AM180	250	18	300	6	350	727	M16	232	48	110	51.8	14

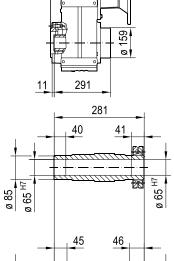


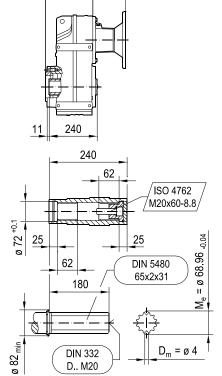

(→ [] 7.2.10)	B5	C5	E5	F5	G5	L	S5	Z 5	D1	L1	T1	U1
AM80	130	12	165	4.5	200	311	M10	87	19	40	21.8	6
AM90	130	12	165	4.5	200	311	M10	87	24	50	27.3	8
AM100	180	15	215	5	250	345	M12	121	28	60	31.3	8
AM112	180	15	215	5	250	345	M12	121	28	60	31.3	8
AM132S/M	230	16	265	5	300	398	M12	174	38	80	41.3	10
AM132ML	230	16	265	5	300	398	M12	174	38	80	41.3	10
AM160	250	18	300	6	350	456	M16	232	42	110	45.3	12
AM180	250	18	300	6	350	456	M16	232	48	110	51.8	14

42 067 02 01

531

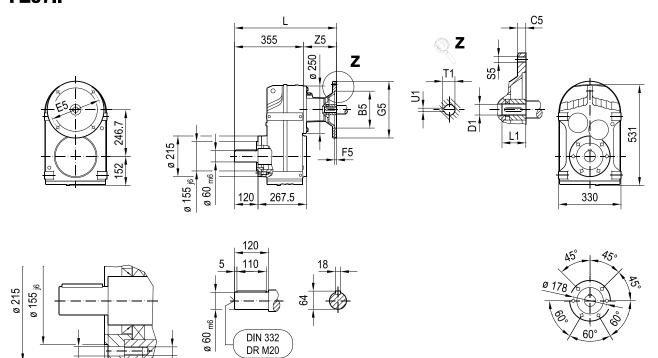



FAZ87..



FVZ87..

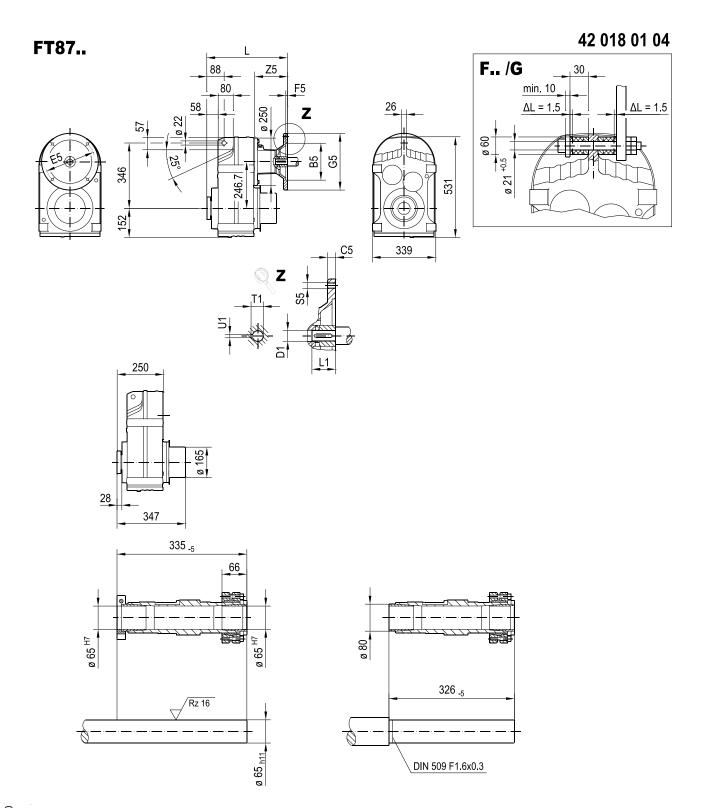
239

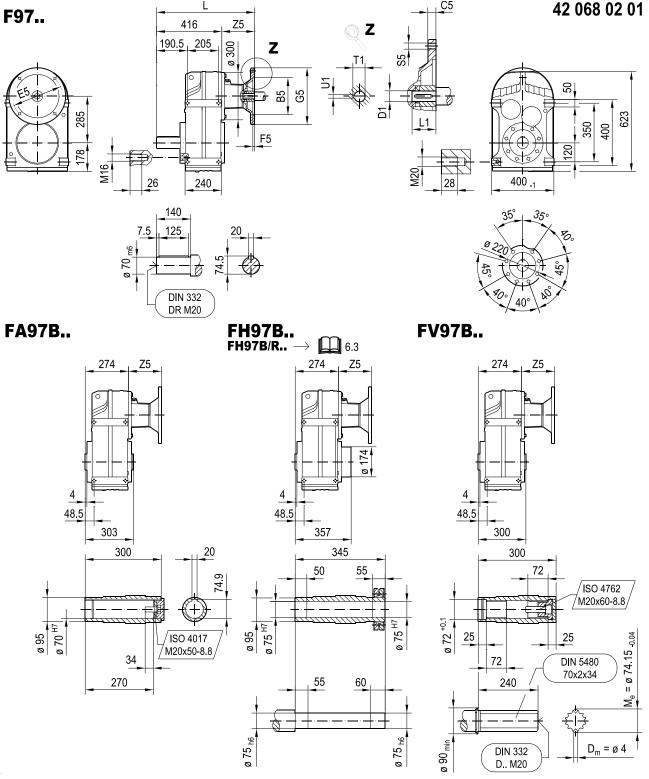

<u> </u>												
(→ []] 7.2.10)	B5	C5	E5	F5	G5	L	S5	Z5	D1	L1	T1	U1
AM80	130	12	165	4.5	200	326	M10	87	19	40	21.8	6
AM90	130	12	165	4.5	200	326	M10	87	24	50	27.3	8
AM100	180	15	215	5	250	360	M12	121	28	60	31.3	8
AM112	180	15	215	5	250	360	M12	121	28	60	31.3	8
AM132S/M	230	16	265	5	300	413	M12	174	38	80	41.3	10
AM132ML	230	16	265	5	300	413	M12	174	38	80	41.3	10
AM160	250	18	300	6	350	471	M16	232	42	110	45.3	12
AM180	250	18	300	6	350	471	M16	232	48	110	51.8	14

ø 65 _{h6}

ø 65 _{h6}

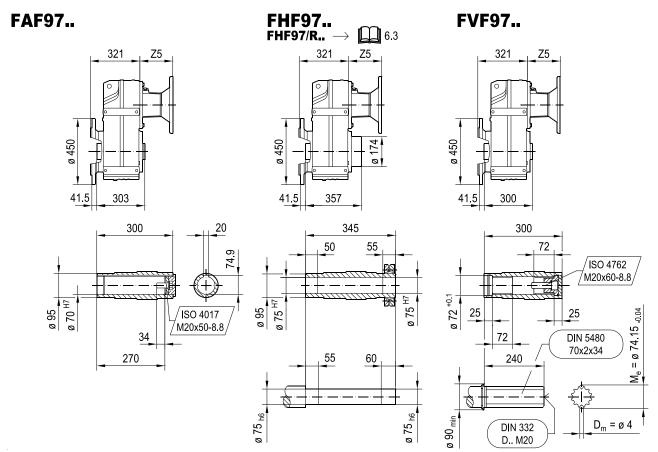
FZ87..


42 031 00 16


(→ [] 7.2.10)	B5	C5	E5	F5	G5	L	S5	Z5	D1	L1	T1	U1
AM80	130	12	165	4.5	200	442	M10	87	19	40	21.8	6
AM90	130	12	165	4.5	200	442	M10	87	24	50	27.3	8
AM100	180	15	215	5	250	476	M12	121	28	60	31.3	8
AM112	180	15	215	5	250	476	M12	121	28	60	31.3	8
AM132S/M	230	16	265	5	300	529	M12	174	38	80	41.3	10
AM132ML	230	16	265	5	300	529	M12	174	38	80	41.3	10
AM160	250	18	300	6	350	587	M16	232	42	110	45.3	12
AM180	250	18	300	6	350	587	M16	232	48	110	51.8	14

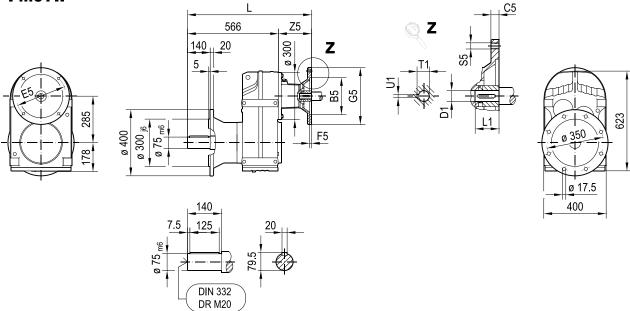
ø 17.5


15



(→ [] 7.2.10)	B5	C5	E5	F5	G5	L	S5	Z5	D1	L1	T1	U1
AM80	130	12	165	4.5	200	337	M10	87	19	40	21.8	6
AM90	130	12	165	4.5	200	337	M10	87	24	50	27.3	8
AM100	180	15	215	5	250	371	M12	121	28	60	31.3	8
AM112	180	15	215	5	250	371	M12	121	28	60	31.3	8
AM132S/M	230	16	265	5	300	424	M12	174	38	80	41.3	10
AM132ML	230	16	265	5	300	424	M12	174	38	80	41.3	10
AM160	250	18	300	6	350	482	M16	232	42	110	45.3	12
AM180	250	18	300	6	350	482	M16	232	48	110	51.8	14

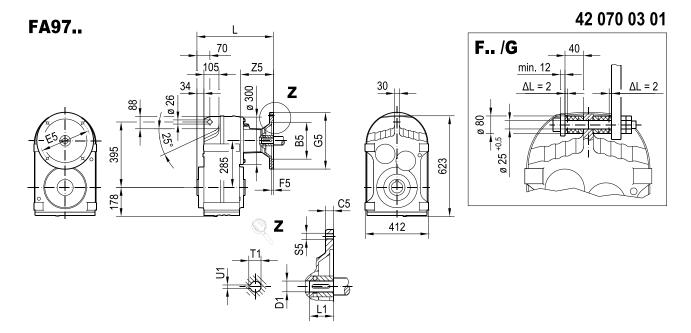
(→ [] 7.2.10)	B5	C5	E5	F5	G5	L	S5	Z 5	D1	L1	T1	U1
AM100	180	15	215	5	250	532	M12	116	28	60	31.3	8
AM112	180	15	215	5	250	532	M12	116	28	60	31.3	8
AM132S/M	230	16	265	5	300	585	M12	169	38	80	41.3	10
AM132ML	230	16	265	5	300	585	M12	169	38	80	41.3	10
AM160	250	18	300	6	350	643	M16	227	42	110	45.3	12
AM180	250	18	300	6	350	643	M16	227	48	110	51.8	14
AM200	300	20	350	7	400	684	M16	268	55	110	59.3	16

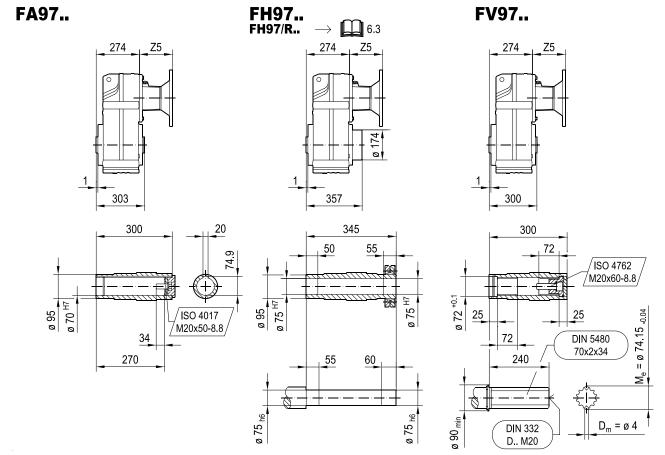


(→ [] 7.2.10)	B5	C5	E5	F5	G5	L	S5	Z 5	D1	L1	T1	U1
AM100	180	15	215	5	250	572	M12	116	28	60	31.3	8
AM112	180	15	215	5	250	572	M12	116	28	60	31.3	8
AM132S/M	230	16	265	5	300	625	M12	169	38	80	41.3	10
AM132ML	230	16	265	5	300	625	M12	169	38	80	41.3	10
AM160	250	18	300	6	350	683	M16	227	42	110	45.3	12
AM180	250	18	300	6	350	683	M16	227	48	110	51.8	14
AM200	300	20	350	7	400	724	M16	268	55	110	59.3	16

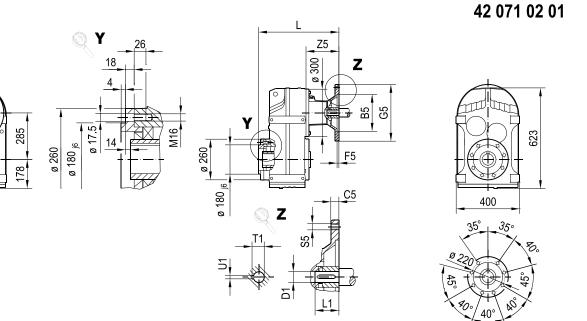
F.. parallel-shaft helical gear units

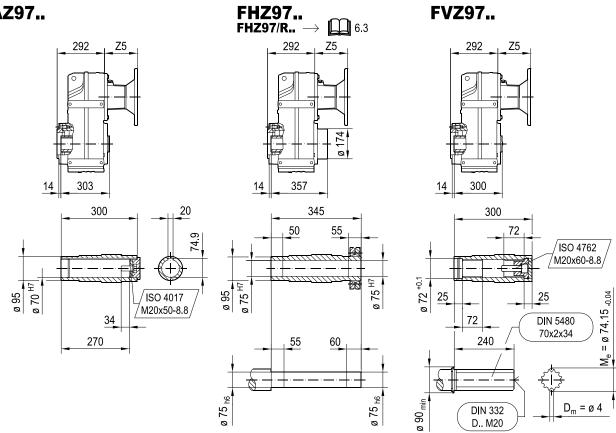
Dimension sheets for adapters for mounting IEC motors (AM..)


FM97.. 42 094 00 18

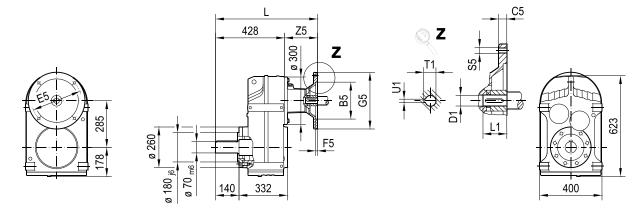


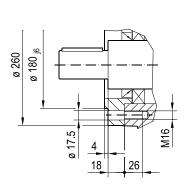
FAM97..

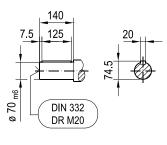

(→ [] 7.2.10)	B5	C5	E5	F5	G5	L	S5	Z 5	D1	L1	T1	U1
AM100	180	15	215	5	250	682	M12	116	28	60	31.3	8
AM112	180	15	215	5	250	682	M12	116	28	60	31.3	8
AM132S/M	230	16	265	5	300	735	M12	169	38	80	41.3	10
AM132ML	230	16	265	5	300	735	M12	169	38	80	41.3	10
AM160	250	18	300	6	350	793	M16	227	42	110	45.3	12
AM180	250	18	300	6	350	793	M16	227	48	110	51.8	14
AM200	300	20	350	7	400	834	M16	268	55	110	59.3	16



(→ [] 7.2.10)	B5	C5	E5	F5	G5	L	S5	Z 5	D1	L1	T1	U1
AM100	180	15	215	5	250	390	M12	116	28	60	31.3	8
AM112	180	15	215	5	250	390	M12	116	28	60	31.3	8
AM132S/M	230	16	265	5	300	443	M12	169	38	80	41.3	10
AM132ML	230	16	265	5	300	443	M12	169	38	80	41.3	10
AM160	250	18	300	6	350	501	M16	227	42	110	45.3	12
AM180	250	18	300	6	350	501	M16	227	48	110	51.8	14
AM200	300	20	350	7	400	542	M16	268	55	110	59.3	16

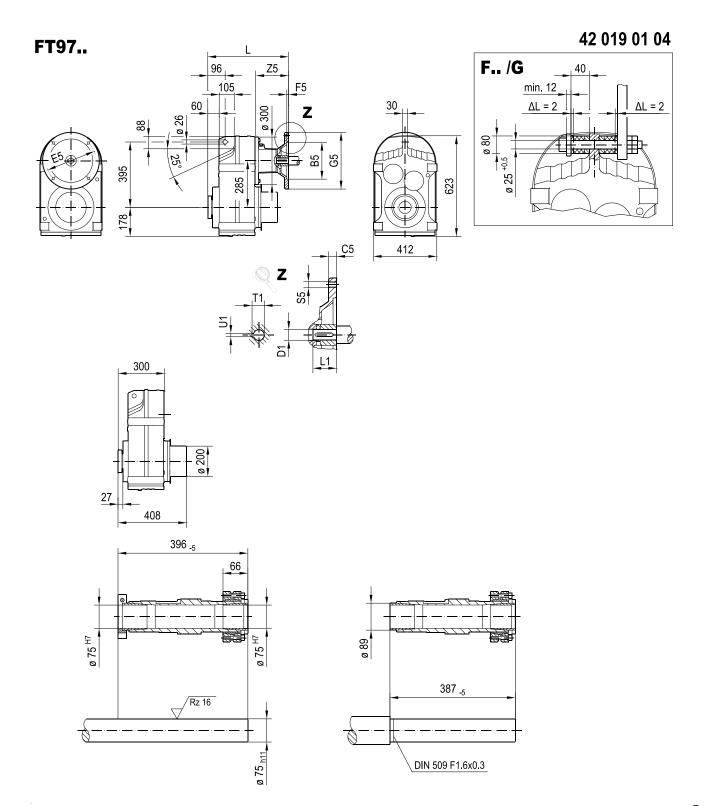

FAZ97..

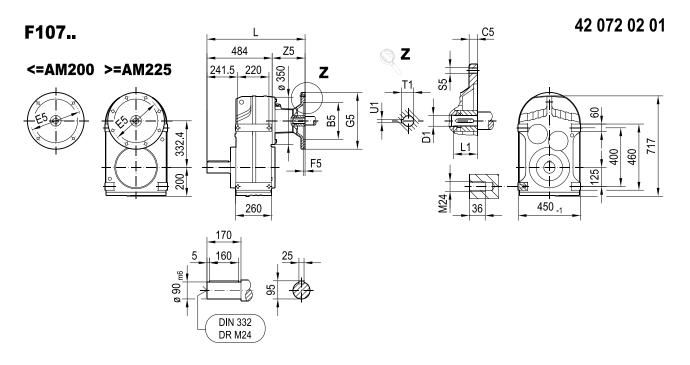


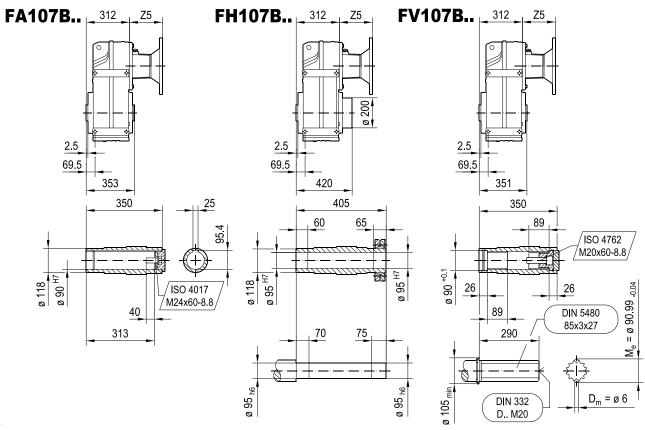

(→ [] 7.2.10)	B5	C5	E5	F5	G5	L	S5	Z 5	D1	L1	T1	U1
AM100	180	15	215	5	250	408	M12	116	28	60	31.3	8
AM112	180	15	215	5	250	408	M12	116	28	60	31.3	8
AM132S/M	230	16	265	5	300	461	M12	169	38	80	41.3	10
AM132ML	230	16	265	5	300	461	M12	169	38	80	41.3	10
AM160	250	18	300	6	350	519	M16	227	42	110	45.3	12
AM180	250	18	300	6	350	519	M16	227	48	110	51.8	14
AM200	300	20	350	7	400	560	M16	268	55	110	59.3	16

FZ97..

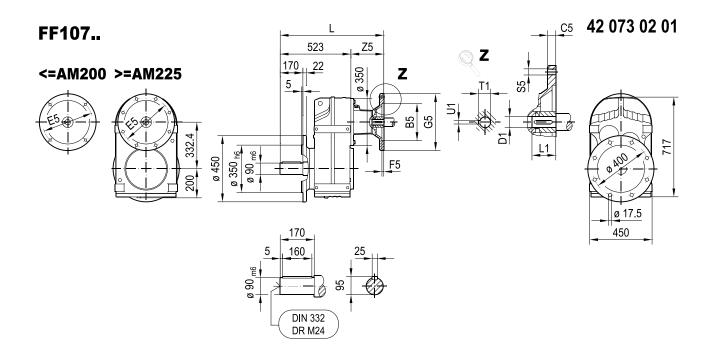
42 032 01 16

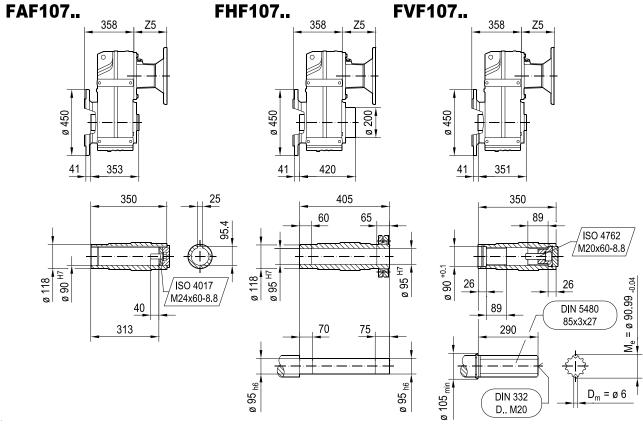




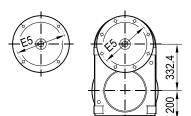


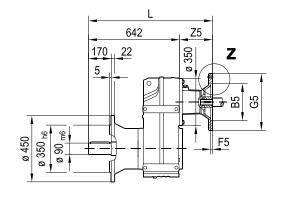
(→ []] 7.2.10)	B5	C5	E5	F5	G5	L	S5	Z5	D1	L1	T1	U1
AM100	180	15	215	5	250	544	M12	116	28	60	31.3	8
AM112	180	15	215	5	250	544	M12	116	28	60	31.3	8
AM132S/M	230	16	265	5	300	597	M12	169	38	80	41.3	10
AM132ML	230	16	265	5	300	597	M12	169	38	80	41.3	10
AM160	250	18	300	6	350	655	M16	227	42	110	45.3	12
AM180	250	18	300	6	350	655	M16	227	48	110	51.8	14
AM200	300	20	350	7	400	696	M16	268	55	110	59.3	16
•									•			

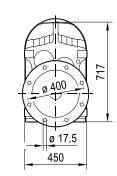



(→ [] 7.2.10)	B5	C5	E5	F5	G5	L	S5	Z 5	D1	L1	T1	U1
AM100	180	15	215	5	250	416	M12	116	28	60	31.3	8
AM112	180	15	215	5	250	416	M12	116	28	60	31.3	8
AM132S/M	230	16	265	5	300	469	M12	169	38	80	41.3	10
AM132ML	230	16	265	5	300	469	M12	169	38	80	41.3	10
AM160	250	18	300	6	350	527	M16	227	42	110	45.3	12
AM180	250	18	300	6	350	527	M16	227	48	110	51.8	14
AM200	300	20	350	7	400	568	M16	268	55	110	59.3	16

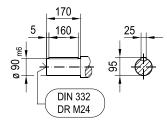
(→ [7.2.10)	B5	C5	E5	F5	G5	L	S5	Z5	D1	L1	T1	U1
AM100	180	15	215	5	250	594	M12	110	28	60	31.3	8
AM112	180	15	215	5	250	594	M12	110	28	60	31.3	8
AM132S/M	230	16	265	5	300	647	M12	163	38	80	41.3	10
AM132ML	230	16	265	5	300	647	M12	163	38	80	41.3	10
AM160	250	18	300	6	350	705	M16	221	42	110	45.3	12
AM180	250	18	300	6	350	705	M16	221	48	110	51.8	14
AM200	300	20	350	7	400	746	M16	262	55	110	59.3	16
AM225	350	22	400	7	450	761	M16	277	60	140	64.4	18

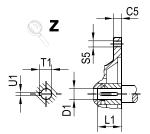


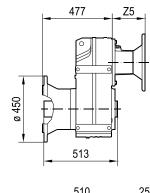


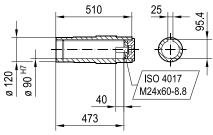

(→ []] 7.2.10)	B5	C5	E5	F5	G5	L	S5	Z5	D1	L1	T1	U1
AM100	180	15	215	5	250	633	M12	110	28	60	31.3	8
AM112	180	15	215	5	250	633	M12	110	28	60	31.3	8
AM132S/M	230	16	265	5	300	686	M12	163	38	80	41.3	10
AM132ML	230	16	265	5	300	686	M12	163	38	80	41.3	10
AM160	250	18	300	6	350	744	M16	221	42	110	45.3	12
AM180	250	18	300	6	350	744	M16	221	48	110	51.8	14
AM200	300	20	350	7	400	785	M16	262	55	110	59.3	16
AM225	350	22	400	7	450	800	M16	277	60	140	64.4	18

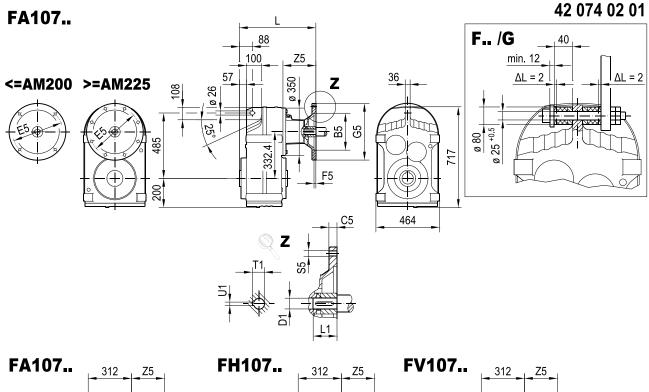
FM107...

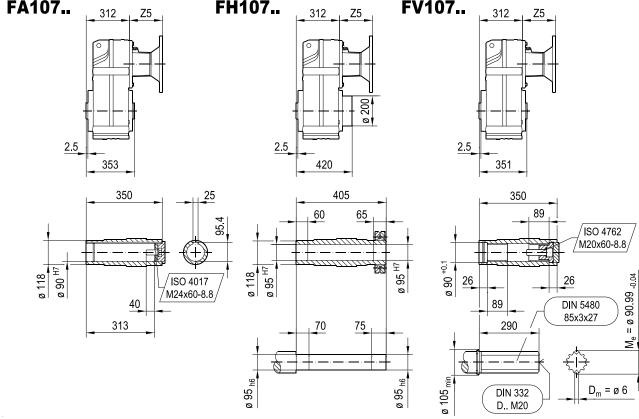

<=AM200 >=AM225

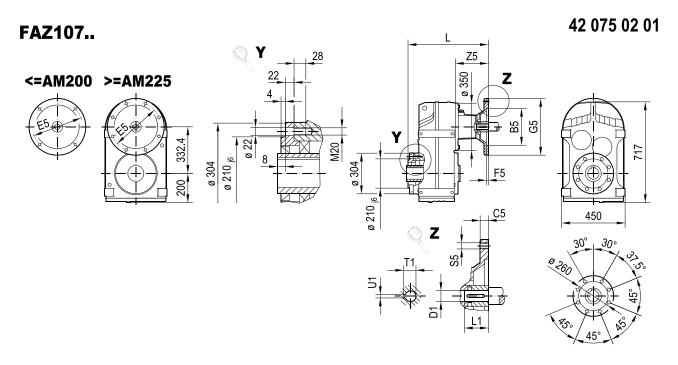


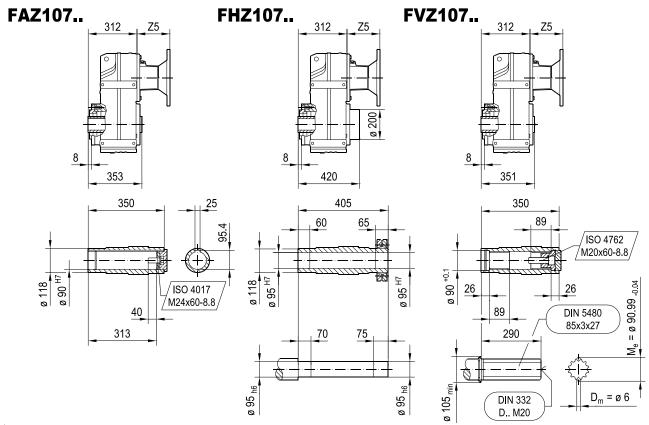



42 095 00 18

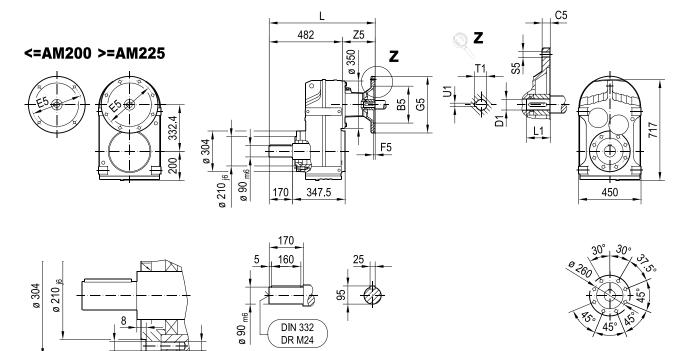



FAM107...



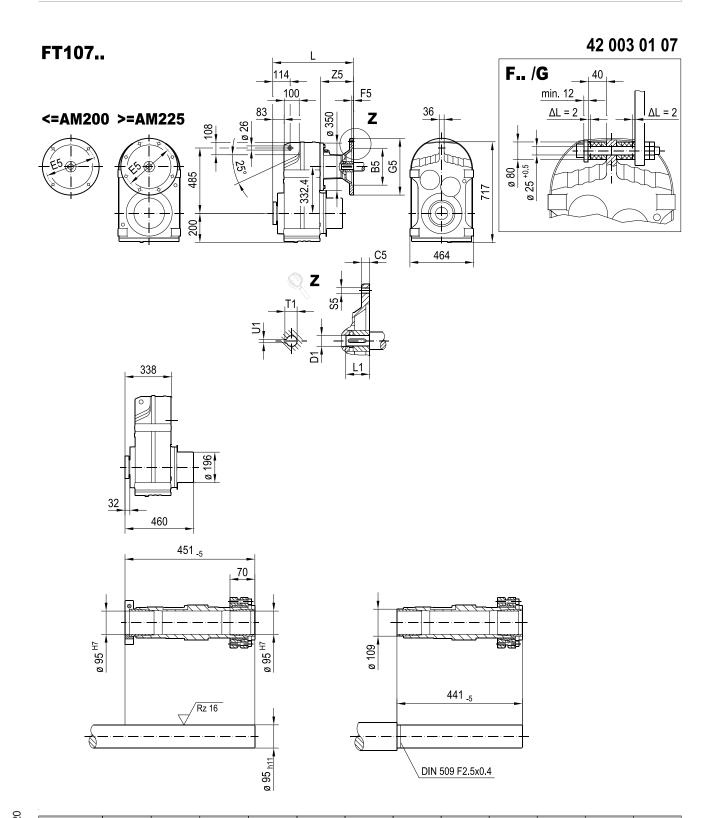

(→ [] 7.2.10)	B5	C5	E5	F5	G5	L	S5	Z5	D1	L1	T1	U1
AM100	180	15	215	5	250	752	M12	110	28	60	31.3	8
AM112	180	15	215	5	250	752	M12	110	28	60	31.3	8
AM132S/M	230	16	265	5	300	805	M12	163	38	80	41.3	10
AM132ML	230	16	265	5	300	805	M12	163	38	80	41.3	10
AM160	250	18	300	6	350	863	M16	221	42	110	45.3	12
AM180	250	18	300	6	350	863	M16	221	48	110	51.8	14
AM200	300	20	350	7	400	904	M16	262	55	110	59.3	16
AM225	350	22	400	7	450	919	M16	277	60	140	64.4	18

(→ [] 7.2.10)	B5	C5	E5	F5	G5	L	S5	Z 5	D1	L1	T1	U1
AM100	180	15	215	5	250	422	M12	110	28	60	31.3	8
AM112	180	15	215	5	250	422	M12	110	28	60	31.3	8
AM132S/M	230	16	265	5	300	475	M12	163	38	80	41.3	10
AM132ML	230	16	265	5	300	475	M12	163	38	80	41.3	10
AM160	250	18	300	6	350	533	M16	221	42	110	45.3	12
AM180	250	18	300	6	350	533	M16	221	48	110	51.8	14
AM200	300	20	350	7	400	574	M16	262	55	110	59.3	16
AM225	350	22	400	7	450	589	M16	277	60	140	64.4	18


(→ [7.2.10)	B5	C5	E5	F5	G5	L	S5	Z5	D1	L1	T1	U1
AM100	180	15	215	5	250	422	M12	110	28	60	31.3	8
AM112	180	15	215	5	250	422	M12	110	28	60	31.3	8
AM132S/M	230	16	265	5	300	475	M12	163	38	80	41.3	10
AM132ML	230	16	265	5	300	475	M12	163	38	80	41.3	10
AM160	250	18	300	6	350	533	M16	221	42	110	45.3	12
AM180	250	18	300	6	350	533	M16	221	48	110	51.8	14
AM200	300	20	350	7	400	574	M16	262	55	110	59.3	16
AM225	350	22	400	7	450	589	M16	277	60	140	64.4	18

FZ107..

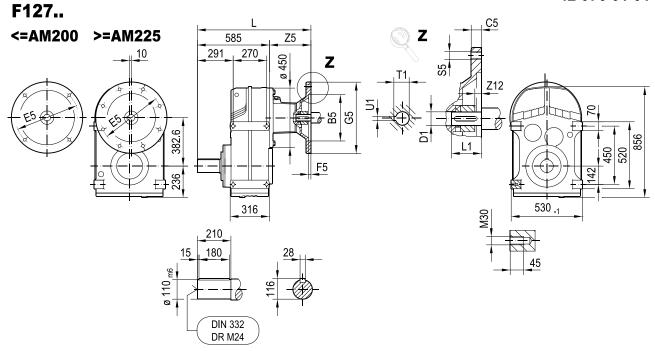
ø 22

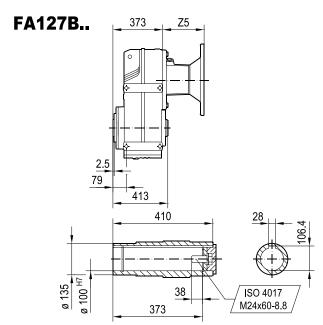

28

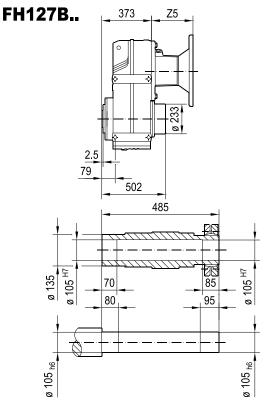
42 033 00 16

DR M24

(→ [] 7.2.10)	B5	C5	E5	F5	G5	L	S5	Z5	D1	L1	T1	U1
AM100	180	15	215	5	250	592	M12	110	28	60	31.3	8
AM112	180	15	215	5	250	592	M12	110	28	60	31.3	8
AM132S/M	230	16	265	5	300	645	M12	163	38	80	41.3	10
AM132ML	230	16	265	5	300	645	M12	163	38	80	41.3	10
AM160	250	18	300	6	350	703	M16	221	42	110	45.3	12
AM180	250	18	300	6	350	703	M16	221	48	110	51.8	14
AM200	300	20	350	7	400	744	M16	262	55	110	59.3	16
AM225	350	22	400	7	450	759	M16	277	60	140	64.4	18

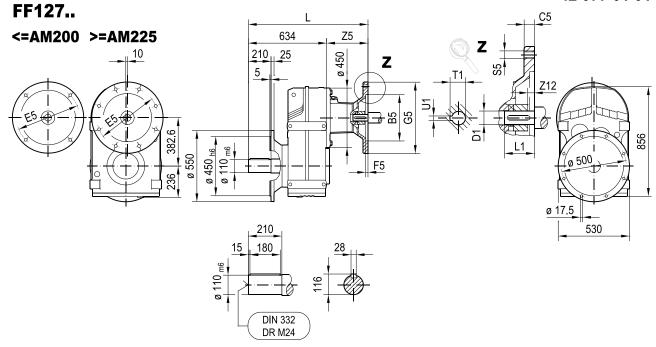

\sim
0
\mathcal{O}
ത്
8
1
7
įΠ
\sim
$\tilde{0}$
õ
4
ζ'n
$\overline{}$
0
\sim

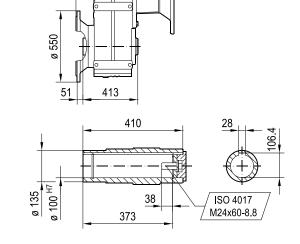

(→ [7.2.10)	B5	C5	E5	F5	G5	L	S5	Z 5	D1	L1	T1	U1
AM100	180	15	215	5	250	448	M12	110	28	60	31.3	8
AM112	180	15	215	5	250	448	M12	110	28	60	31.3	8
AM132S/M	230	16	265	5	300	501	M12	163	38	80	41.3	10
AM132ML	230	16	265	5	300	501	M12	163	38	80	41.3	10
AM160	250	18	300	6	350	559	M16	221	42	110	45.3	12
AM180	250	18	300	6	350	559	M16	221	48	110	51.8	14
AM200	300	20	350	7	400	600	M16	262	55	110	59.3	16
AM225	350	22	400	7	450	615	M16	277	60	140	64.4	18


F.. parallel-shaft helical gear units

Dimension sheets for adapters for mounting IEC motors (AM..)

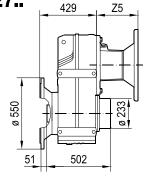
42 076 01 01

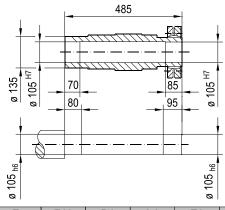




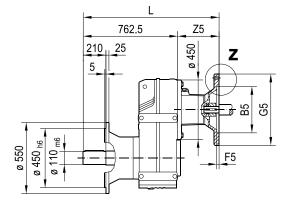
(→ [] 7.2.10)	B5	C5	E5	F5	G5	L	S5	Z5	Z12	D1	L1	T1	U1
AM132S/M	230	16	265	5	300	733	M12	148	0	38	80	41.3	10
AM132ML	230	16	265	5	300	733	M12	148	0	38	80	41.3	10
AM160	250	18	300	6	350	791	M16	206	0	42	110	45.3	12
AM180	250	18	300	6	350	791	M16	206	0	48	110	51.8	14
AM200	300	20	350	7	400	832	M16	247	0	55	110	59.3	16
AM225	350	22	400	7	450	847	M16	262	0	60	140	64.4	18
AM250	450	25	500	7	550	921	M16	336	19	65	140	69.4	18
AM280	450	25	500	7	550	921	M16	336	19	75	140	79.9	20

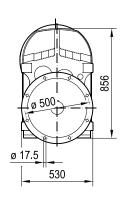
42 077 01 01

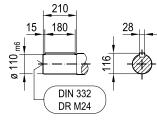


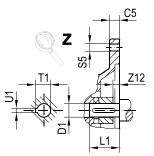


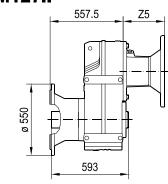
Z5

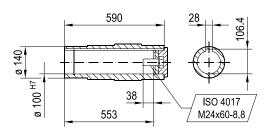


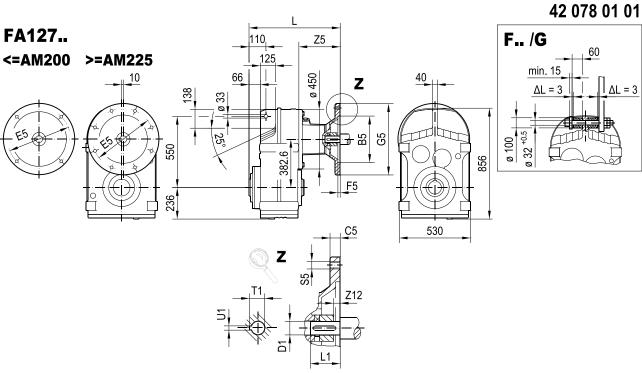


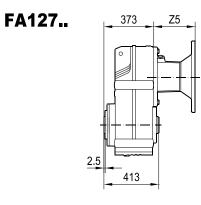

(→ [7.2.10)	B5	C5	E5	F5	G5	L	S5	Z 5	Z12	D1	L1	T1	U1
AM132S/M	230	16	265	5	300	782	M12	148	0	38	80	41.3	10
AM132ML	230	16	265	5	300	782	M12	148	0	38	80	41.3	10
AM160	250	18	300	6	350	840	M16	206	0	42	110	45.3	12
AM180	250	18	300	6	350	840	M16	206	0	48	110	51.8	14
AM200	300	20	350	7	400	881	M16	247	0	55	110	59.3	16
AM225	350	22	400	7	450	896	M16	262	0	60	140	64.4	18
AM250	450	25	500	7	550	970	M16	336	19	65	140	69.4	18
AM280	450	25	500	7	550	970	M16	336	19	75	140	79.9	20

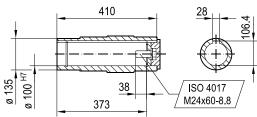

42 096 00 18

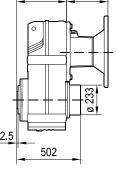


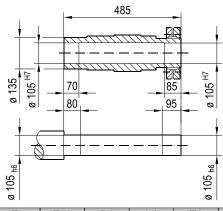


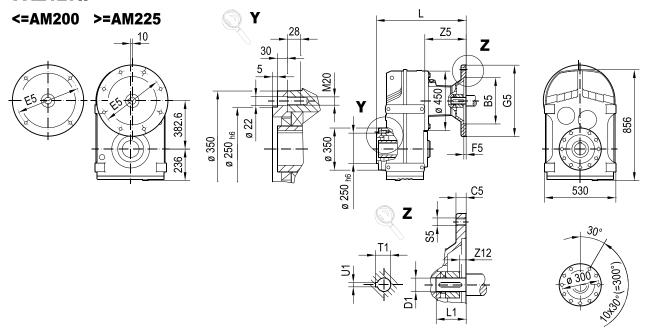


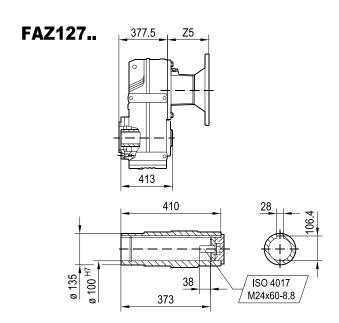

FAM127..

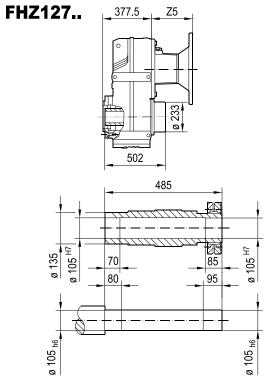



B5	C5	E5	F5	G5	L	S5	Z 5	Z12	D1	L1	T1	U1
230	16	265	5	300	911	M12	148	0	38	80	41.3	10
230	16	265	5	300	911	M12	148	0	38	80	41.3	10
250	18	300	6	350	969	M16	206	0	42	110	45.3	12
250	18	300	6	350	969	M16	206	0	48	110	51.8	14
300	20	350	7	400	1010	M16	247	0	55	110	59.3	16
350	22	400	7	450	1025	M16	262	0	60	140	64.4	18
450	25	500	7	550	1099	M16	336	19	65	140	69.4	18
450	25	500	7	550	1099	M16	336	19	75	140	79.9	20
	230 230 250 250 300 350 450	230 16 230 16 250 18 250 18 300 20 350 22 450 25	230 16 265 230 16 265 250 18 300 250 18 300 300 20 350 350 22 400 450 25 500	230 16 265 5 230 16 265 5 250 18 300 6 250 18 300 6 300 20 350 7 350 22 400 7 450 25 500 7	230 16 265 5 300 230 16 265 5 300 250 18 300 6 350 250 18 300 6 350 300 20 350 7 400 350 22 400 7 450 450 25 500 7 550	230 16 265 5 300 911 230 16 265 5 300 911 250 18 300 6 350 969 250 18 300 6 350 969 300 20 350 7 400 1010 350 22 400 7 450 1025 450 25 500 7 550 1099	230 16 265 5 300 911 M12 230 16 265 5 300 911 M12 250 18 300 6 350 969 M16 250 18 300 6 350 969 M16 300 20 350 7 400 1010 M16 350 22 400 7 450 1025 M16 450 25 500 7 550 1099 M16	230 16 265 5 300 911 M12 148 230 16 265 5 300 911 M12 148 250 18 300 6 350 969 M16 206 250 18 300 6 350 969 M16 206 300 20 350 7 400 1010 M16 247 350 22 400 7 450 1025 M16 262 450 25 500 7 550 1099 M16 336	230 16 265 5 300 911 M12 148 0 230 16 265 5 300 911 M12 148 0 250 18 300 6 350 969 M16 206 0 250 18 300 6 350 969 M16 206 0 300 20 350 7 400 1010 M16 247 0 350 22 400 7 450 1025 M16 262 0 450 25 500 7 550 1099 M16 336 19	230 16 265 5 300 911 M12 148 0 38 230 16 265 5 300 911 M12 148 0 38 250 18 300 6 350 969 M16 206 0 42 250 18 300 6 350 969 M16 206 0 48 300 20 350 7 400 1010 M16 247 0 55 350 22 400 7 450 1025 M16 262 0 60 450 25 500 7 550 1099 M16 336 19 65	230 16 265 5 300 911 M12 148 0 38 80 230 16 265 5 300 911 M12 148 0 38 80 250 18 300 6 350 969 M16 206 0 42 110 250 18 300 6 350 969 M16 206 0 48 110 300 20 350 7 400 1010 M16 247 0 55 110 350 22 400 7 450 1025 M16 262 0 60 140 450 25 500 7 550 1099 M16 336 19 65 140	230 16 265 5 300 911 M12 148 0 38 80 41.3 230 16 265 5 300 911 M12 148 0 38 80 41.3 250 18 300 6 350 969 M16 206 0 42 110 45.3 250 18 300 6 350 969 M16 206 0 48 110 51.8 300 20 350 7 400 1010 M16 247 0 55 110 59.3 350 22 400 7 450 1025 M16 262 0 60 140 64.4 450 25 500 7 550 1099 M16 336 19 65 140 69.4



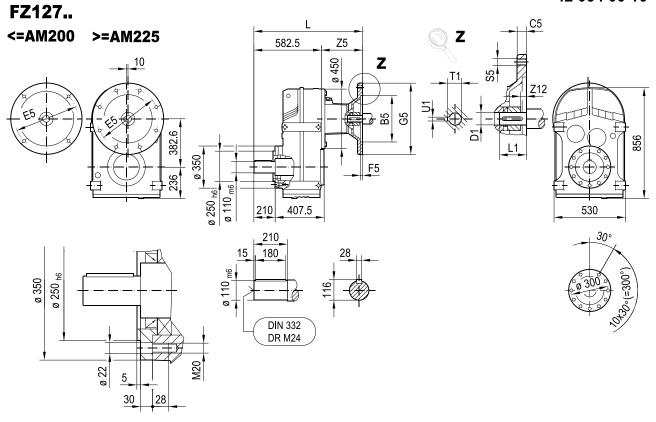


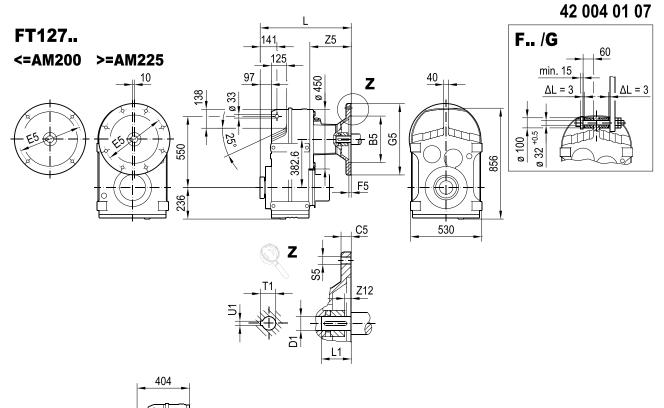


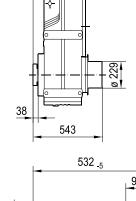

(→ []] 7.2.10)	B5	C5	E5	F5	G5	L	S5	Z 5	Z12	D1	L1	T1	U1
AM132S/M	230	16	265	5	300	521	M12	148	0	38	80	41.3	10
AM132ML	230	16	265	5	300	521	M12	148	0	38	80	41.3	10
AM160	250	18	300	6	350	579	M16	206	0	42	110	45.3	12
AM180	250	18	300	6	350	579	M16	206	0	48	110	51.8	14
AM200	300	20	350	7	400	620	M16	247	0	55	110	59.3	16
AM225	350	22	400	7	450	635	M16	262	0	60	140	64.4	18
AM250	450	25	500	7	550	709	M16	336	19	65	140	69.4	18
AM280	450	25	500	7	550	709	M16	336	19	75	140	79.9	20

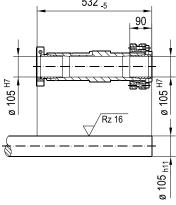
42 079 01 01

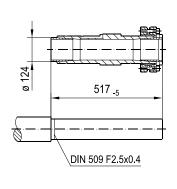
FAZ127...



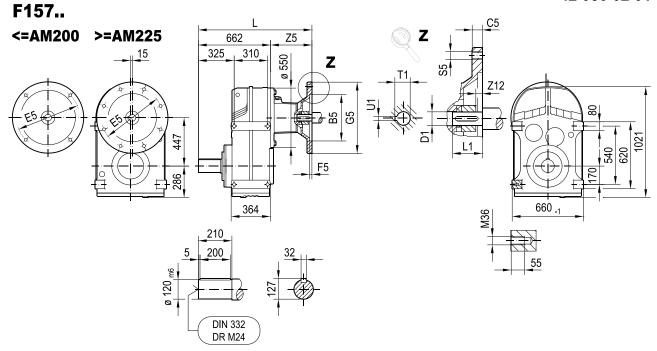


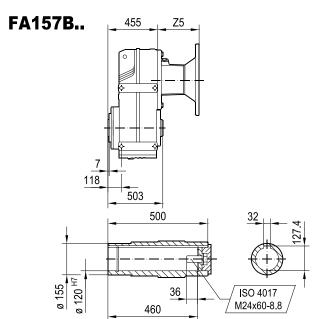

(→ []] 7.2.10)	B5	C5	E5	F5	G5	L	S5	Z5	Z12	D1	L1	T1	U1
AM132S/M	230	16	265	5	300	526	M12	148	0	38	80	41.3	10
AM132ML	230	16	265	5	300	526	M12	148	0	38	80	41.3	10
AM160	250	18	300	6	350	584	M16	206	0	42	110	45.3	12
AM180	250	18	300	6	350	584	M16	206	0	48	110	51.8	14
AM200	300	20	350	7	400	625	M16	247	0	55	110	59.3	16
AM225	350	22	400	7	450	640	M16	262	0	60	140	64.4	18
AM250	450	25	500	7	550	714	M16	336	19	65	140	69.4	18
AM280	450	25	500	7	550	714	M16	336	19	75	140	79.9	20

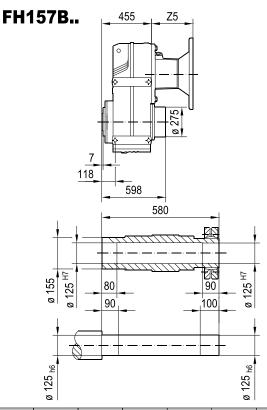

42 034 00 16



(→ [] 7.2.10)	B5	C5	E5	F5	G5	L	S5	Z 5	Z12	D1	L1	T1	U1
AM132S/M	230	16	265	5	300	731	M12	148	0	38	80	41.3	10
AM132ML	230	16	265	5	300	731	M12	148	0	38	80	41.3	10
AM160	250	18	300	6	350	789	M16	206	0	42	110	45.3	12
AM180	250	18	300	6	350	789	M16	206	0	48	110	51.8	14
AM200	300	20	350	7	400	830	M16	247	0	55	110	59.3	16
AM225	350	22	400	7	450	845	M16	262	0	60	140	64.4	18
AM250	450	25	500	7	550	919	M16	336	19	65	140	69.4	18
AM280	450	25	500	7	550	919	M16	336	19	75	140	79.9	20

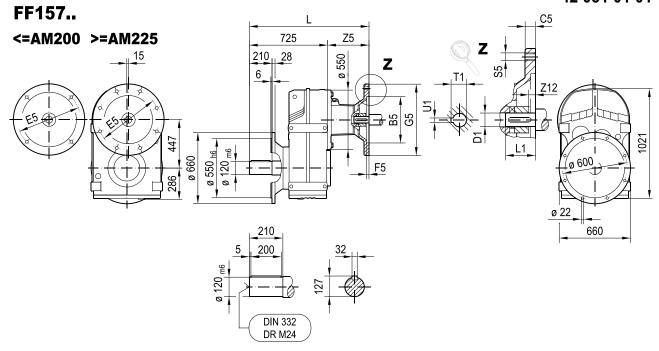


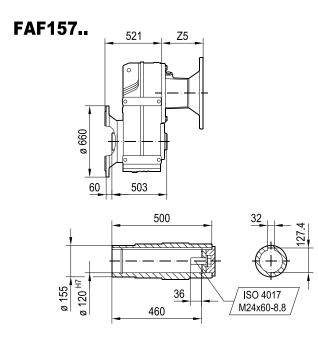


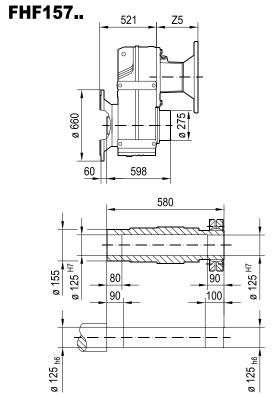


(→ []] 7.2.10)	B5	C5	E5	F5	G5	L	S5	Z 5	Z12	D1	L1	T1	U1
AM132S/M	230	16	265	5	300	552	M12	148	0	38	80	41.3	10
AM132ML	230	16	265	5	300	552	M12	148	0	38	80	41.3	10
AM160	250	18	300	6	350	610	M16	206	0	42	110	45.3	12
AM180	250	18	300	6	350	610	M16	206	0	48	110	51.8	14
AM200	300	20	350	7	400	651	M16	247	0	55	110	59.3	16
AM225	350	22	400	7	450	666	M16	262	0	60	140	64.4	18
AM250	450	25	500	7	550	740	M16	336	19	65	140	69.4	18
AM280	450	25	500	7	550	740	M16	336	19	75	140	79.9	20

42 080 02 01

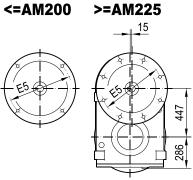


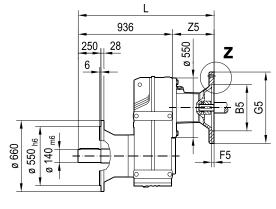


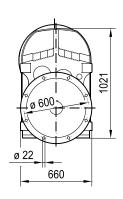


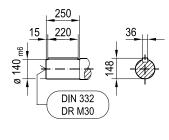
(→ [] 7.2.10)	B5	C5	E5	F5	G5	L	S5	Z 5	Z12	D1	L1	T1	U1
AM160	250	18	300	6	350	860	M16	198	0	42	110	45.3	12
AM180	250	18	300	6	350	860	M16	198	0	48	110	51.8	14
AM200	300	20	350	7	400	901	M16	239	0	55	110	59.3	16
AM225	350	22	400	7	450	916	M16	254	0	60	140	64.4	18
AM250	450	25	500	7	550	990	M16	328	19	65	140	69.4	18
AM280	450	25	500	7	550	990	M16	328	19	75	140	79.9	20

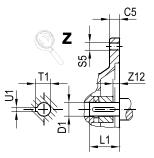
42 081 01 01

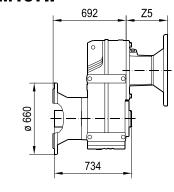


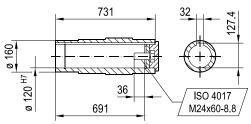


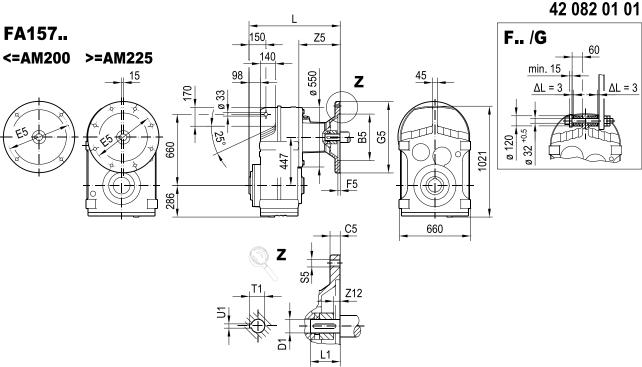

(→ [] 7.2.10)	B5	C5	E5	F5	G5	L	S5	Z 5	Z12	D1	L1	T1	U1
AM160	250	18	300	6	350	923	M16	198	0	42	110	45.3	12
AM180	250	18	300	6	350	923	M16	198	0	48	110	51.8	14
AM200	300	20	350	7	400	964	M16	239	0	55	110	59.3	16
AM225	350	22	400	7	450	979	M16	254	0	60	140	64.4	18
AM250	450	25	500	7	550	1053	M16	328	19	65	140	69.4	18
AM280	450	25	500	7	550	1053	M16	328	19	75	140	79.9	20

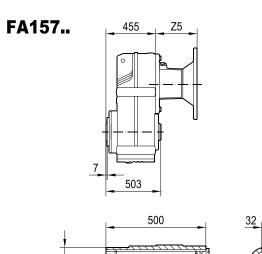

42 097 00 18

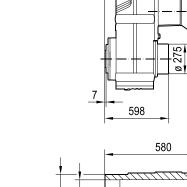

FM157.. <= AM200



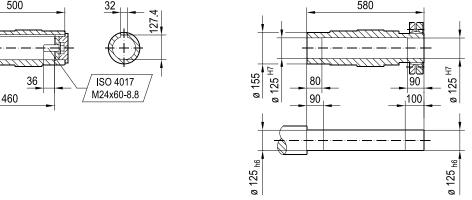



FAM157..



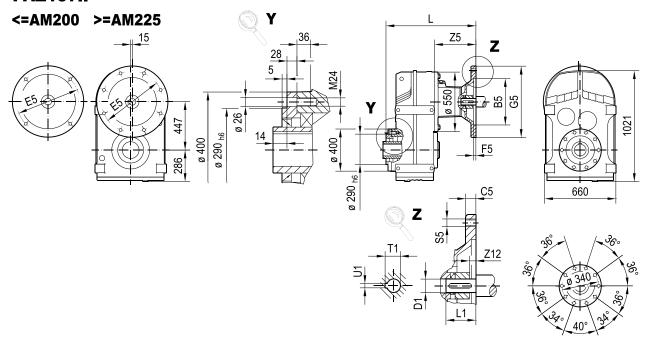


(→ [] 7.2.10)	B5	C5	E5	F5	G5	L	S5	Z 5	Z12	D1	L1	T1	U1
AM160	250	18	300	6	350	1134	M16	198	0	42	110	45.3	12
AM180	250	18	300	6	350	1134	M16	198	0	48	110	51.8	14
AM200	300	20	350	7	400	1175	M16	239	0	55	110	59.3	16
AM225	350	22	400	7	450	1190	M16	254	0	60	140	64.4	18
AM250	450	25	500	7	550	1264	M16	328	19	65	140	69.4	18
AM280	450	25	500	7	550	1264	M16	328	19	75	140	79.9	20

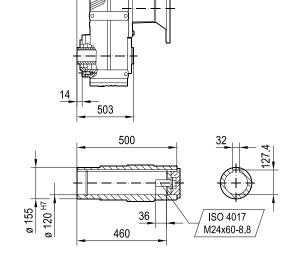

Dimension sheets for adapters for mounting IEC motors (AM..)

455

FH157..

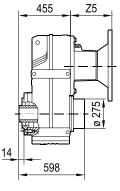

(→ [] 7.2.10)	B5	C5	E5	F5	G5	L	S5	Z5	Z12	D1	L1	T1	U1
AM160	250	18	300	6	350	653	M16	198	0	42	110	45.3	12
AM180	250	18	300	6	350	653	M16	198	0	48	110	51.8	14
AM200	300	20	350	7	400	694	M16	239	0	55	110	59.3	16
AM225	350	22	400	7	450	709	M16	254	0	60	140	64.4	18
AM250	450	25	500	7	550	783	M16	328	19	65	140	69.4	18
AM280	450	25	500	7	550	783	M16	328	19	75	140	79.9	20

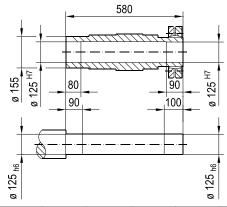
ø 120 ^{H7}


ø 155

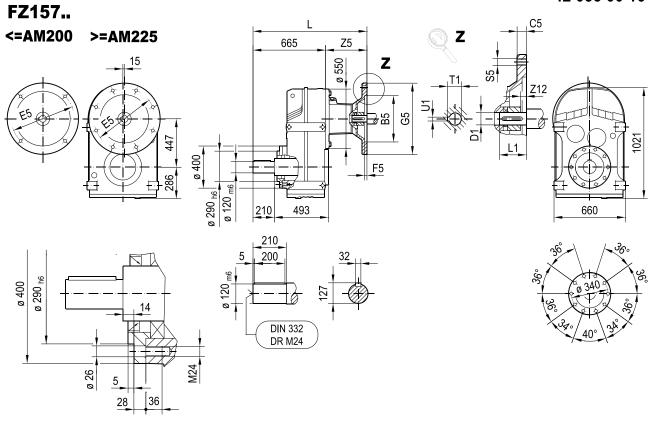
42 083 01 01

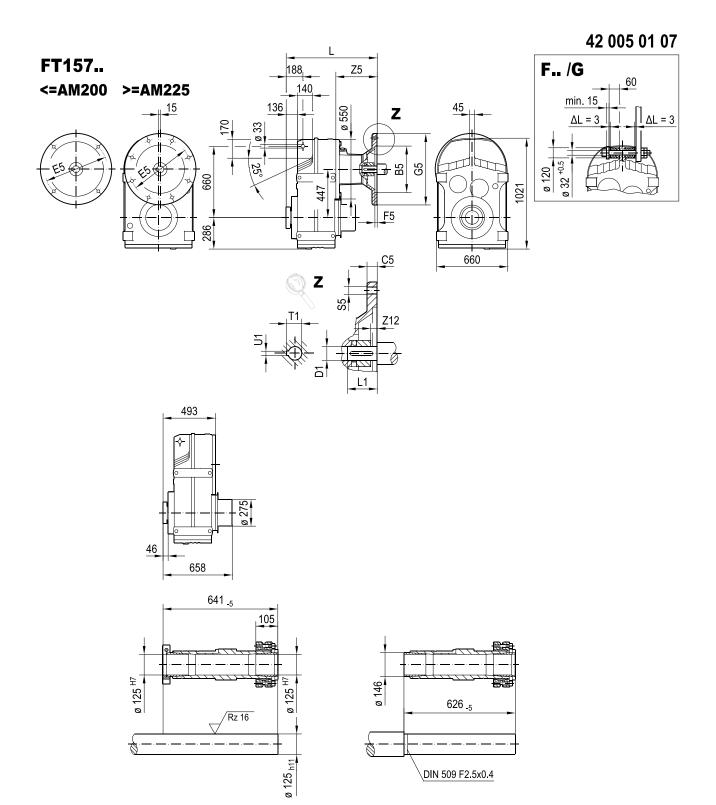
FAZ157..





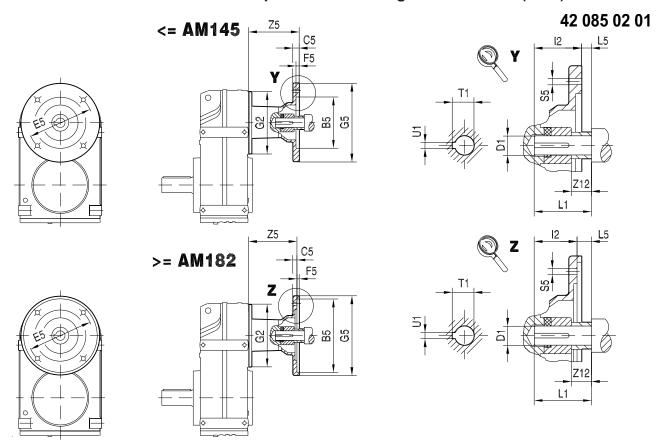
455


FHZ157...

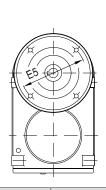


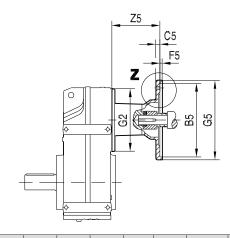
(→ [] 7.2.10)	B5	C5	E5	F5	G5	٦	S5	Z 5	Z12	D1	L1	T1	U1
AM160	250	18	300	6	350	653	M16	198	0	42	110	45.3	12
AM180	250	18	300	6	350	653	M16	198	0	48	110	51.8	14
AM200	300	20	350	7	400	694	M16	239	0	55	110	59.3	16
AM225	350	22	400	7	450	709	M16	254	0	60	140	64.4	18
AM250	450	25	500	7	550	783	M16	328	19	65	140	69.4	18
AM280	450	25	500	7	550	783	M16	328	19	75	140	79.9	20

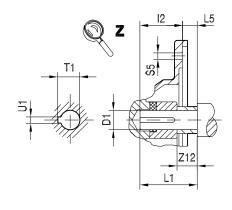
42 035 00 16



(→ [] 7.2.10)	B5	C5	E5	F5	G5	L	S5	Z 5	Z12	D1	L1	T1	U1
AM160	250	18	300	6	350	863	M16	198	0	42	110	45.3	12
AM180	250	18	300	6	350	863	M16	198	0	48	110	51.8	14
AM200	300	20	350	7	400	904	M16	239	0	55	110	59.3	16
AM225	350	22	400	7	450	919	M16	254	0	60	140	64.4	18
AM250	450	25	500	7	550	993	M16	328	19	65	140	69.4	18
AM280	450	25	500	7	550	993	M16	328	19	75	140	79.9	20

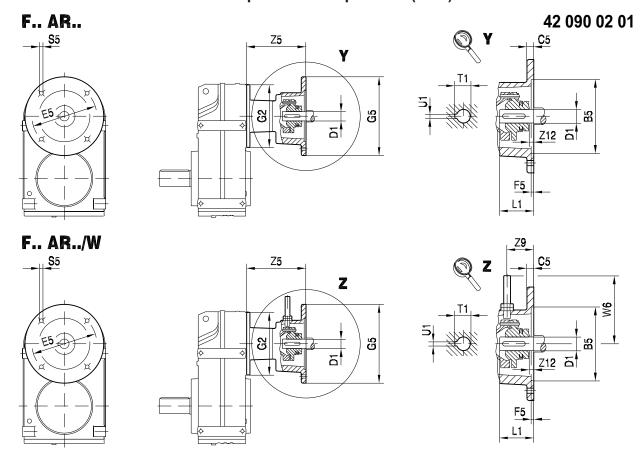

(→ [7.2.10)	B5	C5	E5	F5	G5	L	S5	Z 5	Z12	D1	L1	T1	U1
AM160	250	18	300	6	350	691	M16	198	0	42	110	45.3	12
AM180	250	18	300	6	350	691	M16	198	0	48	110	51.8	14
AM200	300	20	350	7	400	732	M16	239	0	55	110	59.3	16
AM225	350	22	400	7	450	747	M16	254	0	60	140	64.4	18
AM250	450	25	500	7	550	821	M16	328	19	65	140	69.4	18
AM280	450	25	500	7	550	821	M16	328	19	75	140	79.9	20

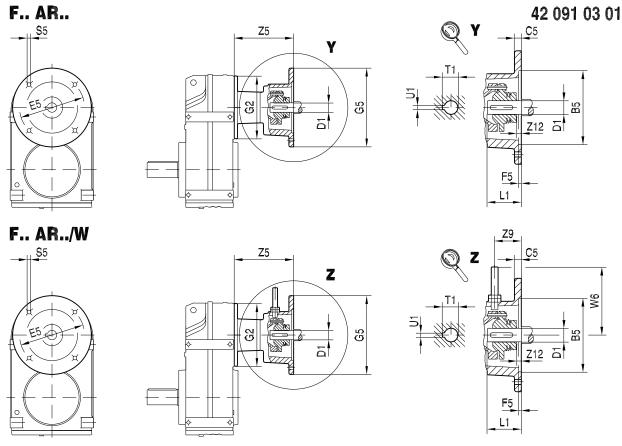

9.5 Dimension sheets for adapters for mounting NEMA motors (AM..)



		B5	C5	E5	F5	G2	G5	12	L5	S5	Z 5	Z12	D1	L1	T1	U1
F27	AM56	114.3	11	149.2	4.5	120	170	52.55	-4.8	10.5	93.5	16.5	15.875	47.75	18.1	4.76
F37	AM143	114.3	12	149.2	4.5	120	170	54.1	3.05	10.5	117	14.5	22.225	57.15	24.7	4.76
F47	AM145	114.3	12	149.2	4.5	120	170	54.1	3.05	10.5	117	14.5	22.225	57.15	24.7	4.76
	AM56	114.3	11	149.2	4.5	160	170	52.55	-4.8	10.5	87	16.5	15.875	47.75	18.1	4.76
	AM143	114.3	12	149.2	4.5	160	170	54.1	3.05	10.5	110.5	14.5	22.225	57.15	24.7	4.76
F57	AM145	114.3	12	149.2	4.5	160	170	54.1	3.05	10.5	110.5	14.5	22.225	57.15	24.7	4.76
F67	AM182	215.9	10	184	5	160	228	66.675	3	15	147.5	16.5	28.575	69.85	31.7	6.35
	AM184	215.9	10	184	5	160	228	66.675	3	15	147.5	16.5	28.575	69.85	31.7	6.35
	AM213/215	215.9	11	184	5	160	228	79.55	6.3	15	200.5	15.8	34.925	85.85	38.7	7.94
	AM56	114.3	11	149.2	4.5	200	170	52.55	-4.8	10.5	81	16.5	15.875	47.75	18.1	4.76
	AM143	114.3	12	149.2	4.5	200	170	54.1	3.05	10.5	103.5	14.5	22.225	57.15	24.7	4.76
F77	AM145	114.3	12	149.2	4.5	200	170	54.1	3.05	10.5	103.5	14.5	22.225	57.15	24.7	4.76
F//	AM182	215.9	10	184	5	200	228	66.675	3	15	139.5	16.5	28.575	69.85	31.7	6.35
	AM184	215.9	10	184	5	200	228	66.675	3	15	139.5	16.5	28.575	69.85	31.7	6.35
	AM213/215	215.9	11	184	5	200	228	79.55	6.3	15	188.5	15.8	34.925	85.85	38.7	7.94
	AM143	114.3	12	149.2	4.5	250	170	54.1	3.05	10.5	98.5	14.5	22.225	57.15	24.7	4.76
	AM145	114.3	12	149.2	4.5	250	170	54.1	3.05	10.5	98.5	14.5	22.225	57.15	24.7	4.76
	AM182	215.9	10	184	5	250	228	66.675	3	15	134.5	16.5	28.575	69.85	31.7	6.35
F87	AM184	215.9	10	184	5	250	228	66.675	3	15	134.5	16.5	28.575	69.85	31.7	6.35
	AM213/215	215.9	11	184	5	250	228	79.55	6.3	15	183.5	15.8	34.925	85.85	38.7	7.94
	AM254/256	215.9	12	184	5	250	228	95.3	6.3	15	234	9	41.275	101.6	45.8	9.53
	AM284/286	266.7	15	228.6	5	250	286	111.05	6.3	15	241	15.8	47.625	117.35	53.4	12.7

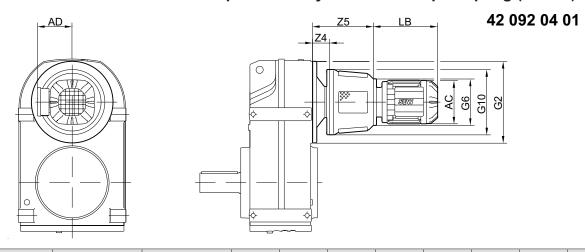
42 086 02 01



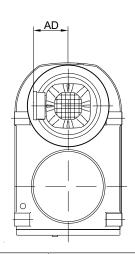


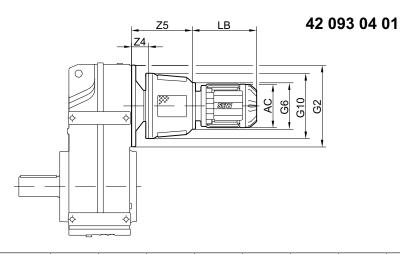
		B5	C5	E5	F5	G2	G5	12	L5	S5	Z 5	Z12	D1	L1	T1	U1
	AM182	215.9	10	184	5	300	228	66.675	3	15	129.5	16.5	28.575	69.85	31.7	6.35
	AM184	215.9	10	184	5	300	228	66.675	3	15	129.5	16.5	28.575	69.85	31.7	6.35
	AM213/215	215.9	11	184	5	300	228	79.55	6.3	15	178.5	15.8	34.925	85.85	38.7	7.94
F97	AM254/256	215.9	12	184	5	300	228	95.3	6.3	15	229	9	41.275	101.6	45.8	9.53
	AM284/286	266.7	15	228.6	5	300	286	111.05	6.3	15	236	15.8	47.625	117.35	53.4	12.7
	AM324/326	317.5	17	279.4	5	300	356	127.05	6.3	17.5	296	34.8	53.975	133.35	60	12.7
	AM364/365	317.5	17	279.4	5	300	356	143.05	6.3	17.5	296	34.8	60.325	149.35	67.6	15.875
F107	AM182	215.9	10	184	5	350	228	66.675	3	15	123.5	13.5	28.575	69.85	31.7	6.35
	AM184	215.9	10	184	5	350	228	66.675	3	15	123.5	13.5	28.575	69.85	31.7	6.35
	AM213/215	215.9	11	184	5	350	228	79.55	6.3	15	172.5	9.5	34.925	85.85	38.7	7.94
	AM254/256	215.9	12	184	5	350	228	95.3	6.3	15	223	2.5	41.275	101.6	45.8	9.53
	AM284/286	266.7	15	228.6	5	350	286	111.05	6.3	15	230	9.5	47.625	117.35	53.4	12.7
	AM324/326	317.5	17	279.4	5	350	356	127.05	6.3	17.5	290	28.5	53.975	133.35	60	12.7
	AM364/365	317.5	17	279.4	5	350	356	143.05	6.3	17.5	290	28.5	60.325	149.35	67.6	15.875
F127	AM213/215	215.9	11	184	5	450	228	79.55	6.3	15	157.5	9.5	34.925	85.85	38.7	7.94
	AM254/256	215.9	12	184	5	450	228	95.3	6.3	15	208	2.5	41.275	101.6	45.8	9.53
	AM284/286	266.7	15	228.6	5	450	286	111.05	6.3	15	215	9.5	47.625	117.35	53.4	12.7
	AM324/326	317.5	17	279.4	5	450	356	127.05	6.3	17.5	275	28.5	53.975	133.35	60	12.7
	AM364/365	317.5	17	279.4	5	450	356	143.05	6.3	17.5	275	28.5	60.325	149.35	67.6	15.875
F157	AM254/256	215.9	12	184	5	550	228	95.3	6.3	15	200	2.5	41.275	101.6	45.8	9.53
	AM284/286	266.7	15	228.6	5	550	286	111.05	6.3	15	207	9.5	47.625	117.35	53.4	12.7
	AM324/326	317.5	17	279.4	5	550	356	127.05	356	356	356	356	53.975	133.35	60	12.7
	AM364/365	317.5	17	279.4	5	550	356	143.05	356	356	356	356	60.325	149.35	67.6	15.875

9.6 Dimension sheets for adapters with slip clutch (AR..)

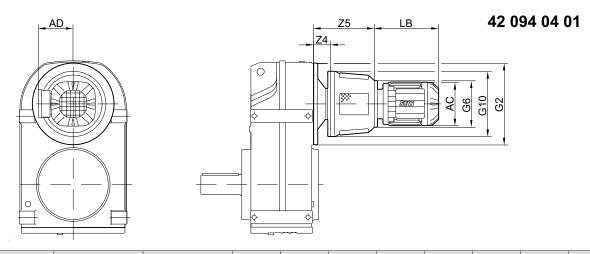


		B5	C5	E5	F5	G2	G5	S5	W6	Z 5	Z 9	Z12	D1	L1	T1	U1
F27	AR71	110	10	130	3.5		160	M8		104			14	30	16.3	5
F37	AR80	130	12	165	4.5	120	200	M10	120	140.5	37	0	19	40	21.8	6
F47	AR90	130	12	100	4.5		200	IVITO		140.5			24	50	27.3	8
	AR71	110	10	130	3.5		160	M8		97.5			14	30	16.3	5
	AR80	130	12	165	4.5		200	M10	120	134	37	0	19	40	21.8	6
F57 F67	AR90	130	12	103	4.5	160	200	IVITO		134			24	50	27.3	8
	AR100	180	15	215	5		250	M12	130	174.5	52	5.5	28	60	31.3	8
	AR112	100	15	213			230	IVIIZ	130	174.5	52	5.5	20	- 00	31.3	
	AR71	110	10	130	3.5		160	M8		91.5			14	30	16.3	5
	AR80	130	12	165	4.5		200	M10	120	127	37	0	19	40	21.8	6
	AR90	130	-12	100	7.5		200	IVITO		121			24	50	27.3	8
F77	AR100	180	15	215	5	200	250	M12	130	166.5	52	5.5	28	60	31.3	8
	AR112	100	-10	210			200	IVIIZ	100	100.5	52	0.0			01.0	
	AR132S/M	230	16	265	5		300	M12	145	234	72	5	38	80	41.3	10
	AR132ML	200	10	200			000	10112	140	204		Ů			71.0	
	AR80	130	12	165	4.5		200	M10	120	122	37	0	19	40	21.8	6
	AR90	100	12	100	7.5		200	IVITO	120	122		0	24	50	27.3	8
	AR100	180	15	215	5		250	M12	130	161.5	52	5.5	28	60	31.3	8
F87	AR112	100	10	213	J	250	230	IVIIZ	130	101.5	52	3.3	20	- 00	31.3	
107	AR132S/M	230	16	265	5	250	300	M12	145	229	72	5	38	80	41.3	10
	AR132ML	230	10	200	J		300	10112	173	223	12	3	30	00	71.0	10
	AR160	250	18	300	6		350	M16	165	306.5	105	35	42	110	45.3	12
	AR180	250	10	300	0		330	WITO	100	300.3	103	33	48	110	51.8	14

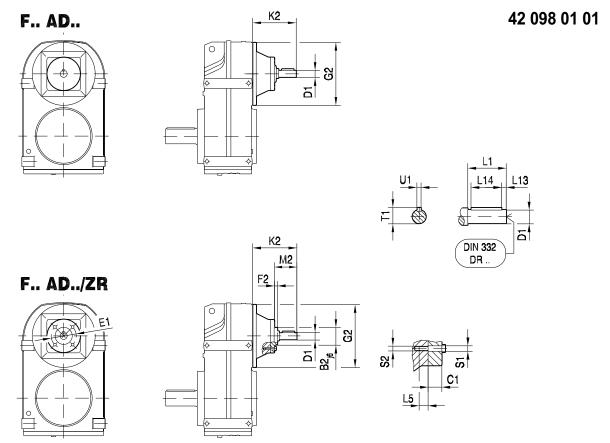



		B5	C5	E5	F5	G2	G5	S5	W6	Z 5	Z 9	Z12	D1	L1	T1	U1
	AR100	400	45	045	_		250	N440	400	450 F			20	00	24.2	
	AR112	180	15	215	5		250	M12	130	156.5	52	5.5	28	60	31.3	8
F97	AR132S/M	230	16	265	5	300	300	M12	145	224	72	5	38	80	41.3	10
F91	AR132ML	230	10	200	5	300	300	IVIIZ	145	224	12	5	30	00	41.3	10
	AR160	250	18	200	6		250	MAG	405	204 5	405	35	42	110	45.3	12
	AR180	250	18	300	б		350	M16	165	301.5	105	35	48	110	51.8	14
	AR100	180	15	215	5		250	M12	130	150.5	52	5.5	28	60	31.3	8
	AR112	100	10	213	<u> </u>		250	IVIIZ	130	130.3	52	5.5	20	00	31.3	0
F107	AR132S/M	230	16	265	5	350	300	M12	145	218	72	5	38	80	41.3	10
F 107	AR132ML	230	10	200	5	330	300	IVIIZ	145	210	12	5	30	60	41.3	10
	AR160	250	18	300	6		350	M16	165	295.5	105	35	42	110	45.3	12
	AR180	250	10	300	0		330	IVITO	100	290.0	105	33	48	110	51.8	14
	AR132S/M	230	16	265	5		300	M12	145	203	72	5	38	80	41.3	10
F127	AR132ML	230	10	200	5	450	300	IVIIZ	145	203	12	5	36	00	41.3	10
Γ 121	AR160	250	18	300	6	430	350	M16	165	200 5	105	35	42	110	45.3	12
	AR180	250	10	300	Ü		330	IVITO	100	280.5	105	35	48	110	51.8	14
F157	AR160	250	18	300	6	550	350	M16	165	272.5	105	35	42	110	45.3	12
F 13/	AR180	250	10	300	U	550	330	IVITO	100	212.5	105	33	48	110	51.8	14

9.7 Dimension sheets for adapters with hydraulic start-up coupling (F..AT..)



			AC	AD	G6	G10	LB	Z4	Z 5	G2
		DRN71M	139	118			222			
		DRN80MK					241			
		DRN80MS	156	128			259			
	AT311	DRN80M			200	280	287	97	286	
	AT312	DRN90S	179	140	200	200	281	97	200	
F67		DRN90L	179	140			313			160
		DRN100LM	197	157			359			
		DRN112M	221	170			387			
	A.T.0.4	DRN90L	179	140			313			
	AT321 AT322	DRN100LS	197	157	250	350	309	97	333	
	71022	DRN100L	197	157			359			
		DRN71M	139	118			222			
		DRN80MK					241			
		DRN80MS	156	128			259			
	AT311	DRN80M			200	280	287	89	278	
	AT312	DRN90S	179	140	200	200	281	09	270	
		DRM90L	179	140			313			
F77		DRN100LM	197	157			359			200
' '		DRN112M	221	170			387			200
	AT321	DRN132S	221	170	250	350	437	93	328	
		DRN90L	179	140			313			
	AT404	DRN100LS	197	157			309			
	AT421 AT422	DRN100L	197	157	250	350	359	133	368	
	7	DRN112M	221	170			387			
		DRN132S	221	170			437			

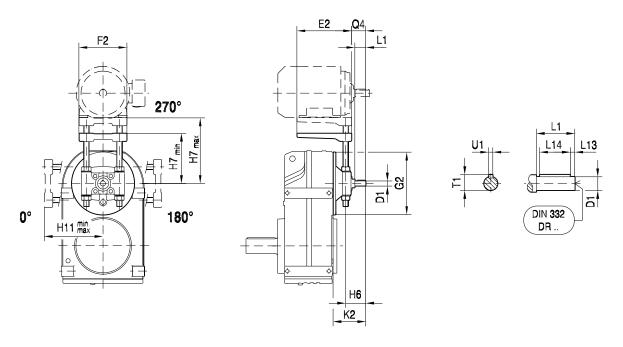


			AC	AD	G6	G10	LB	Z4	Z5	G2
		DRN90S	470	440			281			
	AT311	DRM90L	179	140	000	000	313	0.4	070	
	AT312	DRN100LM	197	157	200	280	359	84	273	
		DRN112M	221	170			387			
	AT321	DRN132S	221	170	250	350	437	84	320	
		DRN90L	179	140			313			
		DRN100LS	407	457			309			
F87	AT421 AT422	DRN100L	197	157	250	350	359	128	363	250
	A1422	DRN112M	204	170			387			
		DRN132S	221	170			437			
		DRN132S	221	170			437			
		DRN132M	261	220			439			
	AT541 AT542	DRN132L	201	228	350	470	464	159	478	
	A1342	DRN160M	316	253			532			
		DRN160L	310	200			532			
		DRN90S	179	140			281			
	AT311	DRM90L	179	140	200	280	313	79	268	
	AT312	DRN100LM	197	157	200	200	359	19	200	
		DRN112M	221	170			387			
	AT321	DRN132S	221	170	250	350	437	79	315	
		DRN90L	179	140			313			
	AT421	DRN100LS	197	157	250	350	309	123	358	
F97	AT422	DRN100L	197	157	230	330	359	123	330	300
1 37		DRN112M	221	170			387			. 300
		DRN132S	221	170			437			
	AT541 AT542	DRN132M	261	228			439			
		DRN132L	201	220			464			
		DRN160M	316	253	350	470	532	154	473	
	7	DRN160L	310	200			532			
		DRN180M	357	268			557			
		DRN180L	331	200			557			

			AC	AD	G6	G10	LB	Z 4	Z 5	G2
	AT311	DRN100LM	197	157	200	280	359	73	262	
	AT312	DRN112M	221	170	200	200	387	73	202	
	AT321	DRN132S	221	170	250	350	437	73	309	
		DRN100LS	197	157			309			
	AT421	DRN100L	197	137	250	350	359	117	352	
	AT422	DRN112M	221	170	250	350	387	117	332	
F107		DRN132S	221	170			437			350
		DRN132M	261	228			439			
		DRN132L	201	220			464			
	AT541	DRN160M	316	253	350	470	532	148	467	
	AT542	DRN160L	310	200	330	470	532	140	407	
		DRN180M	357	268			557			
		DRN180L	337	200			557			
	AT421	DRN132S	221	170	250	350	437	102	337	
		DRN132S	221	170			437			
		DRN132M	261	228			439			
F127	ATE 44	DRN132L	201	220			464			450
1 121	AT541 AT542	DRN160M	316	253	350	470	532	133	452	430
	711012	DRN160L	310	200			532			
		DRN180M	357	268			557			
		DRN180L	337	200			557			
		DRN160M	316	253			532			
F157	AT541	DRN160L	310	200	350	470	532	125	444	550
137	AT542	DRN180M	357	268	330	770	557	120	777	330
		DRN180L	337	200			557			

9.8 Dimension sheets for input shaft assembly (AD..)

		B2	C1	E1	F2	G2	K2	L5	M2	S1	S2	D1	L1	L13	L14	T1	U1
F27, F37,	AD1	-	-	-	-	120	102	-	-	-	-	16	40	4	32	18	5
F47	AD2, AD2/ZR	55	13.5	80	8	120	130	12	50	9	M8	19	40	4	32	21.5	6
F57	AD2, AD2/ZR	55	13.5	80	8	160	123	12	50	9	M8	19	40	4	32	21.5	6
F67	AD3, AD3/ZR	70	15.5	105	8	160	159	16	60	11	M10	24	50	5	40	27	8
	AD2, AD2/ZR	55	13.5	80	8		116	12	50	9	M8	19	40	4	32	21.5	6
F77	AD3, AD3/ZR	70	15.5	105	8	200	151	16	60	11	M10	24	50	5	40	27	8
	AD4, AD4/ZR	100	16	130	13		224	20	95.5	13.5	M12	38	80	5	70	41	10
	AD2, AD2/ZR	55	13.5	80	8		111	12	50	9	M8	19	40	4	32	21.5	6
F87	AD3, AD3/ZR	70	15.5	105	8	250	156	16	70	11	M10	28	60	5	50	31	8
F07	AD4, AD4/ZR	100	16	130	13	250	219	20	95.5	13.5	M12	38	80	5	70	41	10
	AD5, AD5/ZR	120	24	180	11		292	20	126	13.5	M12	42	110	10	70	45	12
	AD3, AD3/ZR	70	15.5	105	8		151	16	70	11	M10	28	60	5	50	31	8
F97	AD4, AD4/ZR	100	16	130	13	300	214	20	95.5	13.5	M12	38	80	5	70	41	10
1 37	AD5, AD5/ZR	120	24	180	11	300	287	20	126	13.5	M12	42	110	10	70	45	12
	AD6, AD6/ZR	130	22.5	200	11		327	26	130.5	17.5	M16	48	110	10	80	51.5	14
	AD3, AD3/ZR	70	15.5	105	8		145	16	70	11	M10	28	60	5	50	31	8
F107	AD4, AD4/ZR	100	16	130	13	350	208	20	95.5	13.5	M12	38	80	5	70	41	10
1 107	AD5, AD5/ZR	120	24	180	11	. 330	281	20	126	13.5	M12	42	110	10	70	45	12
	AD6, AD6/ZR	130	22.5	200	11		321	26	130.5	17.5	M16	48	110	10	80	51.5	14
	AD4, AD4/ZR	100	16	130	13		193	20	95.5	13.5	M12	38	80	5	70	41	10
	AD5, AD5/ZR	120	24	180	11		266	20	126	13.5	M12	42	110	10	70	45	12
F127	AD6, AD6/ZR	130	22.5	200	11	450	306	26	130.5	17.5	M16	48	110	10	80	51.5	14
	AD7, AD7/ZR	125	19	190	13		300	30	133	22	M20	55	110	10	90	59	16
l l	AD8, AD8/ZR	120	22.5	210	5		383	19.5	155	13.5	M12	70	140	15	110	74.5	20

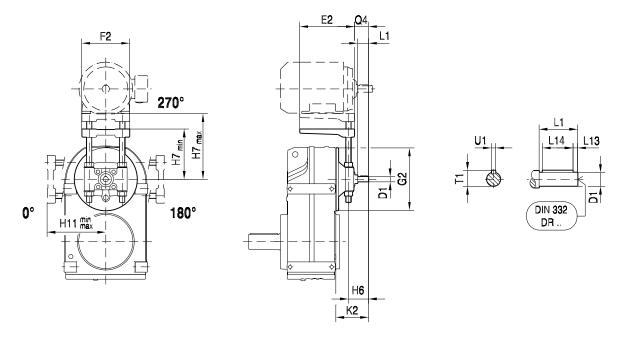

9

F.. parallel-shaft helical gear units

Dimension sheets for input shaft assembly (AD..)

		B2	C1	E1	F2	G2	K2	L5	M2	S1	S2	D1	L1	L13	L14	T1	U1
	AD5, AD5/ZR	120	24	180	11		258	20	126	13.5	M12	42	110	10	70	45	12
F 457	AD6, AD6/ZR	130	22.5	200	11	O	298	26	130.5	17.5	M16	48	110	10	80	51.5	14
F157	AD7, AD7/ZR	125	19	190	13	550	292	30	133	22	M20	55	110	10	90	59	16
	AD8. AD8/ZR	120	22.5	210	5		374	19.5	155	13.5	M12	70	140	15	110	74.5	20

9.9 Dimension sheets for input shaft assembly with motor platform (AD../P)42 099 01 01

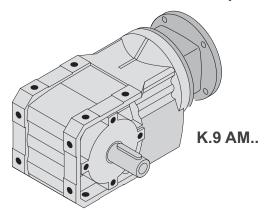


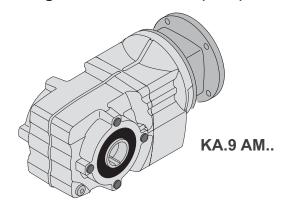
		E2	F2	G2	Н6	H7 min	H7 max	H11 min	H11 max	K2	Q4	D1	L1	L13	L14	T1	U1
F27	AD2/P	195	180	120	65	100	165	125	165	130	43	19	40	4	32	21.5	6
F37	AD2/P	195	180	120	65	100	165	125	165	130	43	19	40	4	32	21.5	6
F47	AD2/P	195	180	120	65	105	165	125	165	130	43	19	40	4	32	21.5	6
F	AD2/P	195	180	400	65	125	165	140	200	123	43	19	40	4	32	21.5	6
F57	AD3/P	230	240	160	80	130	175	150	230	159	54	24	50	5	40	27	8
	AD2/P	195	180	400	65	125	165	145	200	123	43	19	40	4	32	21.5	6
F67	AD3/P	230	240		80	130	175	155	230	159	54	24	50	5	40	27	8
	AD2/P	195	180		65	145	200	170	200	116	43	19	40	4	32	21.5	6
F77	AD3/P	230	240	200	80	150	230	175	230	151	54	24	50	5	40	27	8
	AD4/P	345	291	200	118	155	210	185	210	224	83	38	80	5	70	41	10
	AD2/P	195	180		65	170	260	205	260	111	43	19	40	4	32	21.5	6
F 07	AD3/P	230	240	050	90	175	230	210	320	156	64	28	60	5	50	31	8
F87	AD4/P	345	291	250	118	180	280	215	280	219	83	38	80	5	70	41	10
	AD5/P	430	355]	153	185	250	225	325	292	113	42	110	10	70	45	12
	AD3/P	230	240		90	205	320	240	320	151	64	28	60	5	50	31	8
F97	AD4/P	345	291	300	118	210	280	245	280	214	83	38	80	5	70	41	10
	AD5/P	430	355		153	215	325	250	325	287	113	42	110	10	70	45	12
	AD3/P	230	240		90	230	320	270	320	145	64	28	60	5	50	31	8
- 40-	AD4/P	345 291	050	118	240	280	275	360	208	83	38	80	5	70	41	10	
F107	AD5/P	430	35	350	153	240	325	280	325	281	113	42	110	10	70	45	12
	AD6/P	495	457	1	163	245	310	285	310	321	114	48	110	10	80	51.5	14

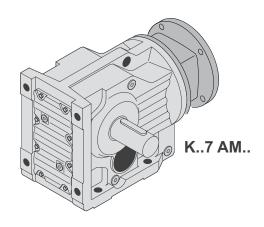
F.. parallel-shaft helical gear units

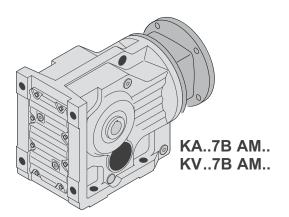
Dimension sheets for input shaft assembly with motor platform (AD../P)

42 101 01 01

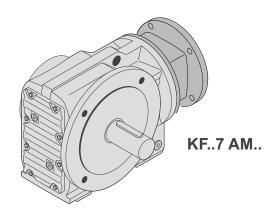


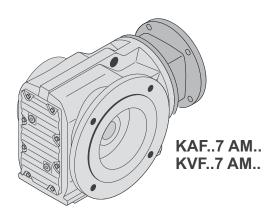

		E2	F2	G2	Н6	H7 min	H7 max	H11 min	H11 max	K2	Q4	D1	L1	L13	L14	T1	U1
	AD4/P	345	291		118	240	280	310	360	193	83	38	80	5	70	41	10
F127 AD5/P AD6/P AD7/P AD5/P F157 AD6/P AD7/P	AD5/P	430	355	450	153	295	405	320	405	266	113	42	110	10	70	45	12
	AD6/P	495	457		163	295	360	310	360	306	114	48	110	10	80	51.5	14
	AD7/P	650	570		170	300	365	310	365	300	112	55	110	10	90	59	16
	AD5/P	430	355		153	345	405	370	405	258	113	42	110	10	70	45	12
	AD6/P	495	457	550	163	375	475	380	475	298	114	48	110	10	80	51.5	14
	AD7/P	650	570		170	375	475	385	475	292	112	55	110	10	90	59	16

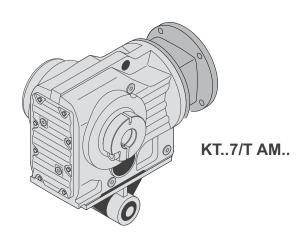

For bore dimensions and weight of the motor platform, refer to the chapter "Bore dimensions and weight" (\rightarrow \blacksquare 70).

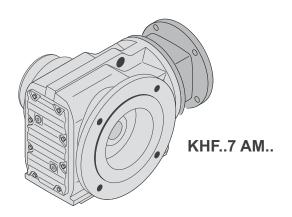

10 K.. helical-bevel gear units

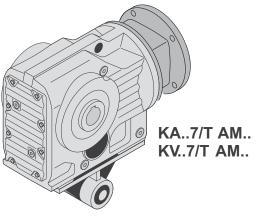
10.1 Selection tables for adapters for mounting IEC/NEMA motors (AM..)

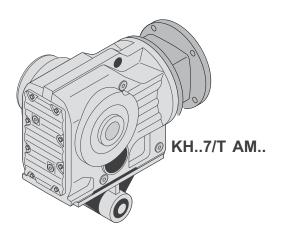


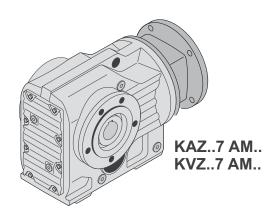


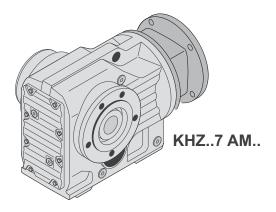


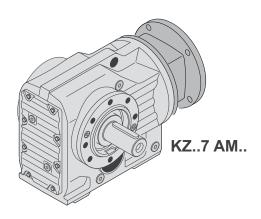


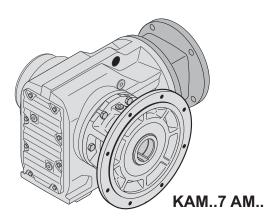


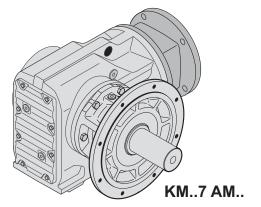












K19, n _e	= 1400 n	nin ⁻¹ , M _{an}	_{nax} /Nm					80 Nm
i	n _a	M _{a max G}	F _{Ra} 1)	φ _(/R)		A	M	
	min ⁻¹	Nm	N	•	63	71	80	90
					d	2 2		
4.50	311	80	2010	-	23	23	67	67
5.16	271	80	2140	-	26	26	76	76
5.54	253	80	2200	-	28	28	80	80
6.41	218	80	2340	-	33	33	80	80
6.91	203	80	2420	-	35	35	80	80
8.09	173	80	2590	-	41	41	80	
9.58	146	63	2910	-	49	49		
10.32	136	76	2720	-	52	52	76	76
11.84	118	79	2850	-	60	60	79	79
12.70	110	80	2930	-	64	64	80	80
14.69	95	80	3110	-	75	75	80	80
15.84	88	80	3210	-	80	80	80	80
18.55	75	80	3430	-	80	80	80	
21.98	64	80	3680	-	80	80		
24.06	58	80	3820	-	80	80		
26.88	52	80	3990	-				
27.16	52	60	4090	-	60	60	60	60
29.14	48	80	4120	-				
29.29	48	61	4200	-	61	61	61	61
31.74	44	80	4260	-				
34.29	41	64	4370	-	64	64	64	
40.63	34	67	4350	-	67	67		
44.48	31	69	4340	-	69	69		
49.69	28	70	4330	-				
53.88	26	70	4330	-				
58.68	24	70	4330	-				

K19, m /kg			AM								
	IEC	s	63	71	80	90					
1/		₽ 2	6.7	6.9	9.3	9.4					
K	NEMA	s	-	56	143	145					
		₽ 2	-	7.3	9.3	9.4					
KF: + 0.30 kg											

i	n _a	M _{a max G}	F _{Ra} 1)	φ _(/R)			AM	
	min ⁻¹	Nm	N	•	63	71	80	90
					<u> </u>	3 5 2		
3.19	439	110	1830	-	16	16	47	47
3.92	357	126	1910	-	19	19	58	58
5.10	275	110	2260	-	26	26	75	75
5.75	243	112	2370	-	29	29	85	85
6.95	201	112	2580	-	35	35	103	103
7.48	187	123	2300	-	37	37	109	109
8.53	164	122	2740	-	44	44	112	112
9.17	153	130	2470	- 1	46	46	130	130
9.90	141	110	3000	- 1	51	51	110	
11.94	117	130	2810	- 1	60	60	130	130
13.47	104	130	2970	-	68	68	130	130
16.29	86	130	3240	-	83	83	130	130
19.99	70	130	3550	-	102	102	130	130
22.08	63	105	3820	- 1	105	105	105	105
23.19	60	130	3790	-	118	118	130	
24.91	56	109	3980	-	109	109	109	109
27.23	51	130	4060	-	130	130		
29.69	47	130	4210	-	130	130		
30.11	46	115	4250	- 1	115	115	115	115
33.15	42	130	4410	- 1				
35.83	39	130	4560	-				
36.96	38	122	4560	-	122	122	122	122
38.90	36	130	4720	- 1				
42.87	33	128	4790	-	128	128	128	
50.35	28	130	4980	- 1	130	130		
54.89	26	130	4980	-	130	130		
61.28	23	130	4980	-				
66.25	21	130	4980	-				
71.93	19	130	4980	_				

K29, m /kg				A	M							
	IEC	s	63	71	80	90						
K		₽ 2	8.5	8.7	11	11						
K	NEMA	s	-	56	143	145						
		₽ 2	-	9.1	11	11						
KF: + 1.0 kg /	F: + 1.0 kg / KA: + -0.45 kg / KAF: + 0.35 kg											

K37, n _e	= 1400 ı	min ⁻¹ , M _{an}	_{nax} /Nm					200 Nm
i	n _a	M _{a max G}	F _{Ra} 1)	φ _(/R)		,	AM	
	min ⁻¹	Nm	N	•	63	71	80	90
					4	3		
3.98	352	125	1660	13	19	19	58	58
5.36	261	140	1810	13	26	26	78	78
6.37	220	145	1950	13	32	32	93	93
6.80	206	150	1980	13	34	34	100	100
7.96	176	155	2110	13	40	40	117	117
8.91	157	160	2200	12	45	45	131	131
10.49	133	160	2410	12	53	53	154	154
12.14	115	160	2600	12	61	61	160	160
13.08	107	165	2650	9	66	66	165	165
15.31	91	175	2780	8	77	77	175	175
17.15	82	180	2900	8	87	87	180	180
20.19	69	185	3110	8	102	102	185	185
23.36	60	195	3260	8	119	119	195	195
24.99	56	200	3330	8	127	127	200	200
28.83	49	200	3580	8	147	147	200	
29.96	47	200	3650	7	149	149	200	200
35.57	39	200	3970	7	177	177	200	200
37.97	37	200	4100	7	190	190	200	200
44.46	31	200	4420	7	200	200	200	200
49.79	28	200	4660	7	200	200	200	200
58.60	24	200	5020	7	200	200	200	200
67.80	21	200	5360	7	200	200	200	200
72.54	19	200	5520	7	200	200	200	200
83.69	17	200	5640	7	200	200	200	
97.81	14	200	5640	7	200	200		
106.38	13	200	5640	7	200	200		
K37, m	/kg						AM	
	IE	С	s		63	71	80	90
17			- 75°	3	14	14	17	17
K	K	EMA	s		-	56	143	145
			243	_		1 4-	4-	l

K37, m /kg			AM			
к	IEC	s	63	71	80	90
		₽ 3	14	14	17	17
	NEMA	s	-	56	143	145
		₽ 3	-	15	17	17
KF: + 2.3 kg / KA: + -0.25 kg / KAF: + 1.5 kg						

K39, n _e	= 1400 r	nin ⁻¹ , M _{a m}	_{nax} /Nm							300 N
i	n _a	M _{a max G}	F _{Ra} 1)	φ _(/R)			A	M		
	min ⁻¹	Nm	N	•	63	71	80	90	100	112
						₽§ 2			'	
2.81	498	170	2870	-			40	40	112	112
3.94	355	215	3070	-			56	56	158	158
4.52	310	240	3130	-	21	21	65	65	182	182
5.22	268	260	3240	-	25	25	75	75	210	210
5.75	243	275	3300	-	27	27	83	83	230	230
6.75	207	300	3430	-	33	33	98	98	260	270
7.15	196	300	3530	-	35	35	104	104	270	285
8.12	172	300	3760	-	40	40	118	118	290	300
9.00	156	300	3950	-	44	44	131	131	300	300
10.61	132	285	4360	-	53	53	155	155	280	
12.09	116	255	4790	-	60	60	168	168		
12.73	110	250	4930	-	64	64	168	168		
13.44	104	270	4160	-			186	186	270	270
15.44	91	280	4380	-	71	71	210	210	280	280
17.83	79	290	4630	-	83	83	245	245	290	290
19.62	71	295	4820	-	92	92	270	270	295	295
23.04	61	300	5180	-	109	109	300	300	300	300
24.40	57	300	5330	-	115	115	300	300	300	300
27.73	50	300	5670	-	132	132	300	300	300	300
30.72	46	300	5960	-	147	147	300	300	300	300
36.22	39	300	6440	-	175	175	300	300	300	
41.28	34	300	6840	-	200	200	300	300		
43.45	32	300	7000	-	210	210	300	300		
49.69	28	300	7440	-	240	240	300			
58.24	24	300	7500	-	280	280				
K39, m	/kg						Α	M		
	IE	C	s		63	71	80	90	100	112
			23	2	20	20	22	22	27	27

K39, m /kg					Α	М		
	IEC	s	63	71	80	90	100	112
14		₽ 2	20	20	22	22	27	27
K	NEMA	s	-	56	143	145	182	184
		2 2	-	20	22	22	26	26
KF: + 1.5 kg /	KA: + -1.0 kg	/ KAF: + 0.50 k	(g					

K47, n _e	= 1400 n	nin ⁻¹ , M _{a r}	_{nax} /Nm							400 Nm
i	n _a	M _{a max G}	F _{Ra} 1)	φ _(/R)			A	M		
	min ⁻¹	Nm	N	•	63	71	80	90	100	112
						₽ 3				
4.64	302	205	2980	12			67	67	187	187
5.81	241	230	3140	12	28	28	84	84	230	230
6.58	213	240	3270	12	32	32	96	96	240	240
7.36	190	250	3380	11	36	36	108	108	250	250
8.56	164	270	3500	11	43	43	125	125	270	270
9.10	154	280	3540	11	45	45	133	133	280	280
10.56	133	280	3830	11	53	53	155	155	280	280
11.77	119	280	4060	10	59	59	173	173	280	280
12.19	115	350	3720	8	60	60	178	178	350	350
13.65	103	360	3890	8	68	68	200	200	360	360
15.86	88	380	4080	8	79	79	230	230	380	380
16.86	83	380	4220	8	85	85	245	245	380	380
19.58	72	400	4440	8	99	99	285	285	400	400
21.81	64	400	4710	8	110	110	320	320	400	400
24.06	58	400	4970	8	121	121	350	350		
25.91	54	400	5170	8	131	131	380	380	400	
29.32	48	400	5520	8	148	148	400	400		
31.30	45	400	5700	7	158	158	400	400		
35.39	40	400	5920	7	174	174	400	400	400	400
39.61	35	400	5920	7	196	196	400	400	400	400
46.03	30	400	5920	7	225	225	400	400	400	400
48.95	29	400	5920	7	240	240	400	400	400	400
56.83	25	400	5920	7	285	285	400	400	400	400
63.30	22	400	5920	6	315	315	400	400	400	400
69.84	20	400	5920	6	350	350	400	400		
75.20	19	400	5920	6	375	375	400	400	400	
85.12	16	400	5920	6	400	400	400	400		
90.86	15	400	5920	6	400	400	400	400		
104.37	13	400	5920	6	400	400	400			
121.48	12	400	5920	6	400	400				
131.87	11	400	5920	6	400	400				

K47, m /kg					Α	М		
	IEC	s	63	71	80	90	100	112
.,		A 3	21	21	23	24	28	28
K	NEMA	s	-	56	143	145	182	184
		₽ 3	-	22	23	24	27	27
KF: + 3.2 kg /	KA: + -0.85 k	g / KAF: + 2.0 l	kg			1		

K49, n _e	= 1400 n	nin ⁻¹ , M _{a n}	_{nax} /Nm								500 Nm
i	n _a	M _{a max G}	F _{Ra} 1)	φ _(/R)				AM			
	min ⁻¹	Nm	N		63	71	80	90	100	112	132S/M
						٩	2		-		<u> </u>
4.00	350	440	3110	-			56	56	160	160	350
4.69	299	465	3270	-			67	67	188	188	410
5.29	265	485	3400	-			76	76	210	210	465
5.99	234	500	3570	-	28	28	86	86	240	240	500
6.83	205	500	3840	-	33	33	99	99	275	275	500
7.58	185	500	4050	-	37	37	110	110	305	305	500
8.66	162	500	4340	-	42	42	126	126	350	350	500
9.14	153	500	4460	-	45	45	133	133	365	365	500
10.42	134	480	4860	-	52	52	152	152	400	415	
11.37	123	495	5000	-	56	56	166	166	420	420	
13.38	105	470	4320	-			183	183	470	470	470
15.67	89	490	4590	-			215	215	490	490	490
17.67	79	500	4860	-			245	245	500	500	500
20.03	70	500	5220	-	93	93	275	275	500	500	500
22.83	61	500	5610	-	107	107	315	315	500	500	500
25.34	55	500	5940	-	119	119	355	355	500	500	500
28.95	48	500	6370	-	138	138	405	405	500	500	500
30.55	46	500	6550	-	146	146	425	425	500	500	500
34.81	40	500	7000	-	167	167	490	490	500	500	
37.98	37	500	7310	-	183	183	500	500	500	500	
44.44	32	500	7900	-	210	210	500	500	500		
50.29	28	500	8380	-	240	240	500	500			
52.94	26	500	8590	-	255	255	500	500			
60.27	23	500	9000	-	290	290	500				
70.19	20	445	9000	-	335	335					
75.20	19	475	9000	-	360	360					

K49, m /kg						AM			
	IEC	s	63	71	80	90	100	112	132S/M
		∂3 8 2	32	32	35	35	39	39	46
K	NEMA	s	-	56	143	145	182	184	213/215
		∂38 2	-	33	35	35	38	38	44
KF: + 1.7 kg /	KA: + -2.8 kg	/ KAF: + 2.1 kg]						

K57, n _e :	= 1400 n	nin ⁻¹ , M _{am}		ı							600 Nr
i	n _a	M _{a max G}	F _{Ra} 1)	φ _(/R)		1		AM	1	1	1
	min ⁻¹	Nm	N	•	63	71	80	90	100	112	132S/M
							3				
4.69	299	300	3800	11			67	67	189	189	300
6.57	213	345	4180	10			95	95	265	265	345
7.55	185	365	4360	10	36	36	109	109	305	305	365
8.71	161	390	4520	10	42	42	126	126	350	350	390
9.59	146	405	4650	10	47	47	139	139	385	385	405
11.26	124	415	4990	9	55	55	164	164	415	415	415
11.92	117	415	5150	9	59	59	174	174	415	415	415
13.25	106	510	5190	7			192	192	510	510	510
15.22	92	535	5430	7	74	74	220	220	535	535	535
17.57	80	555	5740	7	86	86	255	255	555	555	555
19.34	72	575	5910	7	95	95	280	280	575	575	575
22.71	62	600	6280	7	112	112	330	330	600	600	600
24.05	58	600	6480	7	119	119	350	350	600	600	600
27.34	51	600	6930	7	137	137	400	400	600	600	
30.28	46	600	7300	7	152	152	440	440	600	600	
35.70	39	600	7630	7	179	179	520	520	600		
38.49	36	600	7630	6	186	186	550	550	600	600	600
44.43	32	600	7630	6	215	215	600	600	600	600	600
48.89	29	600	7630	6	235	235	600	600	600	600	600
57.42	24	600	7630	6	280	280	600	600	600	600	600
60.81	23	600	7630	6	300	300	600	600	600	600	600
69.12	20	600	7630	6	340	340	600	600	600	600	
76.56	18	600	7630	6	380	380	600	600	600	600	
90.26	16	600	7630	6	450	450	600	600	600		
102.88	14	600	7630	6	510	510	600	600			
108.29	13	600	7630	6	540	540	600	600			
123.85	11	600	7630	6	600	600	600				
145.14	9.6	600	7630	6	600	600					
(57, m /	/kg							AM			
	IE	С	s		63	71	80	90	100	112	132S/M
			-288	3	27	27	29	29	34	34	41
K	N	EMA	s		-	56	143	145	182	184	213/215
			200	2		27	20	20	22	22	20

KF: + 4.7 kg / KA: + -2.1 kg / KAF: + 3.6 kg

K67, n _e	= 1400 n	nin ⁻¹ , M _a	_{nax} /Nm								820 Nm
i	n _a	M _{a max G}	F _{Ra} 1)	φ _(/R)				AM			
	min ⁻¹	Nm	N	•	63	71	80	90	100	112	132S/M
						48	3				
5.20	269	350	9860	10		9,7	74	74	205	205	350
7.28	192	420	10700	9			105	105	290	290	420
8.37	167	440	11100	9	40	40	121	121	335	335	440
9.66	145	480	11500	9	47	47	140	140	390	390	480
10.63	132	500	11800	9	52	52	155	155	430	430	500
12.48	112	530	12300	9	62	62	182	182	505	505	530
13.22	106	670	11500	8			191	191	530	530	670
15.19	92	700	11300	8	74	74	220	220	610	610	700
17.54	80	740	11000	7	86	86	255	255	710	710	740
19.30	73	760	10800	7	95	95	280	280	760	760	760
22.66	62	780	10700	7	112	112	330	330	780	780	780
24.00	58	800	10500	7	119	119	350	350	800	800	800
27.28	51	820	10300	7	136	136	400	400	820	820	
30.22	46	820	10300	7	151	151	440	440	820	820	
35.62	39	820	10300	7	179	179	520	520	820		
38.39	36	800	10500	6	185	185	550	550	800	800	800
44.32	32	820	10300	6	215	215	635	635	820	820	820
48.77	29	820	10300	6	235	235	700	700	820	820	820
57.28	24	820	10300	6	280	280	820	820	820	820	820
60.66	23	820	10300	6	295	295	820	820	820	820	820
68.95	20	820	10300	6	340	340	820	820	820	820	
76.37	18	820	10300	6	380	380	820	820	820	820	
90.04	16	820	10300	6	445	445	820	820	820		
102.62	14	820	10300	6	510	510	820	820			
108.03	13	820	10300	6	535	535	820	820			
123.54	11	820	10300	6	615	615	820				
144.79	9.7	820	10300	6	720	720					
K67, m	/kg							AM			

K67, m /kg						AM			
	IEC	s	63	71	80	90	100	112	132S/M
		₽ 3	33	33	35	35	40	40	47
K	NEMA	s	-	56	143	145	182	184	213/215
		₽ 3	-	33	35	35	39	39	45
KF: + 5.6 kg /	KA: + -2.7 kg	/ KAF: + 3.0 kg]			•			

K77, n _e	= 1400 n	nin ⁻¹ , M _{ar}	_{nax} /Nm									1550 Nm
i	n _a	M _{a max G}	F _{Ra} 1)	φ _(/R)				Α	M			
	min ⁻¹	Nm	N		63	71	80	90	100	112	132S/M	132ML
						6	3 3					
7.24	193	820	13100	8			103	103	290	290	640	640
8.48	165	890	13500	8			121	121	340	340	750	750
9.56	146	940	13900	8			137	137	385	385	840	840
10.84	129	990	14400	8	51	51	156	156	435	435	960	960
12.36	113	1000	15100	8	59	59	179	179	495	495	1000	1000
13.52	104	1340	14800	7			193	193	540	540	1190	1190
15.84	88	1400	15500	6			225	225	635	635	1400	1400
17.87	78	1450	16100	6			255	255	720	720	1450	1450
20.25	69	1500	15700	6	96	96	290	290	810	810	1500	1500
23.08	61	1550	15400	6	111	111	330	330	930	930	1550	1550
25.62	55	1550	15400	6	124	124	370	370	1030	1030	1550	
29.27	48	1550	15400	6	143	143	425	425	1180	1180	1550	
30.89	45	1550	15400	6	151	151	450	450	1250	1250	1550	
35.20	40	1550	15400	6	174	174	510	510	1420	1420		
38.39	36	1500	15700	6	190	190	560	560	1450	1450		
40.04	35	1550	15400	6			565	565	1550	1550	1550	1550
45.16	31	1550	15400	6			640	640	1550	1550	1550	1550
51.18	27	1550	15400	6	240	240	730	730	1550	1550	1550	1550
58.34	24	1550	15400	6	275	275	830	830	1550	1550	1550	1550
64.75	22	1550	15400	5	310	310	930	930	1550	1550	1550	
73.99	19	1550	15400	5	355	355	1060	1060	1550	1550	1550	
78.07	18	1550	15400	5	380	380	1120	1120	1550	1550	1550	
88.97	16	1550	15400	5	435	435	1280	1280	1550	1550		
97.05	14	1550	15400	5	475	475	1400	1400	1550	1550		
113.56	12	1550	15400	5	555	555	1550	1550	1550			
128.52	11	1550	15400	5	630	630	1550	1550				
135.28	10	1550	15400	5	665	665	1550	1550				
154.02	9.1	1550	15400	5	755	755	1550					
179.37	7.8	1450	16100	5	880	880						
192.18	7.3	1450	16100	5	940	940						

K77, m /kg						Α	M			
	IEC	s	63	71	80	90	100	112	132S/M	132ML
14		₽ 3	57	58	60	60	64	64	71	71
K	NEMA	s	-	56	143	145	182	184	213/215	-
		₽ 3	-	58	60	60	63	63	69	-
KF: + 8.2 kg/	KA: + -7.5 kg	/ KAF: + 0.40 I	 (g							

K87, n _e	= 1400 n	nin ⁻¹ , M _{a r}	_{nax} /Nm									2700 Nm
i	n _a	M _{a max G}	F _{Ra} 1)	φ _(/R)				Α	M			
	min ⁻¹	Nm	N	•	80	90	100	112	132S/M	132ML	160	180
						ر د	3 3					
7.21	194	1300	13200	7		1	(B)		630	630	1300	1300
8.29	169	1400	13500	7			330	330	730	730	1400	1400
10.00	140	1500	14200	7			400	400	880	880	1500	1500
11.17	125	1500	14900	7	158	158	445	445	980	980	1500	1500
12.56	111	2000	14800	6	150	130	445	440	1100	1100	2000	2000
	97	2100					E7E	E7E				
14.45 16.00	88	1800	15300 16000	6	230	230	575	575	1270 1410	1270	2100	2100
				6	230	230	645	645		1410	1800	2200
17.42	80 72	2200	16300	6	275	275	695	695	1530	1530	2200	2200
19.45			16800	6	275	275	780	780	1710	1710	2300	2300
22.41	62	2300	17900	6	315	315	900	900	1980	1980	2300	2300
24.92	56	2500	18000	6	355	355	1000	1000	2200	2200	2500	2500
27.88	50	2600	18500	6	400	400	1120	1120	2460	2460	2600	
31.39	45	2700	19200	6	450	450	1260	1260	2700	2700	2700	2500
36.52	38	2500	21400	6			1440	1440	2500	2500	2500	2500
44.02	32	2600	22800	6	000	000	1740	1740	2600	2600	2600	2600
49.16	28	2700	23500	5	690	690	1950	1950	2700	2700	2700	2700
56.64	25	2700	25000	5	800	800	2250	2250	2700	2700	2700	2700
63.00	22	2700	26200	5	890	890	2510	2510	2700	2700	2700	2700
70.46	20	2700	27300	5	1000	1000	2700	2700	2700	2700	2700	
79.34	18	2700	27300	5	1130	1130	2700	2700	2700	2700	2700	
86.34	16	2700	27300	5	1230	1230	2700	2700	2700			
102.71	14	2700	27300	5	1480	1480	2700	2700	2700			
115.82	12	2700	27300	5	1670	1670	2700	2700	-			
126.91	11	2700	27300	5	1830	1830	2700	2700				
147.32	9.5	2700	27300	5	2120	2120	2700					
164.34	8.5	2700	27300	5	2350	2350						
174.19	8.0	2700	27300	5	2370	2370						
197.37	7.1	2700	27300	5	2410							
K87, m	/kg							Α	M			

K87, m /kg						Α	M			
	IEC	s	80	90	100	112	132S/M	132ML	160	180
		.233 3	95	95	100	100	110	110	125	125
K	NEMA	s	143	145	182	184	213/215	-	254/256	284/286
		₽ 3 3	95	95	100	100	105	-	120	120
KF: + 9.2 kg /	KA: + -12 kg	/ KAF: + 1.1 kg			•					

K97, n _e	= 1400 n	nin ⁻¹ , M _{ar}	_{nax} /Nm								4300 Nm
i	n _a	M _{a max G}	F _{Ra} 1)	φ _(/R)				AM			
	min ⁻¹	Nm	N		100	112	132S/M	132ML	160	180	200
						- A	3				
7.542)	186	2400	15700	10			640	640	1350	1620	2400
8.71 ²⁾	161	2660	15800	10			745	745	1560	1880	2660
10.41	134	2870	16400	10			900	900	1880	2250	2870
11.99 ²⁾	117	3890	16200	8			1020	1020	2150	2580	3890
13.85 ²⁾	101	4300	16100	8			1190	1190	2490	2990	4300
16.56	85	4300	17800	8			1430	1430	2990	3580	4300
18.96	74	4300	19100	8	730	730	1640	1640	3430	4110	4300
22.37	63	4300	20900	8	870	870	1950	1950	4050	4300	4300
24.75	57	4300	22000	8	970	970	2160	2160	4300	4300	4300
27.91	50	4300	23300	8	1090	1090	2440	2440	4300	4300	
30.82	45	4300	24500	7	1210	1210	2700	2700	4300	4300	
34.23	41	4300	25700	7	1350	1350	3000	3000	4300		
38.30	37	4300	27100	7	1520	1520	3370	3360	4300		
41.87	33	4300	28300	7			3580	3580	4300	4300	4300
47.93	29	4300	30000	7	1830	1830	4120	4120	4300	4300	4300
56.55	25	4300	32300	7	2180	2180	4300	4300	4300	4300	4300
62.55	22	4300	33800	7	2420	2420	4300	4300	4300	4300	4300
70.54	20	4300	35600	7	2750	2750	4300	4300	4300	4300	
77.89	18	4300	37100	7	3050	3050	4300	4300	4300	4300	
86.52	16	4300	38800	7	3400	3400	4300	4300	4300		
96.80	14	4300	40000	7	3810	3810	4300	4300	4300		
105.13	13	4300	40000	7	4150	4150	4300				
123.93	11	4300	40000	7	4300	4300	4300				
140.28	10.0	4300	40000	7	4300	4300					
153.21	9.1	4300	40000	7	4300	4300					
176.05	8.0	4300	40000	7	4300						
K97, m	/kg							АМ			
	IE	С	s		100	112	132S/M	132ML	160	180	200
K			্বা	3	160	160	165	165	185	185	200
n.											

< 97, m /kg						AM			
	IEC	s	100	112	132S/M	132ML	160	180	200
.,		A 3	160	160	165	165	185	185	200
K	NEMA	s	182	184	213/215	-	254/256	284/286	324/326
		₽ 3	160	160	165	-	180	180	200
(F: + 20 kg	/ KA: + -18 kg	/ KAF: + 6.7 kg							

K107, n	_e = 1400	min ⁻¹ , M	_{a max} /Nm									8000 Nm
i	n _a	M _{a max G}	F _{Ra} 1)	φ _(/R)				Α	М			
	min ⁻¹	Nm	N		100	112	132S/M	132ML	160	180	200	225
							A 3					
7.352)	190	3600	24400	9			Ĭ	615	1310	1570	2970	2970
8.69	161	4070	24600	9			735	735	1550	1860	3520	3520
9.94	141	4190	25800	9			850	850	1780	2140	4040	4040
11.73	119	4300	27500	9			1000	1000	2110	2530	4300	4300
13.43	104	4300	29200	9	510	510	1160	1160	2420	2900	4300	4300
14.64	96	6890	19500	7			1240	1240	2620	3140	5940	5940
16.75	84	7050	21000	7			1430	1430	3000	3600	6800	6800
19.74	71	7200	23200	6			1700	1700	3550	4260	7200	7200
22.62	62	7200	25800	6	860	860	1950	1950	4080	4890	7200	7200
26.32	53	7200	28800	6	1010	1010	2280	2280	4760	5700	7200	7200
29.00	48	7200	30700	6	1120	1120	2520	2520	5250	6230	7200	7200
31.28 ²⁾	45	6800	34200	6				2600	5520	6630	6800	6800
32.69	43	7200	33200	6	1280	1280	2850	2850	5930	6400		
37.00	38	7200	35800	6			3110	3110	6560	7200	7200	7200
42.33	33	7360	37900	6			3580	3580	7360	7360	7360	7360
49.90	28	7840	39300	6			4250	4250	7840	7840	7840	7840
57.17	24	8000	41700	6	2170	2170	4890	4890	8000	8000	8000	8000
66.52	21	8000	45400	6	2550	2550	5720	5720	8000	8000	8000	8000
73.30	19	8000	47900	6	2820	2820	6320	6320	8000	8000	8000	8000
82.61	17	8000	50900	6	3200	3200	7150	7150	8000	8000		
90.96	15	8000	53500	6	3540	3540	7880	7880	8000	8000		
100.75	14	8000	56200	6	3940	3940	8000	8000	8000			
112.41	12	8000	59300	6	4410	4410	8000	8000	8000			
121.46	12	8000	61500	6	4780	4780	8000					
143.47	9.8	8000	65000	6	5670	5670	8000					
K107, m	ı /kg							Α	М			
	IE	С	s		100	112	132S/M	132ML	160	180	200	225
			C490	_	075	075	000	000		005		000

K107, m /kg						Α	M			
	IEC	s	100	112	132S/M	132ML	160	180	200	225
1/		₽ 3	275	275	280	280	295	295	315	320
K	NEMA	s	182	184	213/215	-	254/256	284/286	324/326	364/365
		₽\$\$ 3	275	275	275	-	290	295	310	310
KF: + 12 kg / k	(A: + -27 kg /	/ KAF: + -3.2 kg								

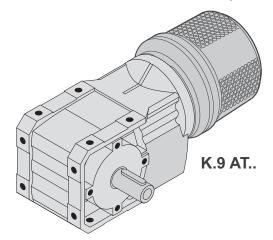
K127, n	_e = 1400	min ⁻¹ , M _a	_{n max} /Nm									13000 Nm
i	n _a	M _{a max G}	F _{Ra} 1)	φ _(/R)				Α	М			
	min ⁻¹	Nm	N	•	132S/M	132ML	160	180	200	225	250	280
						d	3					
8.68	161	7230	32500	8				1830	3480	3480	4950	5470
10.74	130	8000	33900	8		880	1890	2280	4330	4330	5410	6790
12.79	109	8530	35400	8	1070	1070	2270	2730	5170	5170	5770	8090
14.35	98	12100	31000	6				3020	5760	5760	8190	9040
17.77	79	13000	32600	6		1460	3140	3770	7170	7170	8960	11200
21.15	66	13000	37200	6	1770	1770	3760	4510	8560	8560	9550	13000
23.91	59	13000	39800	6	2010	2010	4270	5120	9690	9690	13000	13000
27.68	51	13000	43000	6	2350	2350	4960	5950	10800	10800	13000	13000
31.37	45	13000	45900	6	2690	2690	5640	6760	11200	11200	13000	13000
36.25	39	13000	49400	6	3120	3120	6540	7830	11600	11600		
40.19	35	13000	52000	5		3280	7030	8450	13000	13000	13000	13000
47.82	29	13000	56500	5	3960	3960	8420	10100	13000	13000	13000	13000
54.07	26	13000	59800	5	4520	4520	9560	11400	13000	13000	13000	13000
62.60	22	13000	64000	5	5280	5280	11100	13000	13000	13000	13000	13000
70.95	20	13000	67700	5	6020	6020	12600	13000	13000	13000	13000	13000
81.98	17	13000	72100	5	7000	7000	13000	13000	13000	13000		
89.89	16	13000	75100	5	7700	7700	13000	13000	13000	13000		
110.18	13	13000	79200	5	9500	9500	13000	13000				
122.48	11	13000	79200	5	10500	10500	13000					
136.14	10	13000	79200	5	11700	11700	13000					
146.07	9.6	13000	79200	5	11800							

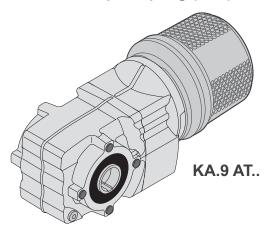
K127, m /kg			AM								
	IEC	s	132S/M	132ML	160	180	200	225	250	280	
16		₽ 3	440	440	455	455	470	475	510	510	
K	NEMA	s	213/215	-	254/256	284/286	324/326	364/365	-	-	
		₽ 3	440	-	450	450	465	465	-	-	
KF: + 42 kg / KA: + -28 kg / KAF: + 9.2 kg											

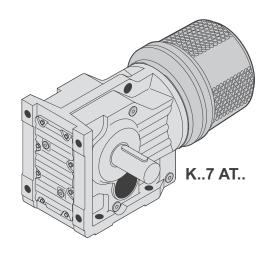
3		

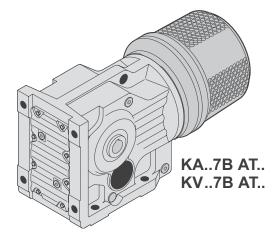
K157, n	= 1400	min ⁻¹ , M _a	_{a max} /Nm							20000 Nm
i	n _a	M _{a max G}	F _{Ra} 1)	φ _(/R)			A	M		
	min ⁻¹	Nm	N	•	160	180	200	225	250	280
						3 3				
12.65	111	18700	32900	6			5050	5050	7940	7940
14.92	94	20000	33800	6		3130	5990	5990	8700	9390
18.37	76	20000	38800	6	3230	3890	7400	7400	9470	11600
21.31	66	20000	42600	6	3780	4540	8620	8620	9840	13400
23.95	58	20000	45700	6	4270	5130	9700	9700	15100	15100
27.62	51	20000	49600	6	4950	5930	10900	10900	17500	17500
31.30	45	19000	55300	6	5620	6740	11300	11300	18300	18300
38.02	37	20000	59000	5		7910	15100	15100	20000	20000
46.79	30	20000	65600	5	8170	9820	18600	18600	20000	20000
54.29	26	20000	70600	5	9540	11400	20000	20000	20000	20000
61.02	23	20000	74600	5	10700	12900	20000	20000	20000	20000
70.38	20	20000	79800	5	12400	14900	20000	20000	20000	20000
79.75	18	20000	84500	5	14100	17000	20000	20000	20000	20000
91.65	15	20000	90000	5	16300	19600	20000	20000		
100.22	14	20000	93700	5	17900	20000	20000	20000		
122.39	11	20000	102100	5	20000	20000				
150.41	9.3	20000	111100	5	20000					
K157, m	ı /kg						Α	M		
	IE	EC s 160 180 200 225 250 280								280

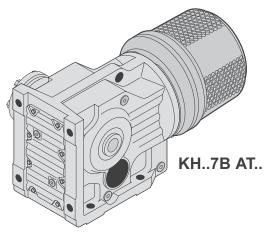
K157, m /kg			AM							
	IEC	s	160	180	200	225	250	280		
14		₽ 3	690	690	710	710	740	740		
K	NEMA	s	254/256	284/286	324/326	364/365	-	-		
		A	680	690	710	710	-	-		
KF: + 78 kg / l	KA: + -37 kg	/ KAF: + 22 ka								

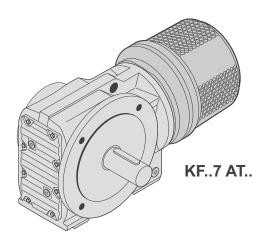

K167, n	_e = 1400	min ⁻¹ , M	_{a max} /Nm							35000 Nm
i	n _a	M _{a max G}	F _{Ra} 1)	φ _(/R)			Α	M		
	min ⁻¹	Nm	N	•	160	180	200	225	250	280
						3 3		1	1	
17.34	81	35000	62400	5			6900	6900	10800	10800
20.32	69	35000	68500	5		4240	8120	8120	11500	12700
24.52	57	35000	76200	5	4290	5170	9860	9860	12300	15400
28.77	49	35000	83100	5	5080	6110	11600	11600	12900	18100
32.25	43	35000	88200	5	5720	6870	13000	13000	20400	20400
36.61	38	35000	94200	5			14400	14400	22600	22600
42.89	33	35000	101900	5		8860	16900	16900	24200	26600
51.77	27	35000	111500	5	8970	10800	20600	20600	25800	32300
60.74	23	35000	120100	5	10600	12700	24200	24200	27100	35000
68.07	21	35000	126500	5	11900	14300	27200	27200	35000	35000
78.14	18	35000	134600	5	13800	16500	30200	30200	35000	35000
87.86	16	35000	141700	5	15500	18600	30900	30900	35000	35000
109.83	13	35000	150000	5	19500	23300	32400	32400		
134.99	10	35000	150000	4	24100	24300				
164.50	8.5	33800	150000	4	25100					
K167, m	ı /kg						A	M		
	IE	С	s		160	180	200	225	250	280
			438	3	1080	1080	1100	1110	1130	1130
K						i				

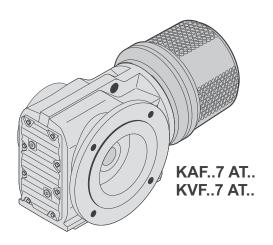

K167, m /kg			AM							
	IEC	s	160	180	200	225	250	280		
1,4		A 3	1080	1080	1100	1110	1130	1130		
K	NEMA	s	254/256	284/286	324/326	364/365	-	-		
		A 3	1080	1080	1100	1100	-	-		
KH: + -38 kg										

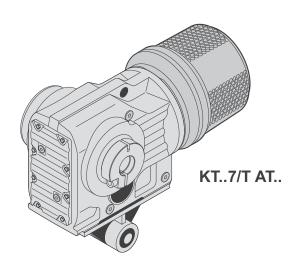

K187, n	, = 1400	min ⁻¹ , M	_{a max} /Nm							53000 Nn
i	n _a	M _{a max G}	F _{Ra} 1)	φ _(/R)			Α	М		
	min ⁻¹	Nm	N	•	160	180	200	225	250	280
						A 3				
17.18	81	46400	67300	4			6690	6690	10600	10600
20.15	69	49700	69000	4			7920	7920	12500	12500
24.18	58	53000	72100	4			9580	9580	15100	15100
27.92	50	53000	78900	4		5790	11100	11100	16000	17500
33.23	42	53000	87500	4	5780	6970	13300	13300	16900	20900
38.57	36	53000	95300	4	6770	8160	15500	15500	17500	24300
42.51	33	53000	100500	4	7510	9030	17100	17100	26800	26800
45.50	31	53000	104300	4			17500	17500	27800	27800
53.36	26	53000	113400	4			20700	20700	32800	32800
64.04	22	53000	124400	4			25100	25100	39600	39600
73.96	19	53000	133500	4		15200	29200	29200	42100	45900
88.00	16	53000	145000	4	15100	18200	34900	34900	44300	53000
102.16	14	53000	155400	4	17700	21300	40700	40700	46100	53000
112.60	12	53000	162500	4	19600	23600	44900	44900	53000	53000
129.69	11	53000	173100	4	22800	27400	50600	50600	53000	53000
144.59	9.7	53000	181500	4	25500	30600	51400	51400	53000	53000
165.21	8.5	53000	190000	4	29300	35100	52800	52800		
179.86	7.8	53000	190000	4	31900	38300	53000	53000		
K187, m	/ka						Α	M		

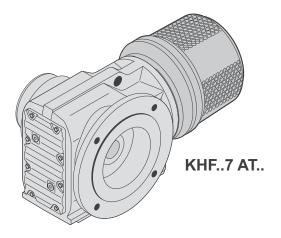

K187, m /kg					Α	М		
	IEC	s	160	180	200	225	250	280
		₽ 3	1670	1670	1690	1690	1720	1720
K	NEMA	s	254/256	284/286	324/326	364/365	-	-
		₽ 3	1660	1660	1680	1680	-	-
KH: + -67 kg								


10.2 Selection tables for adapters with hydraulic start-up coupling (AT..)

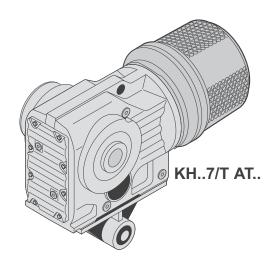




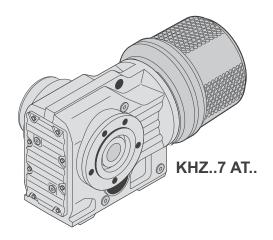


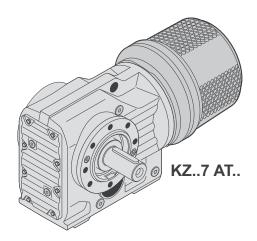


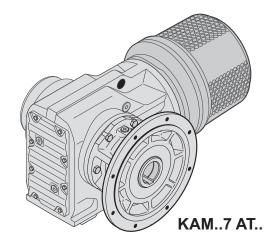


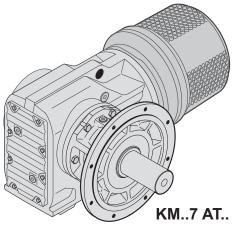




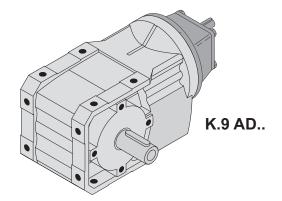


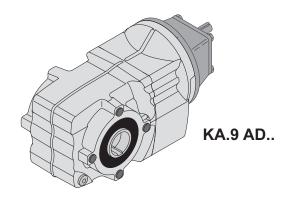


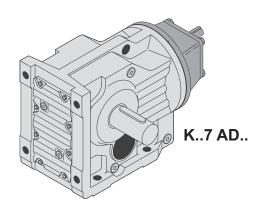


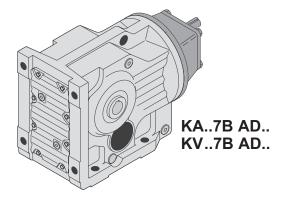


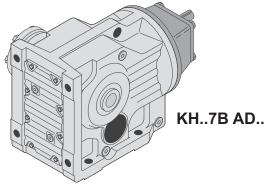
10.2.1 K..AT/DRN..4

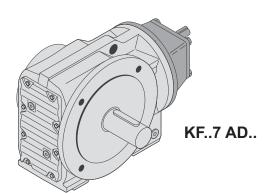

		P _{Mot}		- : } -		Sn %	
	DRN71M4	0.37	AT311	T11	0.42	12	
	DRN80MK4	0.55	AT312	T11D	0.55	11	
	DRN80M4	0.75	AT312	T11D	0.7	11	
K67	DRN90S4	1.1	AT312	T11D	0.72	15	
	DRN90L4	1.5	AT321	T21	0.85	9	
	DRN100LS4	2.2	AT321	T21	0.9	13	
	DRN100L4	3	AT322	T21D	1.53	11	
	DRN71M4	0.37	AT311	T11	0.42	12	
	DRN80MK4	0.55	AT312	T11D	0.55	11	
	DRN80M4	0.75	AT312	T11D	0.7	11	
K77	DRN90S4	1.1	AT312	T11D	0.72	15	
	DRN90L4	1.5	AT421	T21	0.85	9	
	DRN100LS4	2.2	AT421	T21	0.9	13	(→ 🖺 523)
	DRN100L4	3	AT422	T21D	1.53	11	
	DRN112M4	4	AT422	T21D	1.6	12	
	DRN90S4	1.1	AT312	T11D	0.72	15	
	DRN90L4	1.5	AT421	T21	0.85	9	
	DRN100LS4	2.2	AT421	T21	0.9	13	
	DRN100L4	3	AT422	T21D	1.53	11	
K87	DRN112M4	4	AT422	T21D	1.6	12	
IXO7	DRN132S4	5.5	AT541	T41	2	6	
	DRN132M4	7.5	AT541	T41	2.4	8	
	DRN132L4	9.2	AT541	T41	2.5	10	
	DRN160M4	11	AT541	T41	2.5	13	
	DRN160L4	15	AT542	T41D	4.2	8	

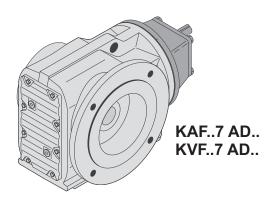

		P _{Mot}		-		Sn %	k <u>□</u> ≯
	DRN90S4	1.1	AT312	T11D	0.72	15	
	DRN90L4	1.5	AT421	T21	0.85	9	
	DRN100LS4	2.2	AT421	T21	0.9	13	
	DRN100L4	3	AT422	T21D	1.53	11	
	DRN112M4	4	v422	T21D	1.6	12	
K97	DRN132S4	5.5	AT541	T41	2	6	
K91	DRN132M4	7.5	AT541	T41	2.4	8	
	DRN132L4	9.2	AT541	T41	2.5	10	
	DRN160M4	11	AT541	T41	2.5	13	
	DRN160L4	15	v542	T41D	4.2	8	
	DRN180M4	18.5	AT542	T41D	4.3	10	
	DRN180L4	22	AT542	T41D	4.3	14	
	DRN100LS4	2.2	AT421	T21	0.9	13	
	DRN100L4	3	AT422	T21D	1.53	11	
	DRN112M4	4	AT422	T21D	1.6	12	
	DRN132S4	5.5	AT541	T41	2	6	(→ 🖺 523)
K107	DRN132M4	7.5	AT541	T41	2.4	8	(→ 🗏 323)
KIUI	DRN132L4	9.2	AT541	T41	2.5	10	
	DRN160M4	11	AT541	T41	2.5	13	
	DRN160L4	15	AT542	T41D	4.2	8	
	DRN180M4	18.5	AT542	T41D	4.3	10	
	DRN180L4	22	AT542	T41D	4.3	14	
	DRN132M4	7.5	AT541	T41	2.4	8	
	DRN132L4	9.2	AT541	T41	2.5	10	
K127	DRN160M4	11	AT541	T41	2.5	13	
KIZI	DRN160L4	15	AT542	T41D	4.2	8	
	DRN180M4	18.5	AT542	T41D	4.3	10	
	DRN180L4	22	AT542	T41D	4.3	14	
K4E7	DRN160M4	11	AT541	T41	2.5	13	
K157 K167	DRN160L4	15	AT542	T41D	4.2	8	
K187	DRN180M4	18.5	AT542	T41D	4.3	10	
107	DRN180L4	22	AT542	T41D	4.3	14	

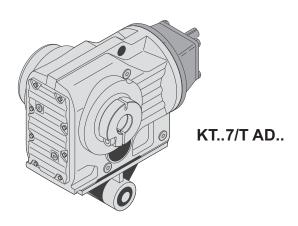

10.2.2 K..AT/DRN..2

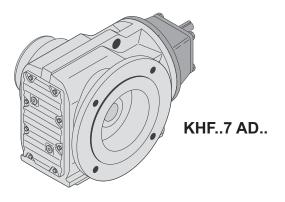

4		P _{Mot}		-\$}-		Sn	k ≅≯
	DRN71M2	0.55	AT311	T11	0.19	3	
	DRN80MS2	0.75	AT311	T11	0.22	4.5	
	DRN80M2	1.1	AT311	T11	0.27	6	
K67	DRN90S2	1.5	AT311	T11	0.29	8.5	
	DRN90L2	2.2	AT311	T11	0.31	11.5	
	DRN100LM2	3	AT311	T11	0.4	12	
	DRN112M2	4	AT312	T11D	0.52	10	
	DRN71M2	0.55	AT311	T11	0.19	3	
	DRN80MS2	0.75	AT311	T11	0.22	4.5	
	DRN80M2	1.1	AT311	T11	0.27	6	
	DRN90S2	1.5	AT311	T11	0.29	8.5	
K77	DRN90L2	2.2	AT311	T11	0.31	11.5	
	DRN100LM2	3	AT311	T11	0.4	12	
	DRN112M2	4	AT312	T11D	0.52	10	
	DRN132S2	5.5	AT321	T21	0.6	8	
	DRN132S2	5.5	AT421	T21	0.6	8	(→ 🖺 523)
	DRN90S2	1.5	AT311	T11	0.29	8.5	(→ ■ 525)
	DRN90L2	2.2	AT311	T11	0.31	11.5	
K87	DRN100LM2	3	AT311	T11	0.4	12	
KO1	DRN112M2	4	AT312	T11D	0.52	10	
	DRN132S2	5.5	AT321	T21	0.6	8	
	DRN132S2	5.5	AT421	T21	0.6	8	
	DRN90S2	1.5	AT311	T11	0.29	8.5	
	DRN90L2	2.2	AT311	T11	0.31	11.5	
K97	DRN100LM2	3	AT311	T11	0.4	12	
K91	DRN112M2	4	AT312	T11D	0.52	10	
	DRN132S2	5.5	AT321	T21	0.6	8	
	DRN132S2	5.5	AT421	T21	0.6	8	
	DRN100LM2	3	AT311	T11	0.4	12	
K407	DRN112M2	4	AT312	T11D	0.52	10	
K107	DRN132S2	5.5	AT321	T21	0.6	8	
	DRN132S2	5.5	AT421	T21	0.6	8	
K127	DRN132S2	5.5	AT421	T21	0.6	8	

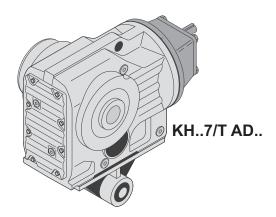

10.3 Selection tables for input shaft assembly (AD..)

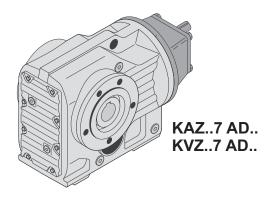


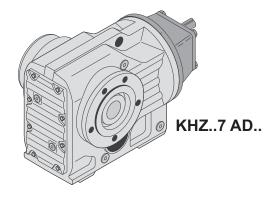


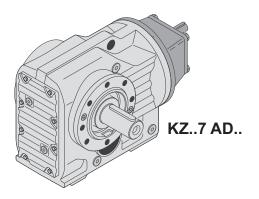


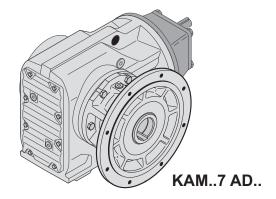


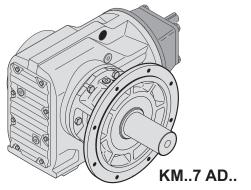












K19 AD	, n _e = 140	0 min ⁻¹										80 Nm
i	n _a min ⁻¹	M _{amax} Nm	P _e kW	F _{Ra} ¹⁾ N	F _{Re} N	$\phi_{\text{(/R)}}$	\triangle			3	m kg	K ^{III}
44.48	31	69	0.28	4340	615	-	-					
40.63	34	67	0.30	4350	615	-	-					
34.29	41	64	0.34	4370	610	-	-					
29.29	48	61	0.38	4200	610	-	-	K	19	AD1	6.2	528
27.16	52	60	0.40	4090	605	-	-	KF	19	AD1	6.5	528
24.06	58	80	0.54	3820	230	-	-	KA	19	AD1	5.8	528
21.98	64	80	0.59	3680	215	-	-	KAF	19	AD1	6.2	528
18.55	75	80	0.70	3430	174	-	-	IVAL	19	ADI	0.2	320
15.84	88	80	0.82	3210	131	-	-					
14.69	95	80	0.88	3110	108	-	-					
12.70	110	80	1.0	2930	58	-	-					
11.84	118	79	1.1	2850	1600	-	-					
10.32	136	76	1.2	2720	1590	-	-					
9.58	146	63	1.0	2910	600	-	-	K	19	AD2	7.3	528
8.09	173	80	1.5	2590	1310	-	-	KF	19	AD2 AD2	7.3 7.7	528
6.91	203	80	1.8	2420	1280	-	-	KA	19	AD2 AD2	6.9	528
6.41	219	80	2.0	2340	1260	-	-	KAF	19	AD2	7.3	528
5.54	253	80	2.3	2200	1230	-	-	TVAL	19	ADZ	1.5	320
5.16	271	80	2.4	2140	1210	-	-					
4.50	311	73	2.5	2070	1230	-	-					

K29 AD	, n _e = 140	00 min ⁻¹										130 Nm
i	n _a min ⁻¹	M _{amax} Nm	P _e kW	F _{Ra} ¹⁾ N	F _{Re} N	$\phi_{\text{(/R)}}$	\triangle			Þ	m kg	KEEN
54.89	26	130	0.41	4980	425	-	-					
50.35	28	130	0.44	4980	415	-	-					
42.87	33	128	0.51	4790	400	-	-					
36.96	38	122	0.56	4560	400	-	-	K	29	AD1	8.0	528
30.11	46	115	0.65	4250	395	-	-	KF	29	AD1	9.0	528
29.69	47	128	0.69	4230	-	-	-	KA	29	AD1	7.5	528
27.23	51	125	0.74	4100	6	-	-	KAF	29	AD1	8.4	528
24.91	56	109	0.75	3980	385	-	-					
23.19	60	120	0.83	3880	6	-	-					
22.08	63	105	0.81	3820	380	-	-					
19.99	70	130	1.0	3550	1540	_	-					
16.29	86	130	1.3	3240	1520	-	-					
13.47	104	130	1.5	2970	1490	-	-					
11.94	117	130	1.7	2810	1470	-	-					
9.90	141	110	1.7	3000	1240	-	-	K	20	ADO	0.1	F20
9.17	153	130	2.3	2470	1400	-	-	KF	29 29	AD2	9.1	528
8.53	164	113	2.0	2800	1190	-	-	KA	29 29	AD2 AD2	10 8.7	528 528
7.48	187	123	2.6	2300	1370	-	-	KAF	29			
6.95	201	110	2.4	2590	1160	-	-	rvar	23	AD2	9.5	528
5.75	243	112	3.0	2370	1090	-	-					
5.10	275	110	3.3	2260	1060	-	-					
3.92	358	126	4.9	1910	800	-	-					
3.19	439	110	5.3	1830	820	-	-					

K37 AD	, n _e = 140	00 min ⁻¹										200 Nm
i	n _a min ⁻¹	M _{amax} Nm	P _e kW	F _{Ra} 1) N	F _{Re} N	$\phi_{\text{(/R)}}$	\triangle			י	m kg	KEH
106.38	13	200	0.31	5640	590	7	-					
97.81	14	200	0.34	5640	585	7	-					
83.69	17	200	0.39	5640	575	7	-					
72.54	19	200	0.45	5520	560	7	-	K	37	AD1	14	528
67.80	21	200	0.47	5360	550	7	-	KF	37	AD1	16	528
58.60	24	200	0.55	5020	530	7	-	KA	37	AD1	13	528
49.79	28	200	0.64	4660	505	7	-	KAF	37	AD1	15	528
44.46	31	200	0.72	4420	485	7	-					
37.97	37	200	0.84	4100	455	7	-					
35.57	39	200	0.89	3970	440	7	-					

K.. helical-bevel gear units
Selection tables for input shaft assembly (AD..)

K37 AD	, n _e = 140	0 min ⁻¹										200 Nm
i	n _a min ⁻¹	M _{amax} Nm	P _e kW	F _{Ra} ¹⁾ N	F _{Re} N	$\phi_{\text{(/R)}}$	\triangle			Þ	m kg	k □ }
29.96	47	200	1.1	3650	1710	7	-					
28.83	49	200	1.1	3580	1520	8	-					
24.99	56	200	1.2	3330	1510	8	-					
23.36	60	195	1.3	3260	1510	8	-					
20.19	69	185	1.4	3110	1510	8	-					
17.15	82	180	1.6	2900	1500	8	-					
15.31	91	175	1.8	2780	1500	8	-	K	37	AD2	15	528
13.08	107	165	1.9	2650	1490	9	-	KF	37	AD2	17	528
12.14	115	160	2.0	2600	1280	12	-	KA	37	AD2	15	528
10.49	133	160	2.3	2410	1240	12	-	KAF	37	AD2	16	528
8.91	157	160	2.8	2200	1210	12	-					
7.96	176	155	3.0	2110	1210	13	-					
6.80	206	150	3.4	1980	1180	13	-					
6.37	220	145	3.5	1950	1190	13	-					
5.36	261	140	4.0	1810	1150	13	-					
3.98	352	125	4.8	1660	1110	13	-					

K39 AD	, n _e = 140	00 min ⁻¹										300 Nm
i	n _a min ⁻¹	M _{amax} Nm	P _e kW	F _{Ra} ¹⁾ N	F _{Re} N	$\phi_{\text{(/R)}}$	\triangle				m kg	KEH
58.24	24	300	0.85	7500	960	-	-					
49.69	28	300	0.99	7440	1540	-	-					
43.45	32	300	1.1	7000	1530	-	-					
41.28	34	300	1.2	6840	1530	-	-					
36.22	39	300	1.4	6440	1510	-	-					
30.72	46	300	1.6	5960	1490	-	-					
27.73	50	300	1.8	5670	1480	-	-					
24.40	57	300	2.0	5330	1460	-	-					
23.04	61	300	2.1	5180	1450	-	-					
19.62	71	295	2.4	4820	1430	-	-					
17.83	79	290	2.6	4630	1420	-	-					
17.06	82	114	1.0	6360	635	-	-					
15.44	91	280	2.9	4380	1400	-	-	K	39	AD2	20	528
14.56	96	190	2.0	5570	1160	-	-	KF	39	AD2	22	528
13.44	104	270	3.2	4160	1380	-	-	KA	39	AD2	19	528
12.73	110	192	2.3	5260	1130	-	-	KAF	39	AD2	21	528
12.09	116	187	2.4	5180	1140	-	-					
10.61	132	285	4.1	4360	600	-	-					
9.60	146	250	4.2	3640	1320	-	-					
9.00	156	300	5.1	3950	360	-	-					
8.12	172	285	5.3	3840	420	-	-					
7.15	196	265	5.6	3730	535	-	-					
6.75	207	255	5.7	3690	585	-	-					
5.75	244	225	5.9	3590	725	-	-					
5.22	268	210	6.1	3520	760	-	-					
4.52	309	191	6.4	3410	795	-	-					
3.94	356	171	6.6	3320	840	-	-					
2.81	498	128	6.9	3110	940	-	-					

K47 AD	, n _e = 140	00 min ⁻¹										400 Nm
i	n _a min ⁻¹	M _{amax} Nm	P _e kW	F _{Ra} ¹⁾ N	F _{Re} N	$\phi_{\text{(/R)}}$	\triangle				m kg	K
131.87*	11	400	0.50	5920	1540	6	-					
121.48*	12	400	0.54	5920	1530	6	-					
104.37	13	400	0.62	5920	1500	6	-					
90.86	15	400	0.71	5920	1480	6	-					
85.12*	16	400	0.76	5920	1470	6	-					
75.20*	19	400	0.85	5920	1440	6	-					
69.84	20	400	0.91	5920	1410	6	-					
63.30*	22	400	1.0	5920	1390	6	-					
56.83	25	400	1.1	5920	1660	7	-					
48.95*	29	400	1.3	5920	1640	7	-					
46.03*	30	400	1.4	5920	1640	7	-					
39.61	35	400	1.6	5920	1620	7	-	K	47	AD2	21	528
35.39	40	400	1.8	5920	1600	7	-	KF	47	AD2	25	528
31.30	45	400	2.0	5700	1290	7	-	KA	47	AD2	21	528
29.32	48	400	2.1	5520	1280	8	-	KAF	47	AD2	23	528
25.91	54	400	2.4	5170	1260	8	-					
24.06	58	400	2.6	4970	1240	8 8	-					
21.81	64	400	2.8	4710	1220	8	-					
19.58	72	400	3.1	4440	1200	8 8	-					
16.86	83	380	3.5	4220	1190	8	-					
15.86	88	380	3.7	4080	1180	8 8	-					
13.65	103	360	4.0	3890	1170	8	-					
12.19	115	350	4.4	3720	1150	8	-					
11.77	119	280	3.6	4060	1020	10	-					
10.56	133	280	4.1	3830	980	11	-					
9.10	154	280	4.7	3540	930	11	-					
8.56	164	270	4.8	3500	1960	11	-	V	47	ADS	25	F20
7.36	190	250	5.2	3380	1980	11	-	K	47	AD3	25	528
6.58	213	240	5.6	3270	1960	12	-	KF	47	AD3	28	528
5.81	241	230	6.1	3140	1960	12	-	KA	47	AD3	24	528
4.64	302	205	6.8	2980	1920	12	-	KAF	47	AD3	27	528

K49 AD	, n _e = 140	00 min ⁻¹									500 Nm
i	n _a min ⁻¹	M _{amax} Nm	P _e kW	F _{Ra} ¹⁾ N	F _{Re} N	$\phi_{\text{(/R)}}$	\triangle			m kg	
75.20	19	475	1.0	9000	545	-	-				
70.19	20	445	1.0	9000	660	-	-				
60.27	23	500	1.4	9000	1420	-	-				
52.94	26	500	1.5	8590	1410	-	-				
50.29	28	500	1.6	8380	1410	-	-				
44.44	32	500	1.8	7900	1380	-	-				
42.10	32	500	1.8	7860	1370	-	-				
37.98	37	500	2.1	7310	1360	-	-				
34.81	40	500	2.3	7000	1350	-	-				
30.55	46	500	2.6	6550	1330	-	-				
28.95	48	500	2.8	6370	1320	-	-	K 49	AD2	33	528
25.34	55	500	3.2	5940	1290	-	-	KF 49	AD2	34	528
22.83	61	500	3.5	5610	1260	-	-	KA 49	AD2	30	528
22.50	62	150	1.0	8470	555	-	-	KAF 49	AD2	35	528
21.00	67	140	1.0	8310	675	-	-	1001 43	ADZ	33	320
20.03	70	500	4.0	5220	1220	-	-				
18.04	78	260	2.2	7300	1110	-	-				
17.67	79	500	4.6	4860	1190	-	-				
15.84	88	260	2.5	6940	1090	-	-				
15.67	89	490	5.0	4590	1160	-	-				
15.05	93	255	2.6	6830	1110	-	-				
13.38	105	470	5.7	4320	1130	-	-				
13.30	105	420	4.8	5740	142	-	-				
12.60	106	420	4.9	5710	86	-	-				
11.75	126	450	6.5	4000	1060	-	-				

K49 AD	, n _e = 140	00 min ⁻¹									500 Nm
i	n _a min ⁻¹	M _{amax} Nm	P _e kW	F _{Ra} 1) N	F _{Re} N	φ _(/R)	\triangle			m kg	k⊞≯
11.37	123	415	5.6	5370	1520	_	-				
10.42	134	395	5.8	5250	1560	_	-				
9.14	153	500	8.3	4460	940	-	-				
8.66	162	500	8.8	4340	880	-	-	K 49	AD3	36	520
7.58	185	500	10.0	4050	735	-	-		AD3	38	528 528
6.83	205	500	11.1	3840	560	-	-		AD3	33	528
5.99	234	500	12.7	3570	380	-	-		AD3	38	
5.29	265	485	13.9	3400	310	-	-	NAF 49	AD3	30	528
4.69	299	465	15.1	3270	285	-	-				
4.00	350	435	16.5	3130	275	-	-				
3.52	422	365	16.7	3140	505	-	-				

K57 AD	, n _e = 140	00 min ⁻¹										600 Nm
i	n _a min ⁻¹	M _{amax} Nm	P _e kW	F _{Ra} ¹⁾ N	F _{Re}	$\phi_{\text{(/R)}}$	\triangle				m kg	KEN
145.14*	9.7	600	0.67	7630	1280	6	-					
123.85	11	600	0.78	7630	1240	6	-					
108.29	13	600	0.89	7630	1220	6	-					
102.88*	14	600	0.93	7630	1210	6	-					
90.26*	16	600	1.1	7630	1610	6	-					
76.56*	18	600	1.2	7630	1590	6 6	-					
69.12	20	600	1.4	7630	1580	6	-					
60.81*	23	600	1.6	7630	1570	6	-	K	57 A	D2	27	528
57.42*	24	600	1.6	7630	1560	6	-			D2	32	528
48.89	29	600	1.9	7630	1540	6 6 6 7	-			D2 D2	25	528
44.43	32	600	2.1	7630	1520	6	-			D2 D2	31	528
38.49	36	600	2.5	7630	1500	6	-	IVAI	3 <i>1</i> A	DZ.	31	320
35.70	39	600	2.6	7630	1160		-					
30.28	46	600	3.0	7300	1120	7	-					
27.34	51	600	3.4	6930	1100	7	-					
24.05	58	600	3.8	6480	1070	7	-					
22.71	62	600	4.1	6280	1050	7	-					
19.34	72	575	4.6	5910	1030	7	-					
17.57	80	555	4.8	5740	1020	7	-					
15.22	92	535	5.4	5430	2030	7	-					
13.25	106	510	5.9	5190	2010	7	-					
11.92	117	415	5.3	5150	1770	9	-	V	E7 A	D2	20	E20
11.26	124	415	5.7	4990	1750	9	-			D3	30	528
9.59	146	405	6.5	4650	1690	10	-			D3	35	528
8.71	161	390	6.9	4520	1690	10	-			D3	28	528
7.55	186	365	7.4	4360	1700	10	-	KAF	57 A	D3	34	528
6.57	213	345	8.1	4180	1690	10	-					
4.69	298	300	9.8	3800	1630	11	-					

K67 AD	, n _e = 140	00 min ⁻¹									820 Nm
i	n _a min ⁻¹	M _{amax} Nm	P _e kW	F _{Ra} 1) N	F _{Re} N	$\phi_{\text{(/R)}}$	\triangle			m kg	k □ ≯
144.79*	9.7	820	0.91	10300	880	6	-				
123.54	11	820	1.1	10300	1530	6	-				
108.03	13	820	1.2	10300	1520	6	-				
102.62	14	820	1.3	10300	1520	6	-				
90.04	16	820	1.4	10300	1500	6	-	K 67	AD2	33	528
76.37	18	820	1.7	10300	1480	6	-	KF 67	AD2	39	528
68.95	20	820	1.9	10300	1460	6	-	KA 67	AD2	30	528
60.66	23	820	2.1	10300	1450	6	-	KAF 67	AD2	36	528
57.28	24	820	2.2	10300	1440	6	-	IVAI VI	ADZ	30	320
48.77	29	820	2.6	10300	1400	6	-				
44.32	32	820	2.9	10300	1380	6	-				
38.39	36	800	3.3	10500	1360	6	-				
35.62	39	820	3.5	10300	880	7	-				

K67 AD	, n _e = 140	00 min ⁻¹										820 Nm
i	n _a min ⁻¹	M _{amax} Nm	P _e kW	F _{Ra} 1) N	F _{Re} N	$\phi_{\text{(/R)}}$	\triangle			Þ	m kg	KEH
30.22	46	820	4.2	10300	1860	7	-					
27.28	51	820	4.6	10300	1820	7	-					
24.00	58	800	5.1	10500	1820	7	-					
22.66	62	780	5.3	10700	1820	7	-					
19.30	73	760	6.0	10800	1780	7	-					
17.54	80	740	6.5	11000	1760	7	-	K	67	AD3	36	528
15.19	92	700	7.1	11300	1750	8	-	KF	67	AD3	42	528
13.22	106	670	7.8	11500	1730	8	-	KA	67	AD3	34	528
12.48	112	530	6.5	12300	1570	9	-	KAF	67	AD3	39	528
10.63	132	500	7.2	11800	1560	9	-					
9.66	145	480	7.6	11500	1560	9	-					
8.37	167	440	8.1	11100	1590	9	-					
7.28	192	420	8.8	10700	1570	9	-					
5.20	269	350	10.3	9860	1560	10	_					

K77 AD	, n _e = 140	00 min ⁻¹										1550 Nm
i	n _a min ⁻¹	M _{amax} Nm	P _e kW	F _{Ra} 1) N	F _{Re} N	$\phi_{\text{(/R)}}$	\triangle			D	m kg	KEH
192.18	7.3	1240	1.0	17200	570	5	-					
179.37	7.8	1160	1.0	17600	685	5	-					
154.02	9.1	1550	1.6	15400	1360		-					
135.28	10	1550	1.8	15400	1350	5 5 5 5 5 5 5 6	-					
128.52	11	1550	1.9	15400	1350	5	-					
113.56	12	1550	2.1	15400	1310	5	-	K	77	AD2	58	528
97.05	14	1550	2.5	15400	1290	5	-	KF	77	AD2	66	528
88.97	16	1550	2.7	15400	1280	5	-	KA	77	AD2	50	528
78.07	18	1550	3.1	15400	1250	5	-	KAF	77	AD2	58	528
73.99	19	1550	3.3	15400	1240	5	-					
64.75	22	1550	3.7	15400	1210	5	-					
58.34	24	1550	4.1	15400	1180	6	-					
51.18	27	1550	4.7	15400	1140	6	-					
45.16	31	1550	5.3	15400	1100	6	-					
40.04	35	1550	6.0	15400	2090	6	-	K	77	AD3	61	528
38.39	36	1490	6.0	15800	1470	6	-	KF	77	AD3	70	528
35.20	40	1410	6.2	16300	1530	6	-	KA	77	AD3	54	528
30.89	45	1550	7.7	15400	1280	6	-	KAF	77	AD3	62	528
29.27	48	1550	8.2	15400	3310	6	-					
25.62	55	1550	9.3	15400	3250	6	-					
23.08	61	1550	10.3	15400	3170	6	-					
20.25	69	1500	11.4	15700	3140	6	-					
17.87	78	1450	12.4	16100	3120	6	-	K	77	AD4	67	528
15.84	88	1400	13.6	15500	3090	6	-	KF	77	AD4	76	528
13.52	104	1340	15.2	14800	3050	6 7	-	KA	77	AD4	60	528
12.36	113	1000	12.4	15100	2860	8	-	KAF	77	AD4	68	528
10.84	129	990	14.0	14400	2790	8	-					
9.56	146	940	15.1	13900	2790	8	-					
8.48	165	890	16.1	13500	2800	8	-					
7.24	193	820	17.3	13100	2810	8	_					

K87 AD	, n _e = 140	0 min ⁻¹										2700 Nm
i	n _a min ⁻¹	M _{amax} Nm	P _e kW	F _{Ra} 1) N	F _{Re} N	$\phi_{\text{(/R)}}$	\triangle			Þ	m kg	K®
197.37	7.1	2700	2.1	27300	1170	5	-					
174.19	8.0	2700	2.4	27300	1150	5	-					
164.34*	8.5	2700	2.6	27300	1150	5	-	K	87	AD2	93	528
147.32*	9.5	2700	2.9	27300	1120	5	-	KF	87	AD2	105	528
126.91*	11	2700	3.3	27300	1100	5	-	KA	87	AD2	81	528
115.82	12	2700	3.6	27300	1080	5	-	KAF	87	AD2	94	528
102.71*	14	2700	4.1	27300	1060	5	-					
86.34	16	2700	4.9	27300	1020	5	-					

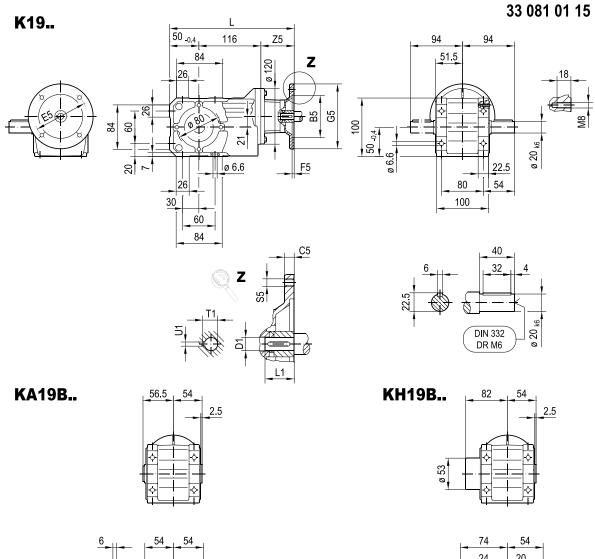
K87 AD	, n _e = 140	00 min ⁻¹										2700 Nm
i	n _a min ⁻¹	M _{amax} Nm	P _e kW	F _{Ra} ¹⁾ N	F _{Re} N	$\phi_{\text{(/R)}}$	\triangle				m kg	KEH
79.34	18	2700	5.3	27300	1940	5	-					
70.46	20	2700	6.0	27300	1910	5	-	K	87	AD3	98	528
63.00*	22	2700	6.7	26200	1870	5	-	KF	87	AD3	105	528
56.64	25	2700	7.4	25000	1840	5	-	KA	87	AD3	85	528
49.16	28	2700	8.6	23500	1780	5	-	KAF	87	AD3	99	528
44.02	32	2600	9.2	22800	1760	6	-	IVAL	01	ADS	99	320
36.52*	38	2500	10.7	21400	1700	6	-					
31.39	45	2700	13.2	19200	2770	6	-					
27.88	50	2600	14.3	18500	2770	6	-					
24.92	56	2500	15.4	18000	2780	6	-					
22.41	62	2300	15.7	17900	2860	6	-	K	87	AD4	105	528
19.45	72	2300	18.1	16800	2760	6	-	KF	87	AD4	115	528
17.42	80	2200	19.4	16300	2750	6	-	KA	87	AD4	92	528
16.00	88	1800	17.2	16000	2090	6	-	KAF	87	AD4	105	528
14.45	97	2100	22	15300	2660	6	-					
12.56	111	2000	24	14800	2640	6	-					
11.17	125	1500	21	14900	2440	7	-					
10.00	140	1500	23	14200	5590	7	-	K	87	AD5	120	528
8.29	169	1400	26	13500	5550	7	-	KF	87	AD5	130	528
7.21	194	1300	28	13200	5590	7	-	KA	87	AD5	105	528
								KAF	87	AD5	120	528

K97 AD	, n _e = 140	00 min ⁻¹										4300 Nm
i	n _a min ⁻¹	M _{amax} Nm	P _e kW	F _{Ra} 1) N	F _{Re} N	φ _(/R)	\triangle			.	m kg	KEN
176.05*	8.0	4300	3.9	40000	1780	7	-					
153.21*	9.1	4300	4.4	40000	1760	7	-					
140.28	10.0	4300	4.8	40000	1740	7	-	K	97	AD3	160	528
123.93*	11	4300	5.5	40000	1710	7	-	KF	97	AD3	180	528
105.13	13	4300	6.4	40000	1670	7	-	KA	97	AD3	140	528
96.80	14	4300	7.0	40000	1640	7	-	KAF	97	AD3	165	528
86.52	16	4300	7.8	38800	1600	7	-	IVAL	31	ADS	105	320
77.89*	18	4300	8.7	37100	1570	7	-					
70.54	20	4300	9.6	35600	1520	7	-					
62.55	22	4300	10.8	33800	3510	7	_	K	97	AD4	165	528
56.55	25	4300	12.0	32300	3460	7	_	KF	97	AD4	185	528
47.93*	29	4300	14.1	30000	3380	7	_	KA	97	AD4	145	528
41.87	33	4300	16.2	28300	3300	7	-	KAF	97	AD4	170	528
38.30	37	4300	17.3	27100	5300	7	-			'		
34.23	41	4300	19.3	25700	5220	7	-					
30.82	45	4300	21	24500	5150	7	-	K	97	AD5	180	528
27.91	50	4300	24	23300	5070	8	-	KF	97	AD5	200	528
24.75	57	4300	27	22000	4980	8	-	KA	97	AD5	160	528
22.37	63	4300	30	20900	4880	8	-	KAF	97	AD5	185	528
18.96	74	4300	35	19100	4680	8	-					
16.56	85	4300	40	17800	4520	8	-					
13.85	101	4300	48	16100	7200	8	-	K	97	AD6	195	528
11.99	117	3890	50	16200	7300	8	M2,4-6	KF	97	AD6	215	528
								KA	97	AD6	175	528
								KAF	97	AD6	200	528
10.41	134	2870	42	16400	4320	10	-	K	97	AD5	180	528
								KF	97	AD5	200	528
								KA	97	AD5	160	528
								KAF	97	AD5	185	528
8.71	161	2660	47	15800	7250	10	-	K	97	AD6	195	528
7.54	186	2400	49	15700	7360	10	-	KF	97	AD6	215	528
								KA	97	AD6	175	528
								KAF	97	AD6	200	528

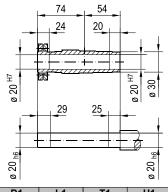
29154650/EN - 03/2020

K107 AD.	. , n _e = 14	00 min ⁻¹										8000 Nm
i	n _a min ⁻¹	M _{amax} Nm	P _e kW	F _{Ra} 1) N	F _{Re} N	$\phi_{\text{(/R)}}$	\triangle			=	m kg	KEN
143.47*	9.8	8000	8.7	65000	3090	6	-					
121.46	12	8000	10.3	61500	3030	6	-					
112.41*	12	8000	11.1	59300	2980	6	-					
100.75	14	8000	12.4	56200	2930	6	-	K	107	AD4	280	528
90.96*	15	8000	13.8	53500	2850	6	-	KF	107	AD4	290	528
82.61	17	8000	15.2	50900	2800	6	-	KA	107	AD4	250	528
73.30	19	8000	17.1	47900	2730	6	-	KAF	107	AD4	275	528
66.52*	21	8000	18.8	45400	2670	6	-					
57.17*	24	8000	22	41700	2550	6	-					
49.90	28	7840	25	39300	2480	6	-					
42.33*	33	7360	27	37900	5700	6	-	K	107	AD5	290	528
37.00*	38	7200	31	35800	5620	6	-	KF	107	AD5	305	528
32.69	43	7200	34	33200	3360	6	-	KA	107	AD5	265	528
31.28*	45	6800	34	34200	5590	6	-	KAF	107	AD5	290	528
29.00	48	7200	38	30700	6610	6	_					
26.32	53	7200	42	28800	6500	6	-					
22.62	62	7200	49	25800	6280	6	-					
19.74	71	7170	56	23400	6090	6	-	K	107	AD6	305	528
16.75	84	6080	56	26200	6500	7	-	KF	107	AD6	320	528
14.64	96	5310	56	27800	6790	7	-	KA	107	AD6	280	526 528
13.43	104	4300	49	29200	6260	9	-	KAF	107	AD6	300	526 528
11.73	119	4260	56	27600	6090	9	-	NAF	107	ADO	300	320
9.94	141	3610	56	27800	6500	9	-					
8.69	161	3150	56	27800	6800	9	-					
7.35	191	2660	56	27600	7150	9	-					

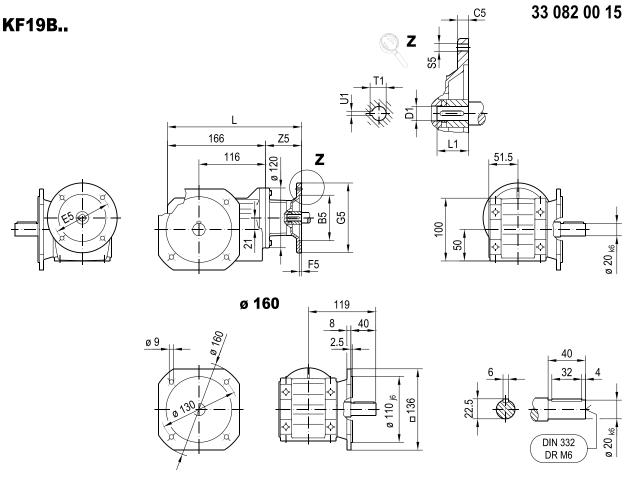
K127 AD	, n _e = 14	00 min ⁻¹										13000 Nm
i	n _a min ⁻¹	M _{amax} Nm	P _e kW	F _{Ra} ¹⁾ N	F _{Re} N	$\phi_{\text{(/R)}}$	\triangle			-	m kg	KEEN
146.07	9.6	13000	13.9	79200	2390	5	-	K	127	AD4	435	528
136.14	10	13000	14.9	79200	2340	5	-	KF	127	AD4	480	528
122.48	11	13000	16.6	79200	2240	5	-	KA	127	AD4	410	528
110.18	13	13000	18.4	79200	2100	5	_	KAF	127	AD4	445	528
89.89	16	13000	23	75100	5360	5	-					
81.98	17	13000	25	72100	5300	5	-	K	127	AD5	450	528
70.95*	20	13000	29	67700	5180	5	M2-6	KF	127	AD5	490	528
62.60	22	13000	32	64000	5080	5	M1-6	KA	127	AD5	420	528
54.07	26	13000	38	59800	4930	5	M1-6	KAF	127	AD5	460	528
47.82	29	13000	43	56500	4790	5	M1-6					
40.19	35	13000	51	52000	7500	5	M1-6	K	127	AD6	460	528
								KF	127	AD6	500	528
								KA	127	AD6	430	528
								KAF	127	AD6	470	528
36.25	39	13000	55	49400	11400	6	M1-6	K	127	AD7	460	528
31.37	45	13000	63	45900	10500	6	M1-6	KF	127	AD7	500	528
27.68	51	13000	72	43000	9650	6	M1-6	KA	127	AD7	430	528
23.91	59	13000	83	39800	8490	6	M1-6	KAF	127	AD7	470	528
21.15	66	13000	94	37200	24500	6	M1-6					
17.77	79	13000	112	32600	24100	6	M1-6	K	127	AD8	480	528
14.35	98	12100	129	31000	23900	6	M1-6	KF	127	AD8	520	528
12.79	110	8530	102	35400	24100	8	M1-6	KA	127	AD8	455	528
10.74	130	8000	114	33900	24000	8	M1-6	KAF	127	AD8	490	528
8.68	161	7230	128	32500	24000	8	M1-6					

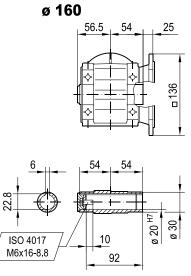

K157 AD.	, n _e = 14	100 min ⁻¹										20000 Nm
i	n _a min ⁻¹	M _{amax} Nm	P _e kW	F _{Ra} 1) N	F _{Re} N	$\phi_{\text{(/R)}}$	\triangle			=	m kg	K ^Q
150.41	9.3	20000	21	111100	4900	5	_					
122.39	11	20000	25	102100	4760	5	-	1/	457	ADE	000	500
100.22	14	20000	31	93700	4560	5	-	K	157	AD5	680	529
91.65	15	20000	34	90000	4480	5	-	KF	157	AD5	760	529
79.75	18	20000	39	84500	4340	5	-	KA	157	AD5	650	529
70.38	20	20000	44	79800	4200	5	M2-6	KAF	157	AD5	710	529
61.02	23	18100	46	78800	4380	5	M1-6					

K157 AD.	, n _e = 14	100 min ⁻¹									20000 Nm
i	n _a min ⁻¹	M _{amax} Nm	P _e kW	F _{Ra} 1) N	F _{Re} N	$\phi_{\text{(/R)}}$	\triangle			m kg	K□ }
54.29	26	20000	57	70600	6840	5	M1-6	K 157 KF 157 KA 157 KAF 157	AD6 AD6 AD6 AD6	700 780 660 720	529 529 529 529
46.79 38.02	30 37	20000 20000	67 82	65600 59000	16700 16400	5 5	M1-6 M1-6	K 157 KF 157 KA 157 KAF 157	AD7 AD7 AD7 AD7	700 770 660 720	529 529 529 529
31.30 27.62 23.95 21.31 18.37 14.92 12.65	45 51 58 66 76 94 111	18300 17500 20000 20000 20000 19700 18300	89 97 128 143 166 202 221	56900 55100 45700 42600 38800 34500 33800	23500 23500 22200 21900 21500 20800 20700	6 6 6 6 6	M1-6 M1-6 M1-6 M1-6 M1-6 M1-6 M1-6	K 157 KF 157 KA 157 KAF 157	AD8 AD8 AD8 AD8	720 800 680 740	529 529 529 529

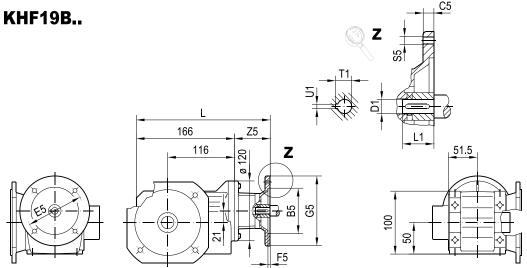

K167 AD.	, n _e = 14	100 min ⁻¹										35000 Nm		
i	n _a min ⁻¹	M _{amax} Nm	P _e kW	F _{Ra} 1) N	F _{Re} N	$\phi_{\text{(/R)}}$	\triangle						m kg	KEN
164.50	8.5	29500	28	150000	2960	4	-	K KH	167 167	AD5 AD5	1080 1040	529 529		
134.99	10	34600	40	150000	5000	4	-	K	167	AD6	1100	529		
109.83	13	35000	49	150000	4360	5	-	KH	167	AD6	1060	529		
87.86	16	35000	62	141700	11000	5	M2-6							
78.14	18	35000	69	134600	10500	5	M1-6	K	167	AD7	1090	529		
68.07	21	35000	80	126500	9560	5	M1-6	KH	167	AD7	1050	529		
60.74	23	35000	89	120100	8700	5	M1-6							
51.77	27	35000	105	111500	24500	5	M1-6							
42.89	33	35000	127	101900	24000	5	M1-6							
36.61	38	35000	149	94200	23600	5	M1-6							
32.25	43	30300	144	96900	20800	5	M1-6	K	167	AD8	1110	529		
28.77	49	27000	144	97800	21500	5	M1-6	KH	167	AD8	1070	529		
24.52	57	35000	218	76200	18300	5	M1-6							
20.32	69	35000	263	68500	16400	5	M1-6							
17.34	81	31400	277	69000	17800	5	M1-6							

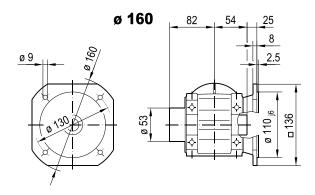
K187 AD.	, n _e = 14	l00 min ⁻¹										53000 Nm
i	n _a min ⁻¹	M _{amax} Nm	P _e kW	F _{Ra} 1) N	F _{Re} N	$\phi_{\text{(/R)}}$	\triangle				m kg	KP
179.86 165.21	7.8 8.5	53000 53000	46 50	190000 190000	5390 5230	4 4	-	K	187	AD6	1680	529
144.59	9.7	53000	57	181500	4900	4	-	KH	187	AD6	1610	529
129.69 112.60 102.16	11 12 14	53000 53000 53000	64 73 81	173100 162500 155400	12900 12100 11700	4 4 4	- M2-6 M1-6	K KH	187 187	AD7 AD7	1670 1600	529 529
88.00 73.96 64.04 53.36 45.50* 42.51 38.57 33.23 27.92 24.18	16 19 22 26 31 33 36 42 50	53000 53000 53000 53000 52300 39900 36100 51700 49600 43800	94 112 129 155 179 144 143 238 271 277	145000 133500 124400 113400 105400 120800 121400 89500 84200 86300	25200 24800 24500 24000 23600 21000 21700 15100 14600 18000	4 4 4 4 4 4 4	M1-6 M1-6 M1-6 M1-6 M1-6 M1-6 M1-6 M1-6	К	187 187	AD8 AD8	1690 1630	529 529
20.15 17.18	69 82	36400 31000	277 277	89600 91100	19100 20000	4 4	M1-6 M1-6					

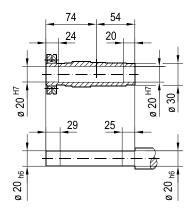

10.4 Dimension sheets for adapters for mounting IEC motors (AM..)


6	54 54	
NSO 4017 M6x16-8.8	10 92	ø 20 ^{H7}

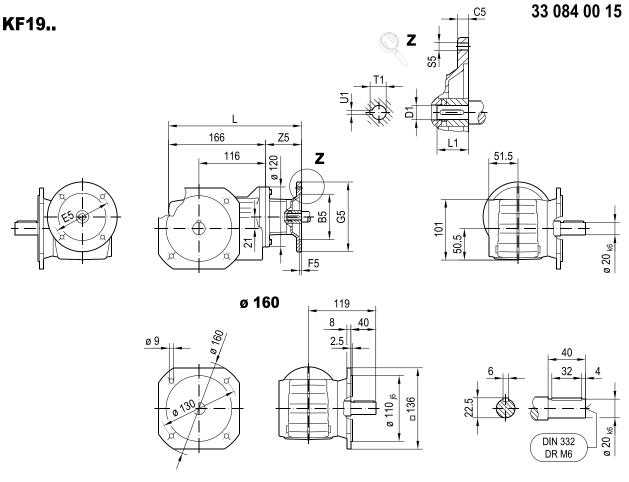
(→ [7.2.10)	B5	C5	E5	F5	G5	L	S5	Z5	D1	L1	T1	U1
AM63	95	10	115	3.5	140	238	M8	72	11	23	12.8	4
AM71	110	10	130	4	160	238	M8	72	14	30	16.3	5
AM80	130	12	165	4.5	200	272	M10	106	19	40	21.8	6
AM90	130	12	165	4.5	200	272	M10	106	24	50	27.3	8

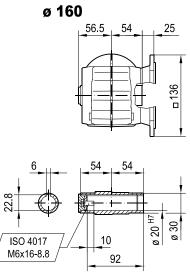


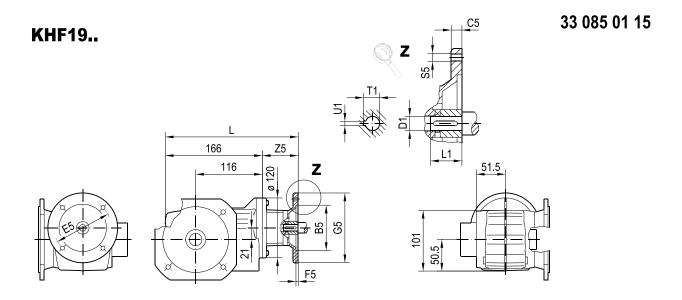

KAF19B..

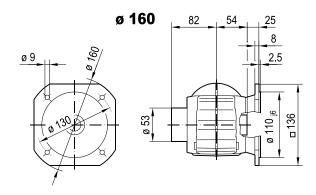


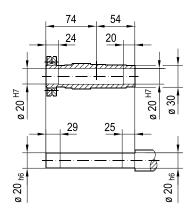
(→ [7.2.10)	B5	C5	E5	F5	G5	L	S5	Z5	D1	L1	T1	U1
AM63	95	10	115	3.5	140	238	M8	72	11	23	12.8	4
AM71	110	10	130	4	160	238	M8	72	14	30	16.3	5
AM80	130	12	165	4.5	200	272	M10	106	19	40	21.8	6
AM90	130	12	165	4.5	200	272	M10	106	24	50	27.3	8


33 083 01 15

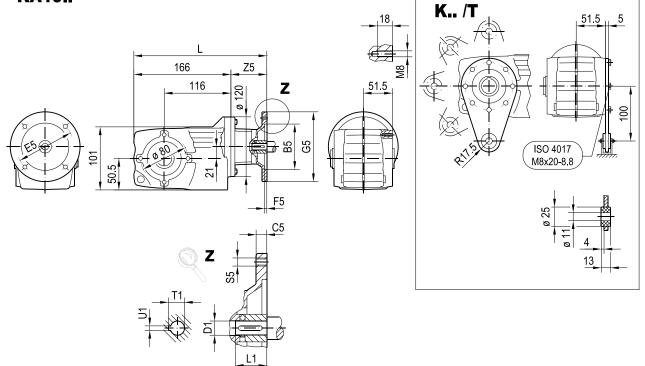


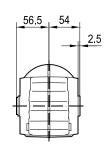

(→ [7.2.10)	B5	C5	E5	F5	G5	L	S5	Z 5	D1	L1	T1	U1
AM63	95	10	115	3.5	140	238	M8	72	11	23	12.8	4
AM71	110	10	130	4	160	238	M8	72	14	30	16.3	5
AM80	130	12	165	4.5	200	272	M10	106	19	40	21.8	6
AM90	130	12	165	4.5	200	272	M10	106	24	50	27.3	8



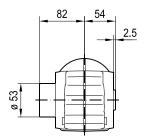

KAF19..

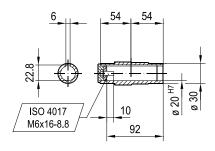
(→ [] 7.2.10)	B5	C5	E5	F5	G5	L	S5	Z 5	D1	L1	T1	U1
AM63	95	10	115	3.5	140	238	M8	72	11	23	12.8	4
AM71	110	10	130	4	160	238	M8	72	14	30	16.3	5
AM80	130	12	165	4.5	200	272	M10	106	19	40	21.8	6
AM90	130	12	165	4.5	200	272	M10	106	24	50	27.3	8

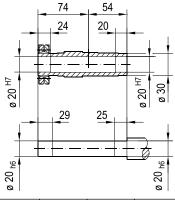



(→ []] 7.2.10)	B5	C5	E5	F5	G5	L	S5	Z5	D1	L1	T1	U1
AM63	95	10	115	3.5	140	238	M8	72	11	23	12.8	4
AM71	110	10	130	4	160	238	M8	72	14	30	16.3	5
AM80	130	12	165	4.5	200	272	M10	106	19	40	21.8	6
AM90	130	12	165	4.5	200	272	M10	106	24	50	27.3	8

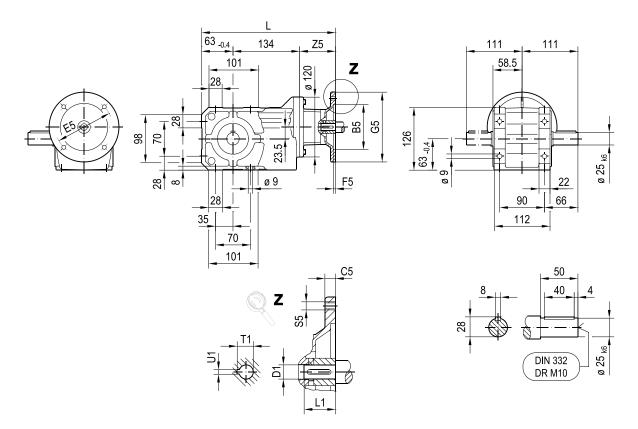
KA19..

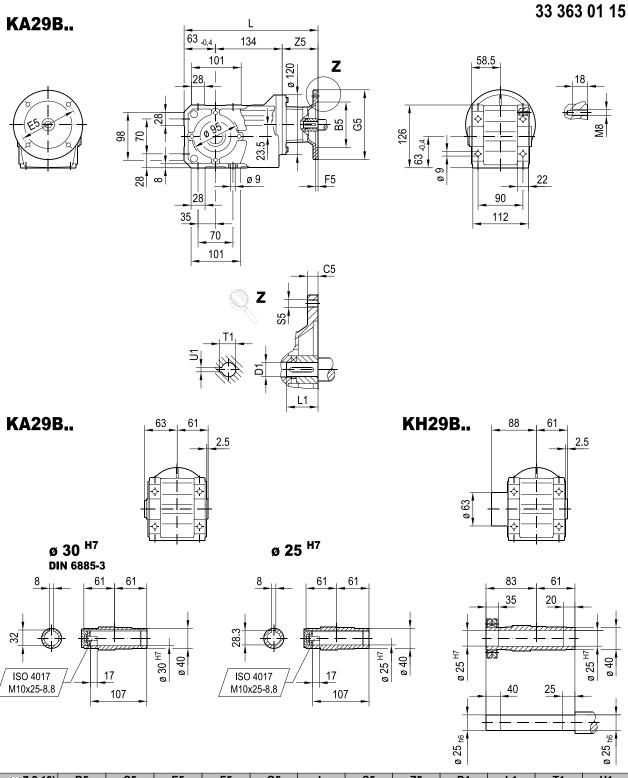

33 086 01 15



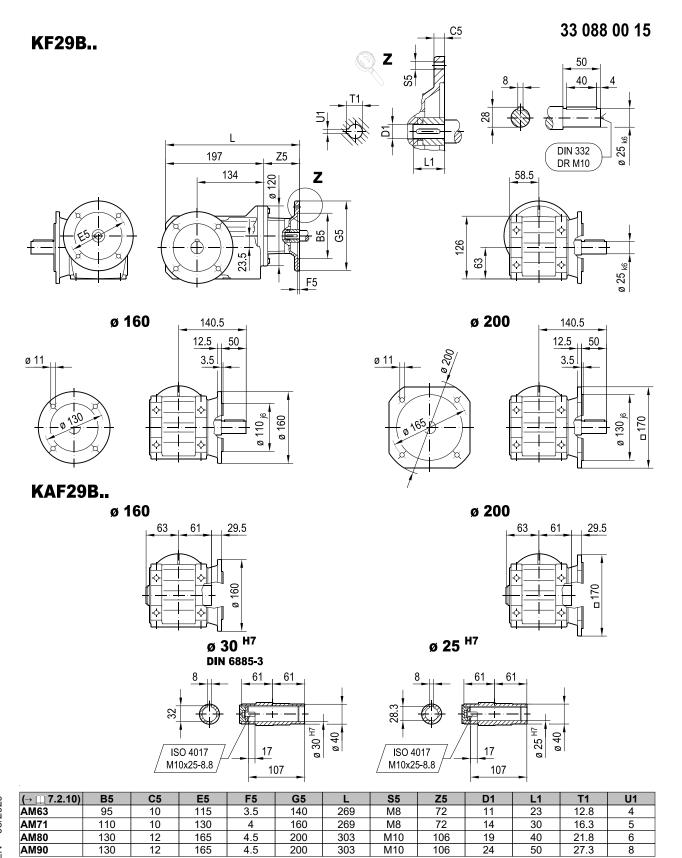

KA19..

KH19..

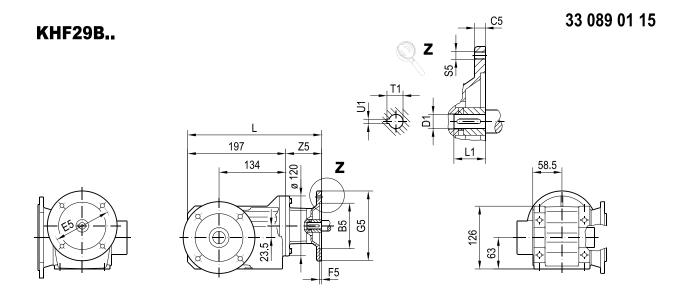


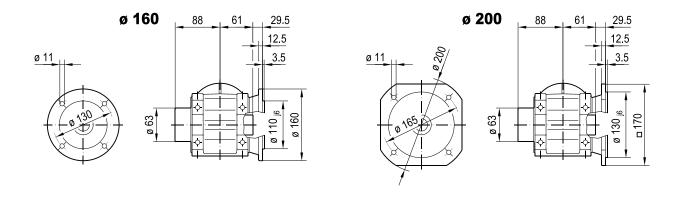

(→ []] 7.2.10)	B5	C5	E5	F5	G5	L	S5	Z 5	D1	L1	T1	U1
AM63	95	10	115	3.5	140	238	M8	72	11	23	12.8	4
AM71	110	10	130	4	160	238	M8	72	14	30	16.3	5
AM80	130	12	165	4.5	200	272	M10	106	19	40	21.8	6
AM90	130	12	165	4.5	200	272	M10	106	24	50	27.3	8

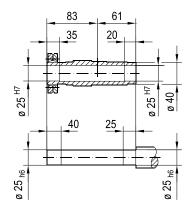
33 087 01 15


K29..

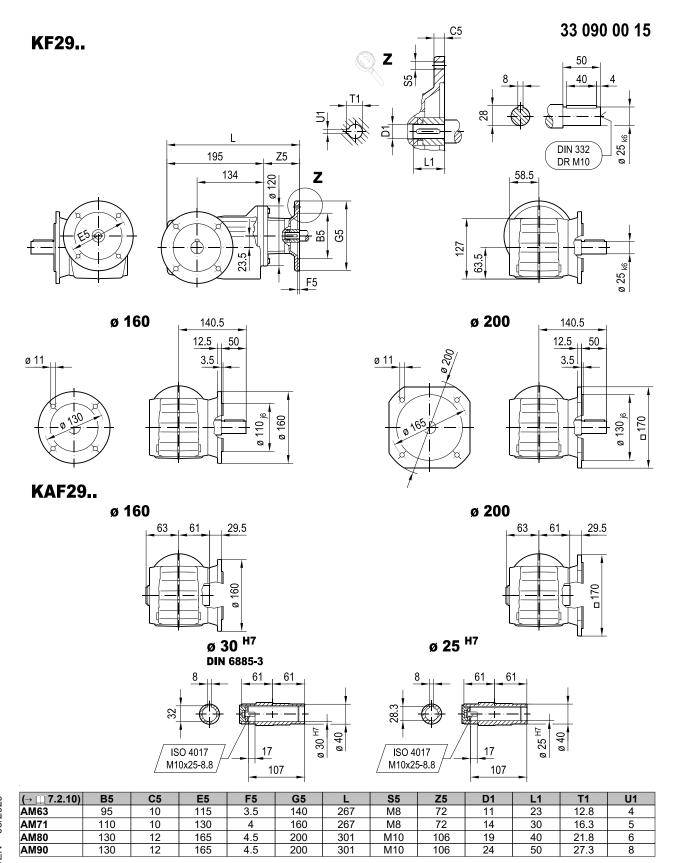
(→ []] 7.2.10)	B5	C5	E5	F5	G5	L	S5	Z5	D1	L1	T1	U1
AM63	95	10	115	3.5	140	269	M8	72	11	23	12.8	4
AM71	110	10	130	4	160	269	M8	72	14	30	16.3	5
AM80	130	12	165	4.5	200	303	M10	106	19	40	21.8	6
AM90	130	12	165	4.5	200	303	M10	106	24	50	27.3	8

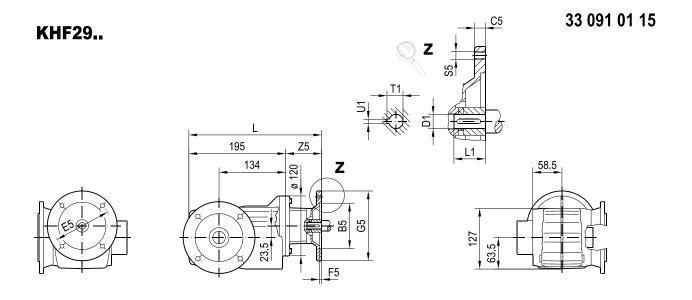


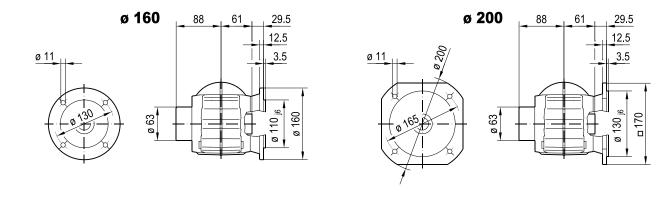

(→ [] 7.2.10)	B5	C5	E5	F5	G5	L	S5	Z5	D1	L1	T1	U1
AM63	95	10	115	3.5	140	269	M8	72	11	23	12.8	4
AM71	110	10	130	4	160	269	M8	72	14	30	16.3	5
AM80	130	12	165	4.5	200	303	M10	106	19	40	21.8	6
AM90	130	12	165	4.5	200	303	M10	106	24	50	27.3	8

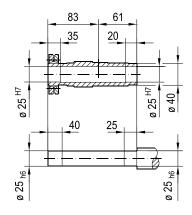


29154650/EN - 03/2020

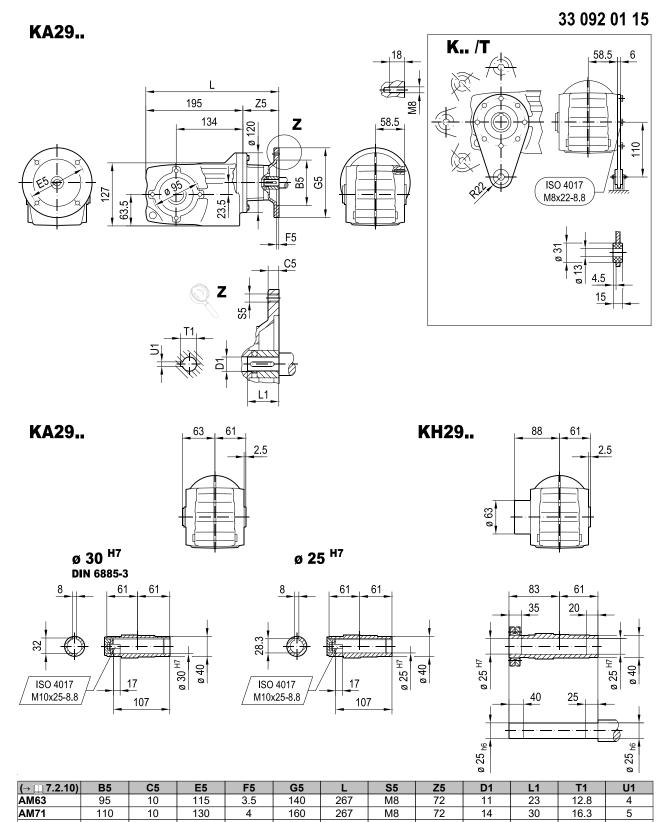








(→ [7.2.10)	B5	C5	E5	F5	G5	L	S5	Z 5	D1	L1	T1	U1
AM63	95	10	115	3.5	140	269	M8	72	11	23	12.8	4
AM71	110	10	130	4	160	269	M8	72	14	30	16.3	5
AM80	130	12	165	4.5	200	303	M10	106	19	40	21.8	6
AM90	130	12	165	4.5	200	303	M10	106	24	50	27.3	8



(→ [7.2.10)	B5	C5	E5	F5	G5	L	S5	Z5	D1	L1	T1	U1
AM63	95	10	115	3.5	140	267	M8	72	11	23	12.8	4
AM71	110	10	130	4	160	267	M8	72	14	30	16.3	5
AM80	130	12	165	4.5	200	301	M10	106	19	40	21.8	6
AM90	130	12	165	4.5	200	301	M10	106	24	50	27.3	8

\subset	כ
Č	j
\subset	٥
5	J
ď	Ì
Ċ	Š
Ī	
_	,
_	_
-	
ш	J
щ	_
7	5
50/F	
RSO/F	
4650/F	2
54650/F	2
154650/F	2
154650/F	2000

AM80

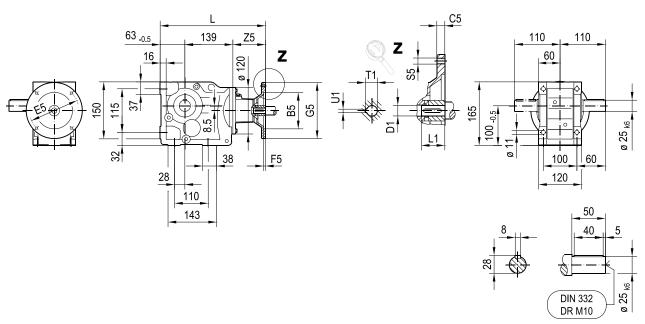
AM90

4.5

4.5

M10

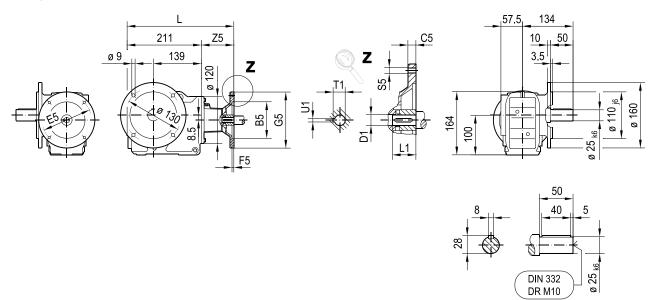
M10



21.8

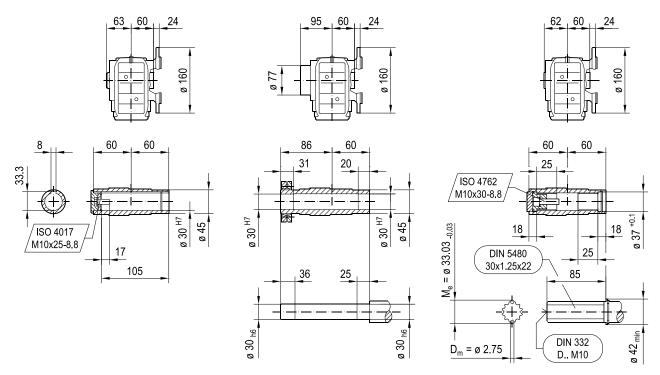
27.3

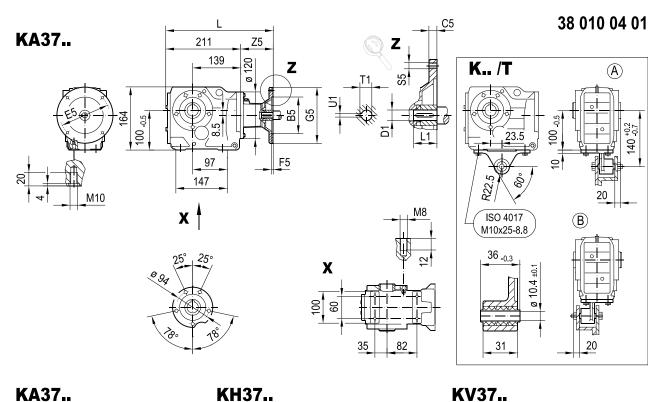
33 010 02 01

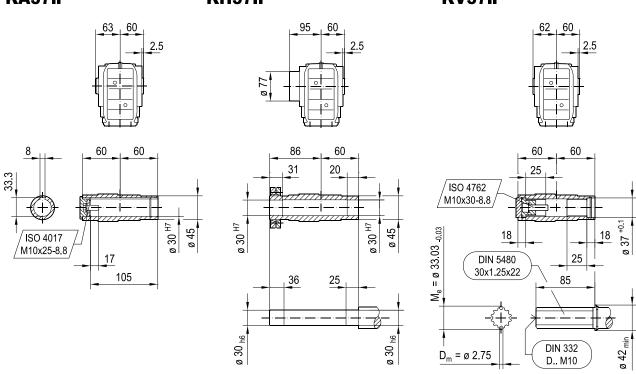

K37..

(→ [] 7.2.10)	B5	C5	E5	F5	G5	L	S5	Z 5	D1	L1	T1	U1
AM63	95	10	115	3.5	140	274	M8	72	11	23	12.8	4
AM71	110	10	130	4	160	274	M8	72	14	30	16.3	5
AM80	130	12	165	4.5	200	308	M10	106	19	40	21.8	6
AM90	130	12	165	4.5	200	308	M10	106	24	50	27.3	8

33 011 04 01

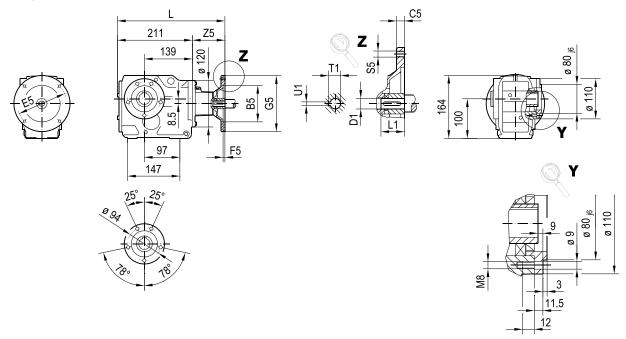

KF37..


KAF37...


KHF37...

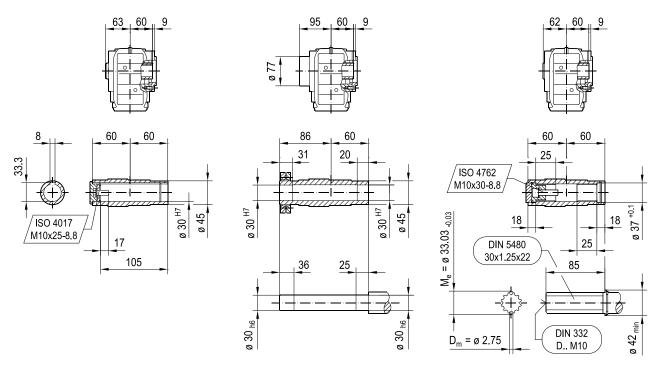
KVF37..

(→ [] 7.2.10)	B5	C5	E5	F5	G5	L	S5	Z5	D1	L1	T1	U1
AM63	95	10	115	3.5	140	283	M8	72	11	23	12.8	4
AM71	110	10	130	4	160	283	M8	72	14	30	16.3	5
AM80	130	12	165	4.5	200	317	M10	106	19	40	21.8	6
AM90	130	12	165	4.5	200	317	M10	106	24	50	27.3	8



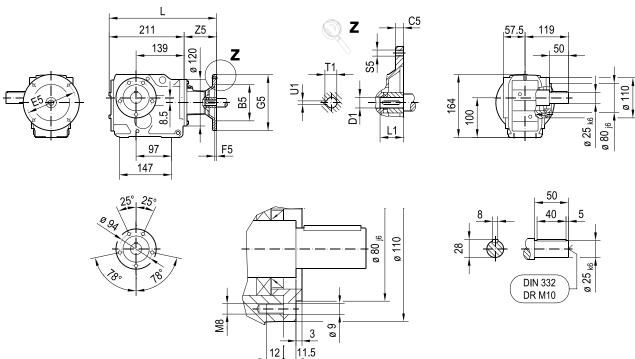
(→ []] 7.2.10)	B5	C5	E5	F5	G5	L	S5	Z5	D1	L1	T1	U1
AM63	95	10	115	3.5	140	283	M8	72	11	23	12.8	4
AM71	110	10	130	4	160	283	M8	72	14	30	16.3	5
AM80	130	12	165	4.5	200	317	M10	106	19	40	21.8	6
AM90	130	12	165	4.5	200	317	M10	106	24	50	27.3	8

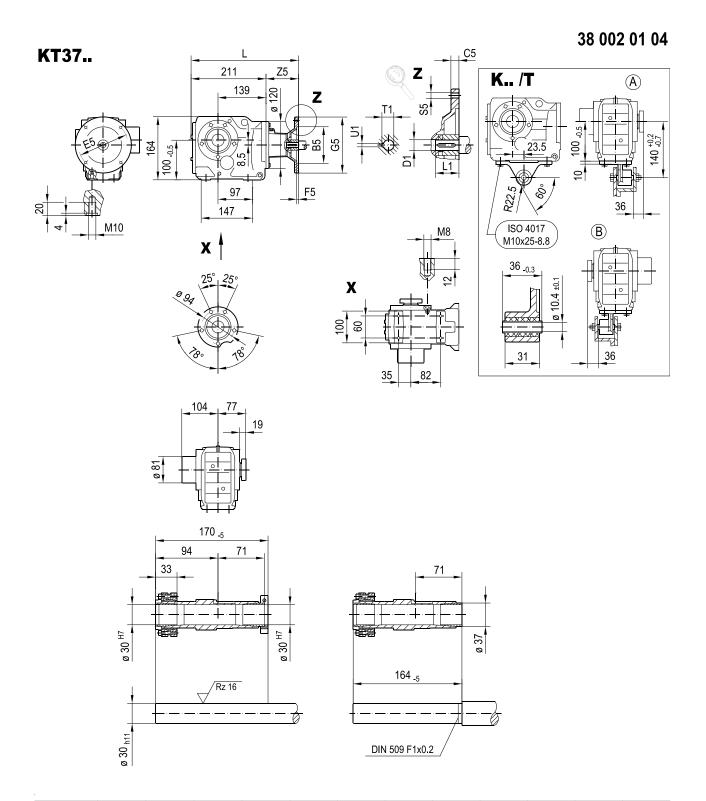
38 011 04 01


KAZ37...

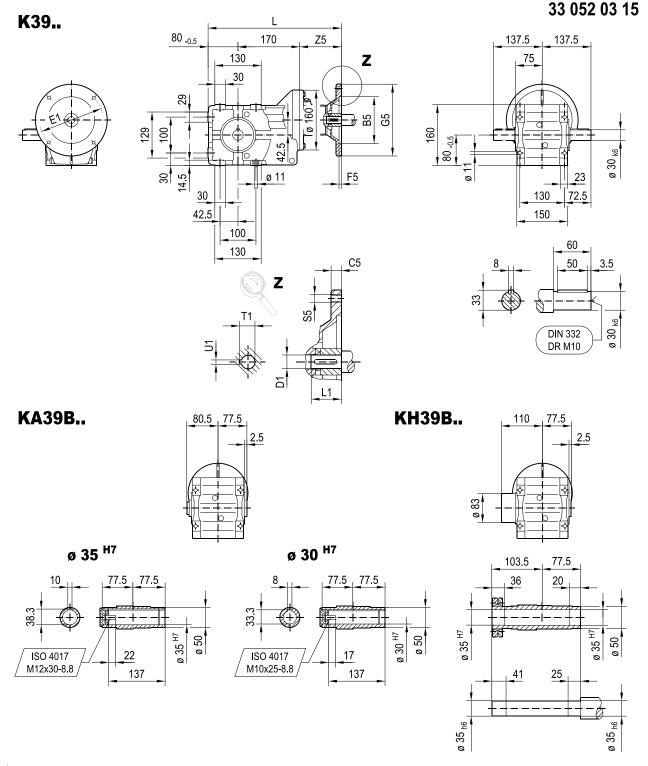
KAZ37..

KHZ37..

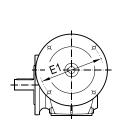

KVZ37..


(→ [] 7.2.10)	B5	C5	E5	F5	G5	L	S5	Z5	D1	L1	T1	U1
AM63	95	10	115	3.5	140	283	M8	72	11	23	12.8	4
AM71	110	10	130	4	160	283	M8	72	14	30	16.3	5
AM80	130	12	165	4.5	200	317	M10	106	19	40	21.8	6
AM90	130	12	165	4.5	200	317	M10	106	24	50	27.3	8

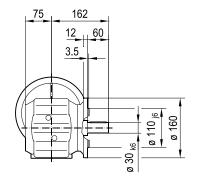
33 031 00 16

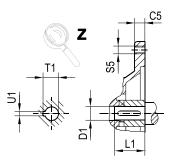

KZ37..

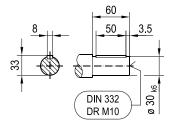
(→ [] 7.2.10)	B5	C5	E5	F5	G5	L	S5	Z 5	D1	L1	T1	U1
AM63	95	10	115	3.5	140	283	M8	72	11	23	12.8	4
AM71	110	10	130	4	160	283	M8	72	14	30	16.3	5
AM80	130	12	165	4.5	200	317	M10	106	19	40	21.8	6
AM90	130	12	165	4.5	200	317	M10	106	24	50	27.3	8

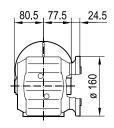

(→ []] 7.2.10)	B5	C5	E5	F5	G5	L	S5	Z5	D1	L1	T1	U1
AM63	95	10	115	3.5	140	283	M8	72	11	23	12.8	4
AM71	110	10	130	4	160	283	M8	72	14	30	16.3	5
AM80	130	12	165	4.5	200	317	M10	106	19	40	21.8	6
AM90	130	12	165	4.5	200	317	M10	106	24	50	27.3	8

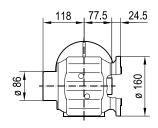


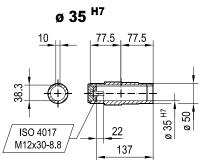

(→ [] 7.2.10)	B5	C5	E5	F5	G5	L	S5	Z5	D1	L1	T1	U1
AM63	95	10	115	3.5	140	316	M8	66	11	23	12.8	4
AM71	110	10	130	4	160	316	M8	66	14	30	16.3	5
AM80	130	12	165	4.5	200	349	M10	99	19	40	21.8	6
AM90	130	12	165	4.5	200	349	M10	99	24	50	27.3	8
AM100	180	15	215	5	250	384	M12	134	28	60	31.3	8
AM112	180	15	215	5	250	384	M12	134	28	60	31.3	8

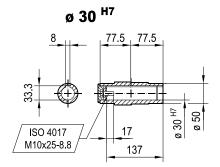

KF39..

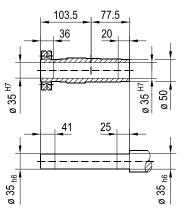

33 053 01 15

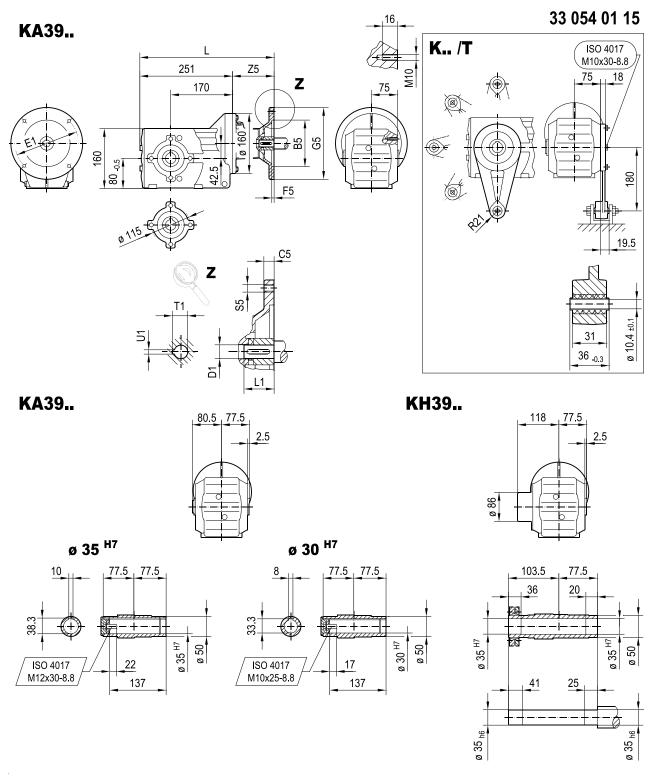


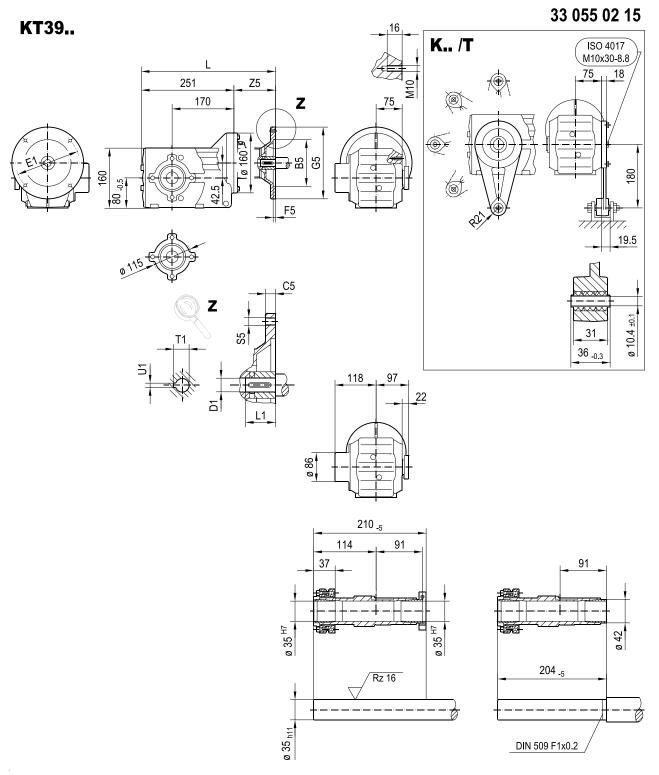




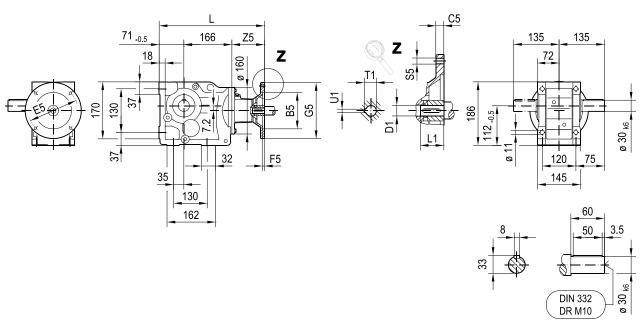

KAF39..

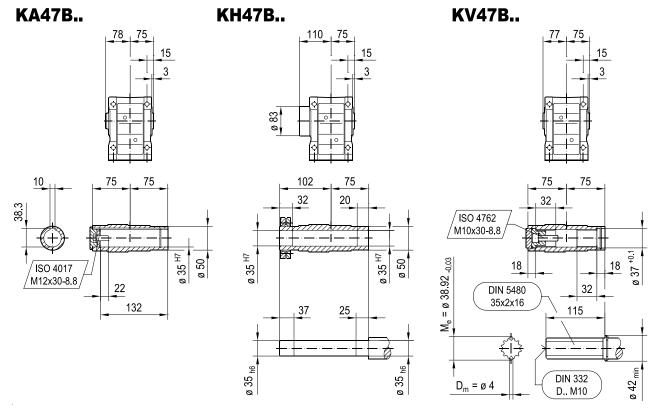

KHF39..





(→ []] 7.2.10)	B5	C5	E5	F5	G5	L	S5	Z 5	D1	L1	T1	U1
AM63	95	10	115	3.5	140	317	M8	66	11	23	12.8	4
AM71	110	10	130	4	160	317	M8	66	14	30	16.3	5
AM80	130	12	165	4.5	200	350	M10	99	19	40	21.8	6
AM90	130	12	165	4.5	200	350	M10	99	24	50	27.3	8
AM100	180	15	215	5	250	385	M12	134	28	60	31.3	8
AM112	180	15	215	5	250	385	M12	134	28	60	31.3	8

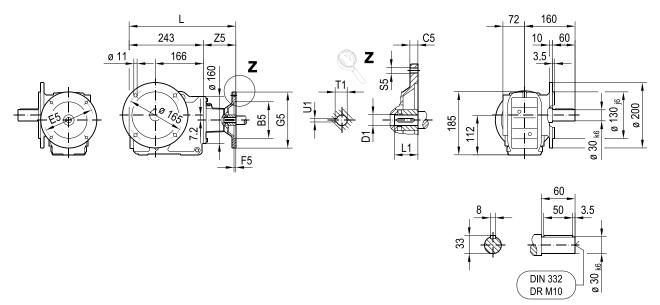

(→ [] 7.2.10)	B5	C5	E5	F5	G5	L	S5	Z5	D1	L1	T1	U1
AM63	95	10	115	3.5	140	317	M8	66	11	23	12.8	4
AM71	110	10	130	4	160	317	M8	66	14	30	16.3	5
AM80	130	12	165	4.5	200	350	M10	99	19	40	21.8	6
AM90	130	12	165	4.5	200	350	M10	99	24	50	27.3	8
AM100	180	15	215	5	250	385	M12	134	28	60	31.3	8
AM112	180	15	215	5	250	385	M12	134	28	60	31.3	8



B5	C5	E5	F5	G5	L	S5	Z 5	D1	L1	T1	U1
95	10	115	3.5	140	317	M8	66	11	23	12.8	4
110	10	130	4	160	317	M8	66	14	30	16.3	5
130	12	165	4.5	200	350	M10	99	19	40	21.8	6
130	12	165	4.5	200	350	M10	99	24	50	27.3	8
180	15	215	5	250	385	M12	134	28	60	31.3	8
180	15	215	5	250	385	M12	134	28	60	31.3	8
	95 110 130 130 180	95 10 110 10 130 12 130 12 180 15	95 10 115 110 10 130 130 12 165 130 12 165 180 15 215	95 10 115 3.5 110 10 130 4 130 12 165 4.5 130 12 165 4.5 180 15 215 5	95 10 115 3.5 140 110 10 130 4 160 130 12 165 4.5 200 130 12 165 4.5 200 180 15 215 5 250	95 10 115 3.5 140 317 110 10 130 4 160 317 130 12 165 4.5 200 350 130 12 165 4.5 200 350 180 15 215 5 250 385	95 10 115 3.5 140 317 M8 110 10 130 4 160 317 M8 130 12 165 4.5 200 350 M10 130 12 165 4.5 200 350 M10 180 15 215 5 250 385 M12	95 10 115 3.5 140 317 M8 66 110 10 130 4 160 317 M8 66 130 12 165 4.5 200 350 M10 99 130 12 165 4.5 200 350 M10 99 180 15 215 5 250 385 M12 134	95 10 115 3.5 140 317 M8 66 11 110 10 130 4 160 317 M8 66 14 130 12 165 4.5 200 350 M10 99 19 130 12 165 4.5 200 350 M10 99 24 180 15 215 5 250 385 M12 134 28	95 10 115 3.5 140 317 M8 66 11 23 110 10 130 4 160 317 M8 66 14 30 130 12 165 4.5 200 350 M10 99 19 40 130 12 165 4.5 200 350 M10 99 24 50 180 15 215 5 250 385 M12 134 28 60	95 10 115 3.5 140 317 M8 66 11 23 12.8 110 10 130 4 160 317 M8 66 14 30 16.3 130 12 165 4.5 200 350 M10 99 19 40 21.8 130 12 165 4.5 200 350 M10 99 24 50 27.3 180 15 215 5 250 385 M12 134 28 60 31.3

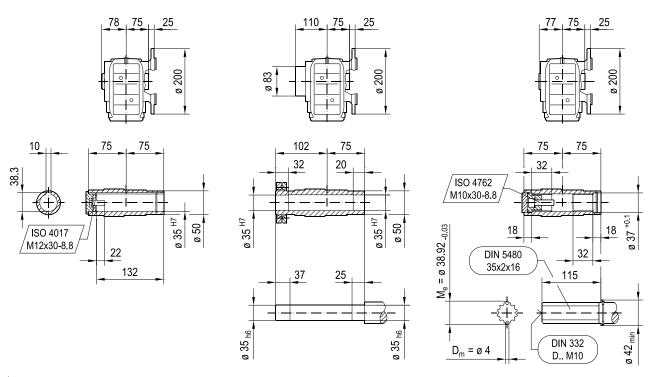
33 012 03 01

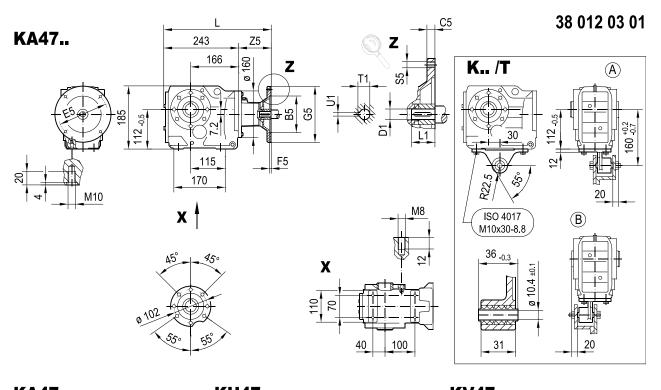
K47..

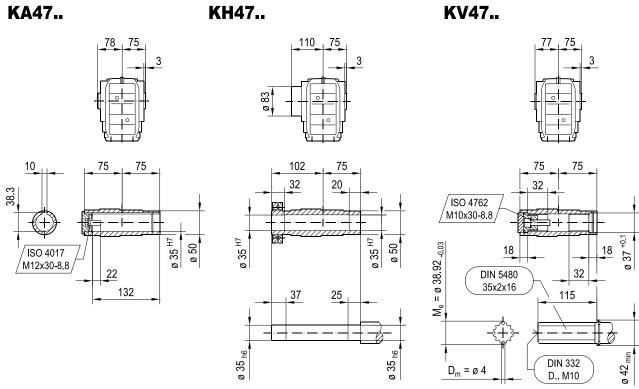


(→ [] 7.2.10)	B5	C5	E5	F5	G5	L	S5	Z 5	D1	L1	T1	U1
AM63	95	10	115	3.5	140	303	M8	66	11	23	12.8	4
AM71	110	10	130	4	160	303	M8	66	14	30	16.3	5
AM80	130	12	165	4.5	200	336	M10	99	19	40	21.8	6
AM90	130	12	165	4.5	200	336	M10	99	24	50	27.3	8
AM100	180	15	215	5	250	371	M12	134	28	60	31.3	8
AM112	180	15	215	5	250	371	M12	134	28	60	31.3	8

33 013 03 01

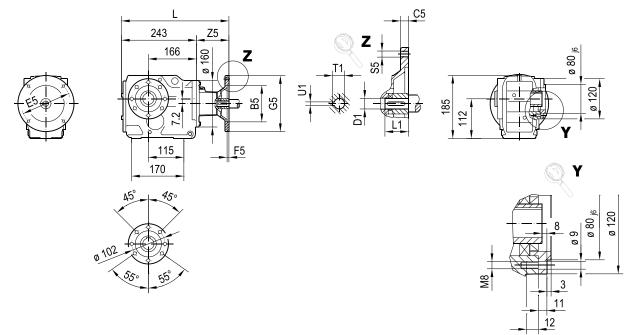

KF47..


KAF47..


KHF47..

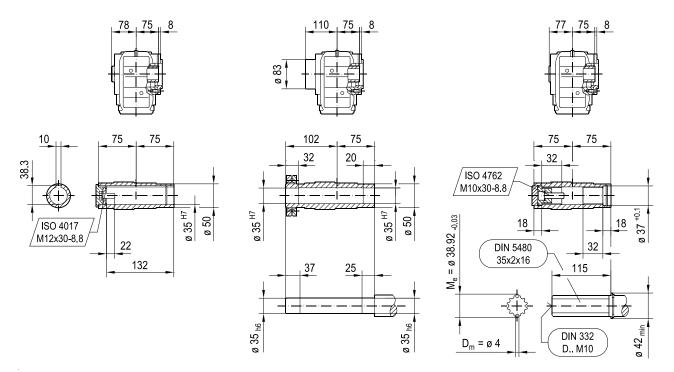
KVF47..

(→ [] 7.2.10)	B5	C5	E5	F5	G5	L	S5	Z 5	D1	L1	T1	U1
AM63	95	10	115	3.5	140	309	M8	66	11	23	12.8	4
AM71	110	10	130	4	160	309	M8	66	14	30	16.3	5
AM80	130	12	165	4.5	200	342	M10	99	19	40	21.8	6
AM90	130	12	165	4.5	200	342	M10	99	24	50	27.3	8
AM100	180	15	215	5	250	377	M12	134	28	60	31.3	8
AM112	180	15	215	5	250	377	M12	134	28	60	31.3	8



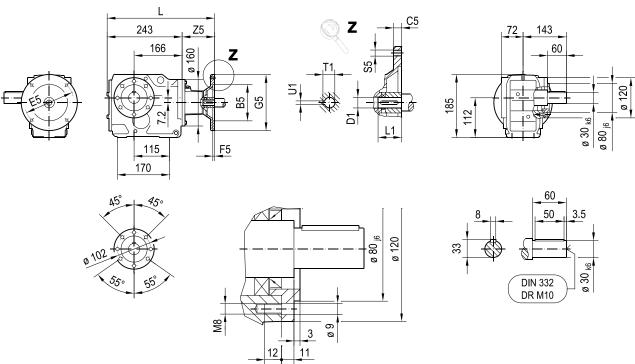
(→ [] 7.2.10)	B5	C5	E5	F5	G5	L	S5	Z5	D1	L1	T1	U1
AM63	95	10	115	3.5	140	309	M8	66	11	23	12.8	4
AM71	110	10	130	4	160	309	M8	66	14	30	16.3	5
AM80	130	12	165	4.5	200	342	M10	99	19	40	21.8	6
AM90	130	12	165	4.5	200	342	M10	99	24	50	27.3	8
AM100	180	15	215	5	250	377	M12	134	28	60	31.3	8
AM112	180	15	215	5	250	377	M12	134	28	60	31.3	8

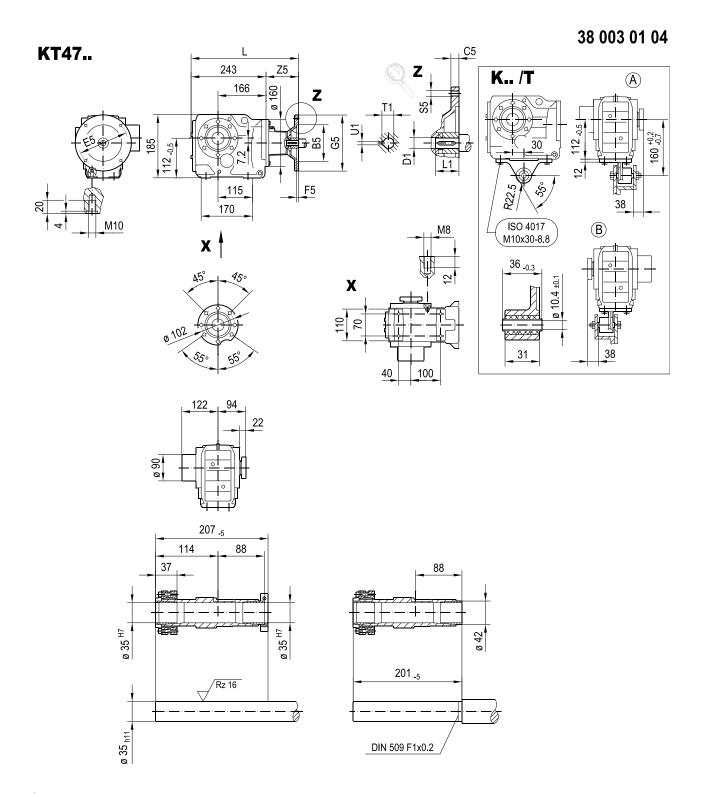
38 013 03 01


KAZ47..

KAZ47..

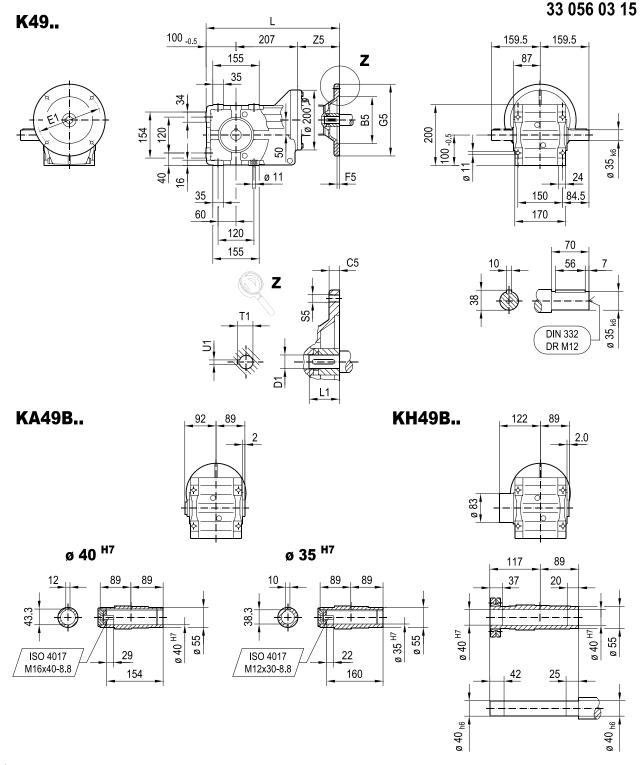
KHZ47..


KVZ47..


B5	C5	E5	F5	G5	L	S5	Z 5	D1	L1	T1	U1
95	10	115	3.5	140	309	M8	66	11	23	12.8	4
110	10	130	4	160	309	M8	66	14	30	16.3	5
130	12	165	4.5	200	342	M10	99	19	40	21.8	6
130	12	165	4.5	200	342	M10	99	24	50	27.3	8
180	15	215	5	250	377	M12	134	28	60	31.3	8
180	15	215	5	250	377	M12	134	28	60	31.3	8
	95 110 130 130 180	95 10 110 10 130 12 130 12 180 15	95 10 115 110 10 130 130 12 165 130 12 165 180 15 215	95 10 115 3.5 110 10 130 4 130 12 165 4.5 130 12 165 4.5 180 15 215 5	95 10 115 3.5 140 110 10 130 4 160 130 12 165 4.5 200 130 12 165 4.5 200 180 15 215 5 250	95 10 115 3.5 140 309 110 10 130 4 160 309 130 12 165 4.5 200 342 130 12 165 4.5 200 342 180 15 215 5 250 377	95 10 115 3.5 140 309 M8 110 10 130 4 160 309 M8 130 12 165 4.5 200 342 M10 130 12 165 4.5 200 342 M10 180 15 215 5 250 377 M12	95 10 115 3.5 140 309 M8 66 110 10 130 4 160 309 M8 66 130 12 165 4.5 200 342 M10 99 130 12 165 4.5 200 342 M10 99 180 15 215 5 250 377 M12 134	95 10 115 3.5 140 309 M8 66 11 110 10 130 4 160 309 M8 66 14 130 12 165 4.5 200 342 M10 99 19 130 12 165 4.5 200 342 M10 99 24 180 15 215 5 250 377 M12 134 28	95 10 115 3.5 140 309 M8 66 11 23 110 10 130 4 160 309 M8 66 14 30 130 12 165 4.5 200 342 M10 99 19 40 130 12 165 4.5 200 342 M10 99 24 50 180 15 215 5 250 377 M12 134 28 60	95 10 115 3.5 140 309 M8 66 11 23 12.8 110 10 130 4 160 309 M8 66 14 30 16.3 130 12 165 4.5 200 342 M10 99 19 40 21.8 130 12 165 4.5 200 342 M10 99 24 50 27.3 180 15 215 5 250 377 M12 134 28 60 31.3

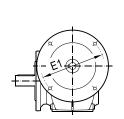
33 032 00 16

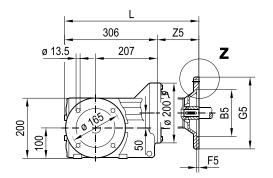
KZ47..

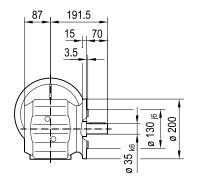


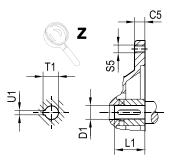
(→ [] 7.2.10)	B5	C5	E5	F5	G5	L	S5	Z5	D1	L1	T1	U1
AM63	95	10	115	3.5	140	309	M8	66	11	23	12.8	4
AM71	110	10	130	4	160	309	M8	66	14	30	16.3	5
AM80	130	12	165	4.5	200	342	M10	99	19	40	21.8	6
AM90	130	12	165	4.5	200	342	M10	99	24	50	27.3	8
AM100	180	15	215	5	250	377	M12	134	28	60	31.3	8
AM112	180	15	215	5	250	377	M12	134	28	60	31.3	8

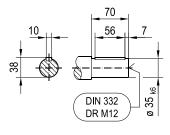
(→ [] 7.2.10)	B5	C5	E5	F5	G5	L	S5	Z5	D1	L1	T1	U1
AM63	95	10	115	3.5	140	309	M8	66	11	23	12.8	4
AM71	110	10	130	4	160	309	M8	66	14	30	16.3	5
AM80	130	12	165	4.5	200	342	M10	99	19	40	21.8	6
AM90	130	12	165	4.5	200	342	M10	99	24	50	27.3	8
AM100	180	15	215	5	250	377	M12	134	28	60	31.3	8
AM112	180	15	215	5	250	377	M12	134	28	60	31.3	8
_												

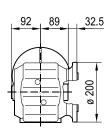


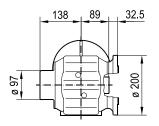


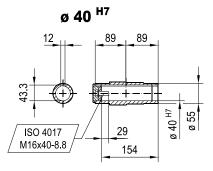

(→ [] 7.2.10)	B5	C5	E5	F5	G5	L	S5	Z 5	D1	L1	T1	U1
AM63	95	10	115	3.5	140	367	M8	60	11	23	12.8	4
AM71	110	10	130	4	160	367	M8	60	14	30	16.3	5
AM80	130	12	165	4.5	200	399	M10	92	19	40	21.8	6
AM90	130	12	165	4.5	200	399	M10	92	24	50	27.3	8
AM100	180	15	215	5	250	433	M12	126	28	60	31.3	8
AM112	180	15	215	5	250	433	M12	126	28	60	31.3	8
AM132S/M	230	16	265	5	300	486	M12	179	38	80	41.3	10

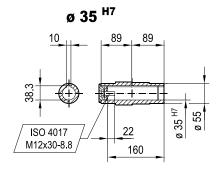

33 057 02 15

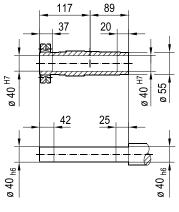

KF49..

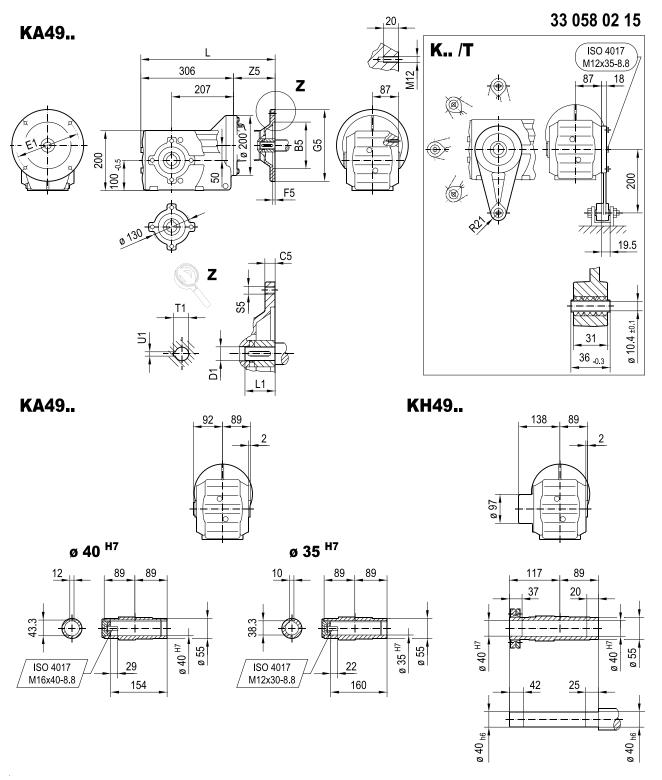


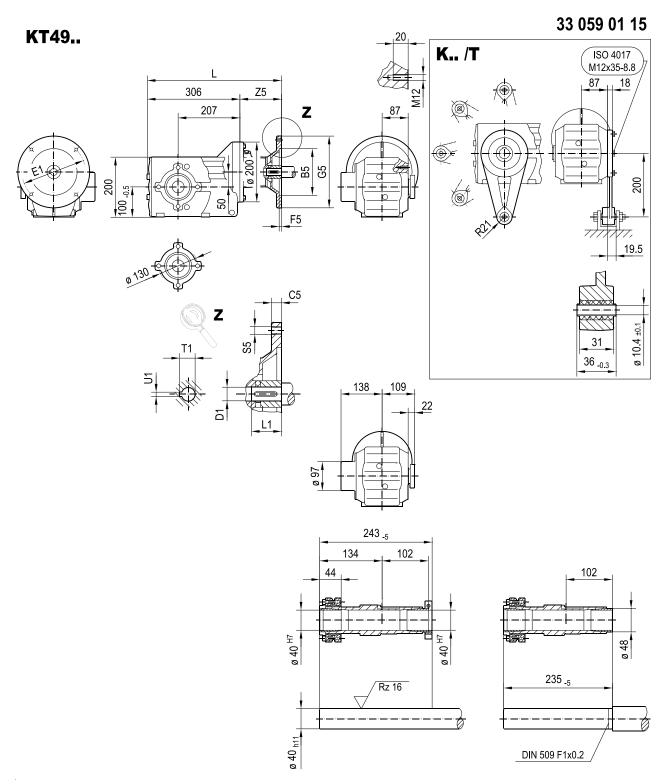




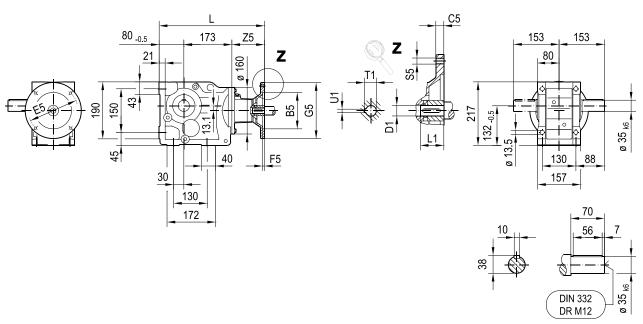

KAF49..

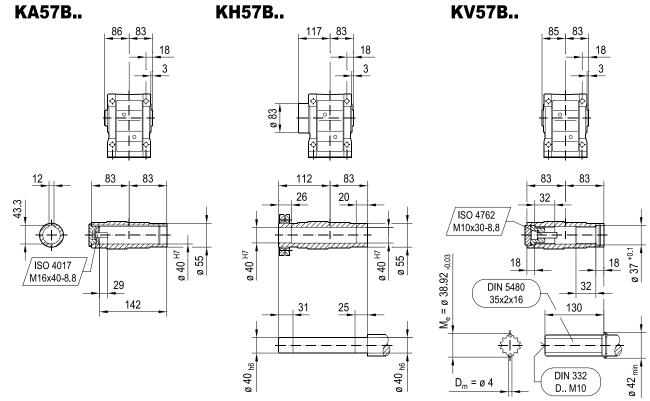






(→ [] 7.2.10)	B5	C5	E5	F5	G5	L	S5	Z5	D1	L1	T1	U1
AM63	95	10	115	3.5	140	366	M8	60	11	23	12.8	4
AM71	110	10	130	4	160	366	M8	60	14	30	16.3	5
AM80	130	12	165	4.5	200	398	M10	92	19	40	21.8	6
AM90	130	12	165	4.5	200	398	M10	92	24	50	27.3	8
AM100	180	15	215	5	250	432	M12	126	28	60	31.3	8
AM112	180	15	215	5	250	432	M12	126	28	60	31.3	8
AM132S/M	230	16	265	5	300	485	M12	179	38	80	41.3	10

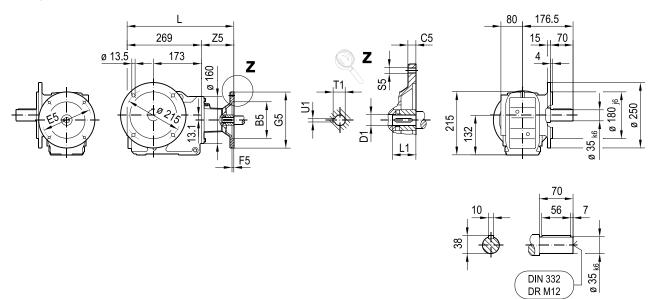

(→ [] 7.2.10)	B5	C5	E5	F5	G5	L	S5	Z5	D1	L1	T1	U1
AM63	95	10	115	3.5	140	366	M8	60	11	23	12.8	4
AM71	110	10	130	4	160	366	M8	60	14	30	16.3	5
AM80	130	12	165	4.5	200	398	M10	92	19	40	21.8	6
AM90	130	12	165	4.5	200	398	M10	92	24	50	27.3	8
AM100	180	15	215	5	250	432	M12	126	28	60	31.3	8
AM112	180	15	215	5	250	432	M12	126	28	60	31.3	8
AM132S/M	230	16	265	5	300	485	M12	179	38	80	41.3	10



(→ [] 7.2.10)	B5	C5	E5	F5	G5	L	S5	Z5	D1	L1	T1	U1
AM63	95	10	115	3.5	140	366	M8	60	11	23	12.8	4
AM71	110	10	130	4	160	366	M8	60	14	30	16.3	5
AM80	130	12	165	4.5	200	398	M10	92	19	40	21.8	6
AM90	130	12	165	4.5	200	398	M10	92	24	50	27.3	8
AM100	180	15	215	5	250	432	M12	126	28	60	31.3	8
AM112	180	15	215	5	250	432	M12	126	28	60	31.3	8
AM132S/M	230	16	265	5	300	485	M12	179	38	80	41.3	10

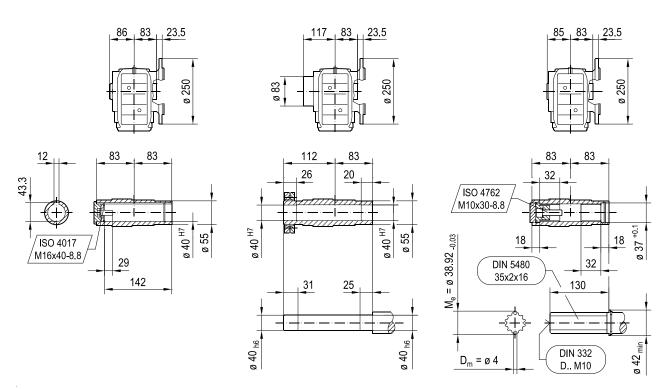
33 014 03 01

K57...

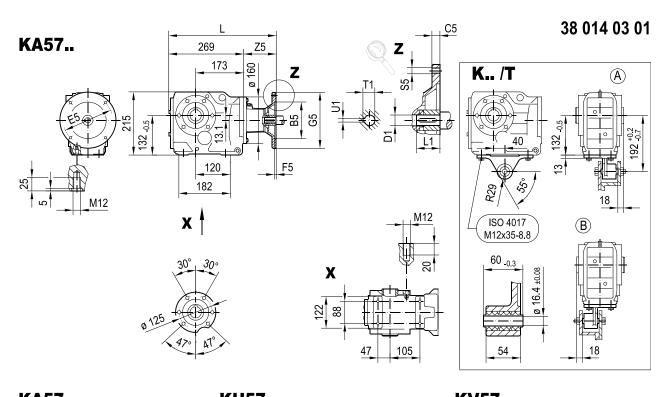


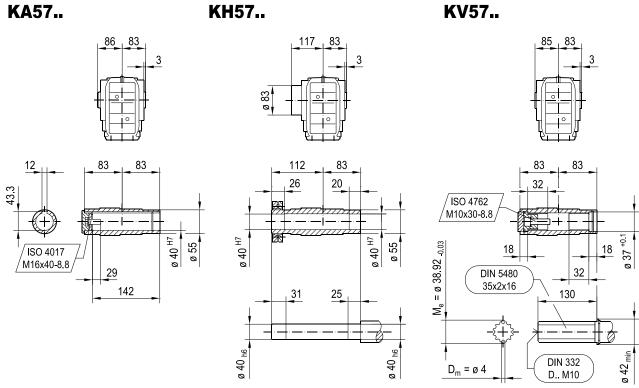
(→ [] 7.2.10)	B5	C5	E5	F5	G5	L	S5	Z5	D1	L1	T1	U1
AM63	95	10	115	3.5	140	319	M8	66	11	23	12.8	4
AM71	110	10	130	4	160	319	M8	66	14	30	16.3	5
AM80	130	12	165	4.5	200	352	M10	99	19	40	21.8	6
AM90	130	12	165	4.5	200	352	M10	99	24	50	27.3	8
AM100	180	15	215	5	250	387	M12	134	28	60	31.3	8
AM112	180	15	215	5	250	387	M12	134	28	60	31.3	8
AM132S/M	230	16	265	5	300	444	M12	191	38	80	41.3	10

33 015 03 01

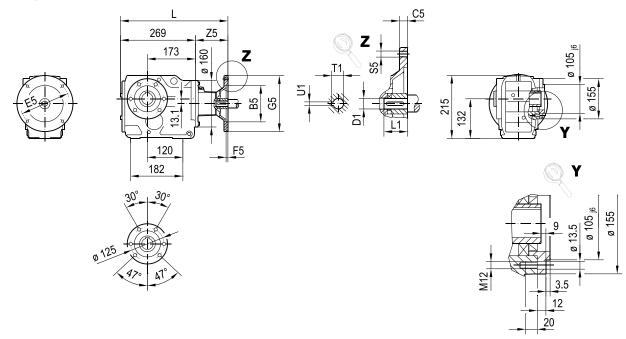

KF57..

KAF57..


KHF57..


KVF57..

(→ [7.2.10)	B5	C5	E5	F5	G5	L	S5	Z5	D1	L1	T1	U1
AM63	95	10	115	3.5	140	335	M8	66	11	23	12.8	4
AM71	110	10	130	4	160	335	M8	66	14	30	16.3	5
AM80	130	12	165	4.5	200	368	M10	99	19	40	21.8	6
AM90	130	12	165	4.5	200	368	M10	99	24	50	27.3	8
AM100	180	15	215	5	250	403	M12	134	28	60	31.3	8
AM112	180	15	215	5	250	403	M12	134	28	60	31.3	8
AM132S/M	230	16	265	5	300	460	M12	191	38	80	41.3	10



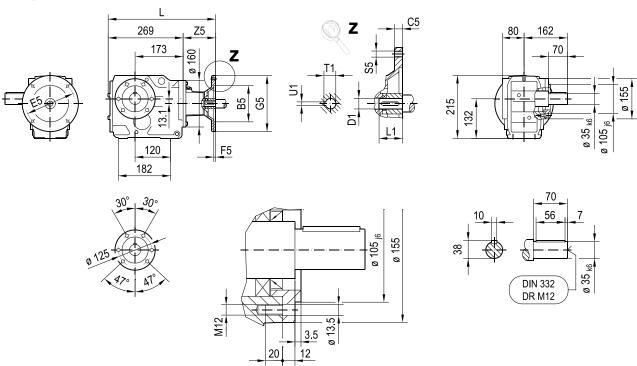
(→ [] 7.2.10)	B5	C5	E5	F5	G5	L	S5	Z5	D1	L1	T1	U1
AM63	95	10	115	3.5	140	335	M8	66	11	23	12.8	4
AM71	110	10	130	4	160	335	M8	66	14	30	16.3	5
AM80	130	12	165	4.5	200	368	M10	99	19	40	21.8	6
AM90	130	12	165	4.5	200	368	M10	99	24	50	27.3	8
AM100	180	15	215	5	250	403	M12	134	28	60	31.3	8
AM112	180	15	215	5	250	403	M12	134	28	60	31.3	8
AM132S/M	230	16	265	5	300	460	M12	191	38	80	41.3	10

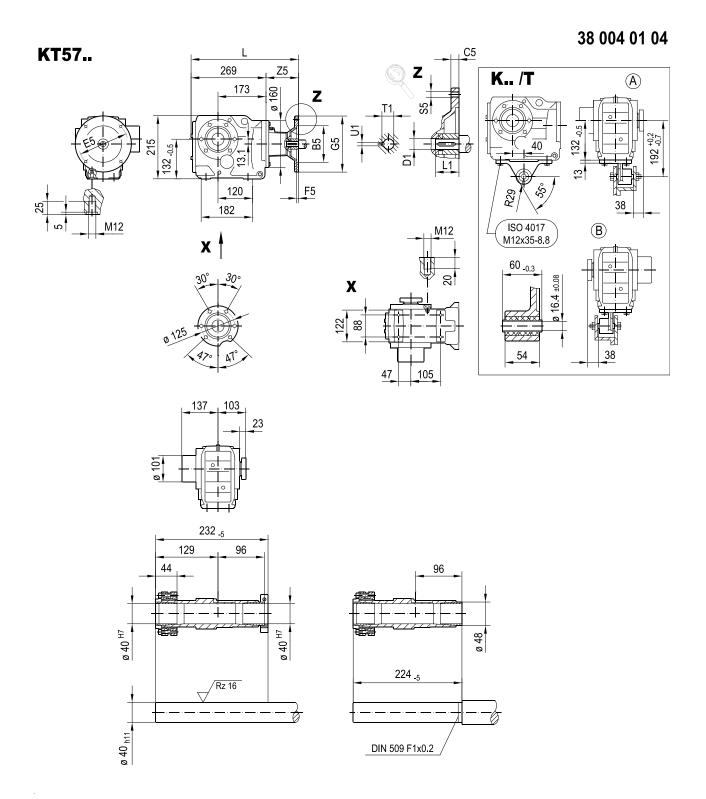
38 015 03 01


KAZ57...

KAZ57..

KHZ57..

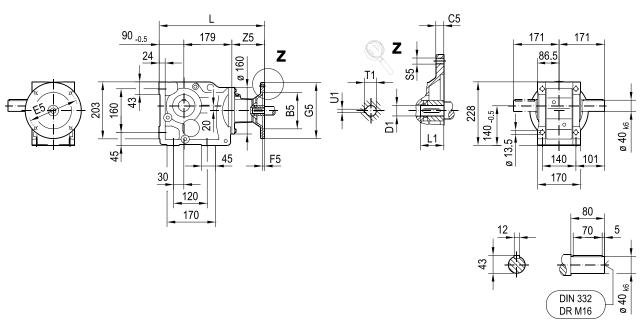

KVZ57..

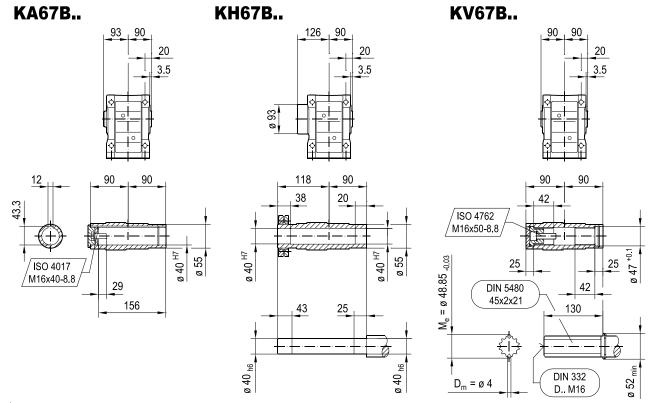

(→ [7.2.10)	B5	C5	E5	F5	G5	L	S5	Z5	D1	L1	T1	U1
AM63	95	10	115	3.5	140	335	M8	66	11	23	12.8	4
AM71	110	10	130	4	160	335	M8	66	14	30	16.3	5
AM80	130	12	165	4.5	200	368	M10	99	19	40	21.8	6
AM90	130	12	165	4.5	200	368	M10	99	24	50	27.3	8
AM100	180	15	215	5	250	403	M12	134	28	60	31.3	8
AM112	180	15	215	5	250	403	M12	134	28	60	31.3	8
AM132S/M	230	16	265	5	300	460	M12	191	38	80	41.3	10

33 033 00 16

KZ57..

(→ [] 7.2.10)	B5	C5	E5	F5	G5	L	S5	Z 5	D1	L1	T1	U1
AM63	95	10	115	3.5	140	335	M8	66	11	23	12.8	4
AM71	110	10	130	4	160	335	M8	66	14	30	16.3	5
AM80	130	12	165	4.5	200	368	M10	99	19	40	21.8	6
AM90	130	12	165	4.5	200	368	M10	99	24	50	27.3	8
AM100	180	15	215	5	250	403	M12	134	28	60	31.3	8
AM112	180	15	215	5	250	403	M12	134	28	60	31.3	8
AM132S/M	230	16	265	5	300	460	M12	191	38	80	41.3	10

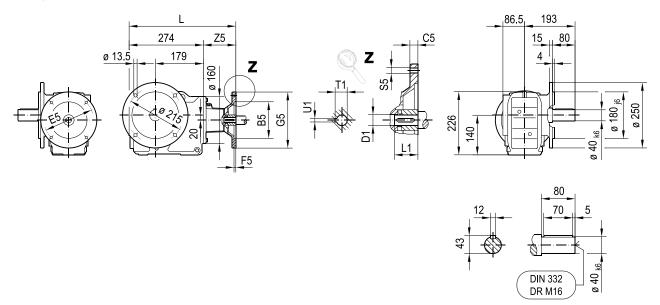



03/2020	
- 1	
9154650/EN	

(→ []] 7.2.10)	B5	C5	E5	F5	G5	L	S5	Z 5	D1	L1	T1	U1
AM63	95	10	115	3.5	140	335	M8	66	11	23	12.8	4
AM71	110	10	130	4	160	335	M8	66	14	30	16.3	5
AM80	130	12	165	4.5	200	368	M10	99	19	40	21.8	6
AM90	130	12	165	4.5	200	368	M10	99	24	50	27.3	8
AM100	180	15	215	5	250	403	M12	134	28	60	31.3	8
AM112	180	15	215	5	250	403	M12	134	28	60	31.3	8
AM132S/M	230	16	265	5	300	460	M12	191	38	80	41.3	10

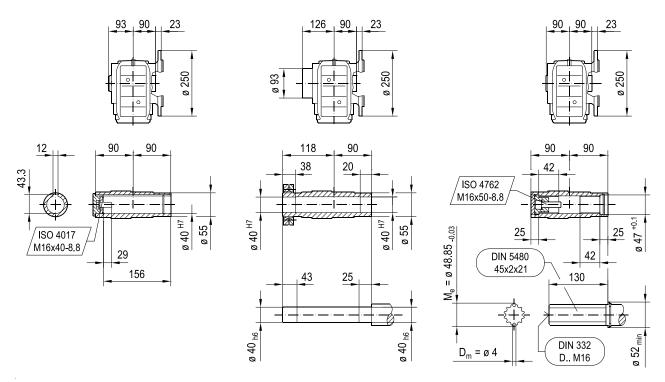
33 016 03 01

K67..



•												
(→ [] 7.2.10)	B5	C5	E5	F5	G5	L	S5	Z 5	D1	L1	T1	U1
AM63	95	10	115	3.5	140	335	M8	66	11	23	12.8	4
AM71	110	10	130	4	160	335	M8	66	14	30	16.3	5
AM80	130	12	165	4.5	200	368	M10	99	19	40	21.8	6
AM90	130	12	165	4.5	200	368	M10	99	24	50	27.3	8
AM100	180	15	215	5	250	403	M12	134	28	60	31.3	8
AM112	180	15	215	5	250	403	M12	134	28	60	31.3	8
AM132S/M	230	16	265	5	300	460	M12	191	38	80	41.3	10

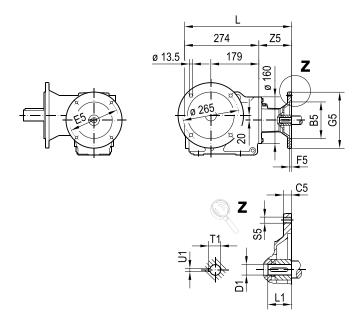
33 017 03 01

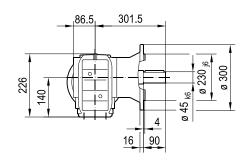

KF67..

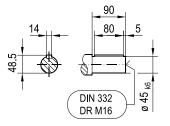
KAF67..

KHF67..

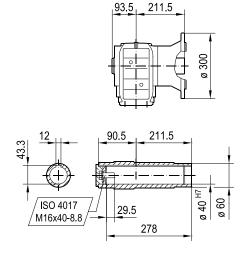
KVF67..

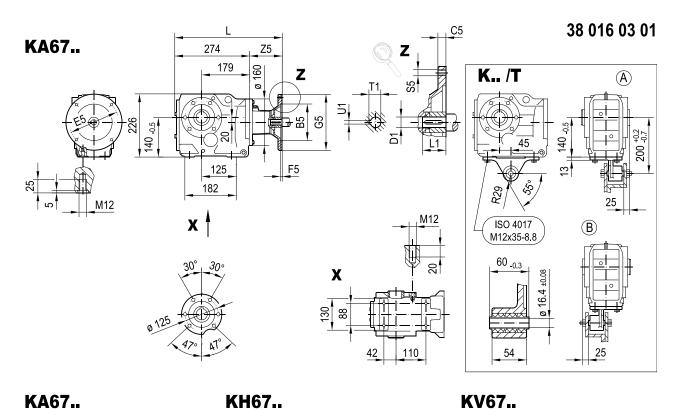


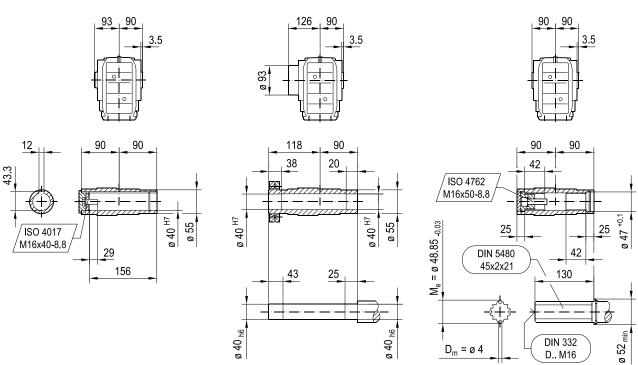

$^{\circ}$
Ñ
0
Ø
8
0
1
7
ĺΠ
\geq
$\overline{}$
$\tilde{2}$
92
465(
5465(
15465(
915465(


(→ [7.2.10)	B5	C5	E5	F5	G5	L	S5	Z 5	D1	L1	T1	U1
AM63	95	10	115	3.5	140	340	M8	66	11	23	12.8	4
AM71	110	10	130	4	160	340	M8	66	14	30	16.3	5
AM80	130	12	165	4.5	200	373	M10	99	19	40	21.8	6
AM90	130	12	165	4.5	200	373	M10	99	24	50	27.3	8
AM100	180	15	215	5	250	408	M12	134	28	60	31.3	8
AM112	180	15	215	5	250	408	M12	134	28	60	31.3	8
AM132S/M	230	16	265	5	300	465	M12	191	38	80	41.3	10

33 119 00 18

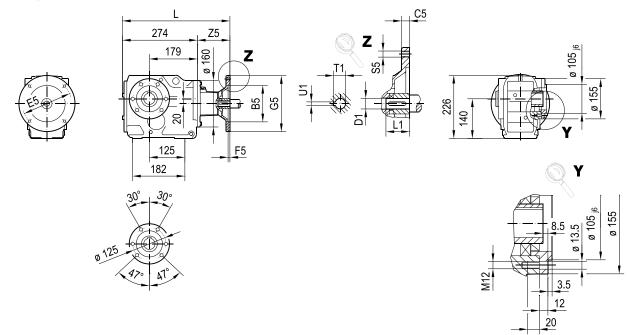

KM67..





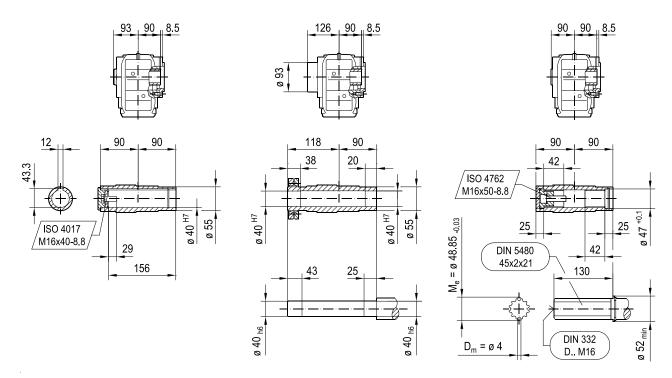
KAM67...

(→ []] 7.2.10)	B5	C5	E5	F5	G5	L	S5	Z 5	D1	L1	T1	U1
AM63	95	10	115	3.5	140	340	M8	66	11	23	12.8	4
AM71	110	10	130	4	160	340	M8	66	14	30	16.3	5
AM80	130	12	165	4.5	200	373	M10	99	19	40	21.8	6
AM90	130	12	165	4.5	200	373	M10	99	24	50	27.3	8
AM100	180	15	215	5	250	408	M12	134	28	60	31.3	8
AM112	180	15	215	5	250	408	M12	134	28	60	31.3	8
AM132S/M	230	16	265	5	300	465	M12	191	38	80	41.3	10



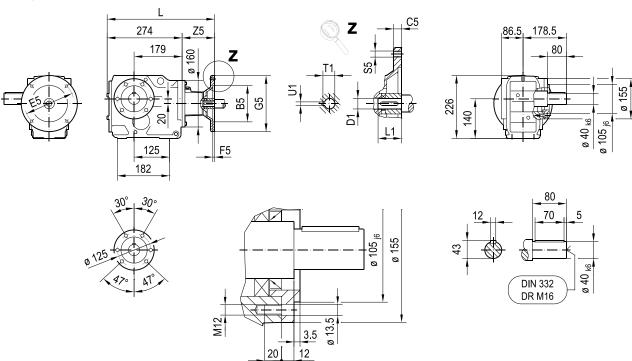
(→ [7.2.10)	B5	C5	E5	F5	G5	L	S5	Z5	D1	L1	T1	U1
AM63	95	10	115	3.5	140	340	M8	66	11	23	12.8	4
AM71	110	10	130	4	160	340	M8	66	14	30	16.3	5
AM80	130	12	165	4.5	200	373	M10	99	19	40	21.8	6
AM90	130	12	165	4.5	200	373	M10	99	24	50	27.3	8
AM100	180	15	215	5	250	408	M12	134	28	60	31.3	8
AM112	180	15	215	5	250	408	M12	134	28	60	31.3	8
AM132S/M	230	16	265	5	300	465	M12	191	38	80	41.3	10

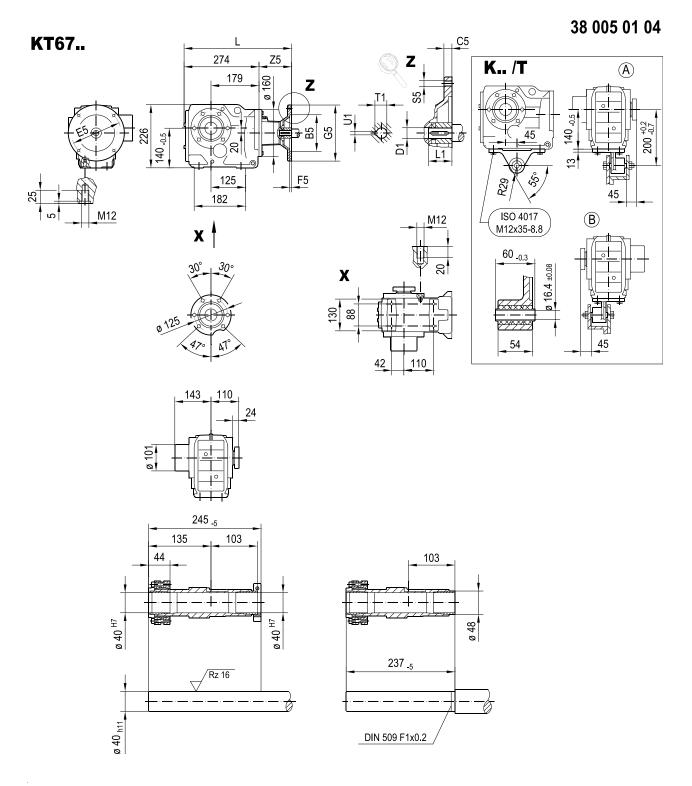
38 017 03 01


KAZ67..

KAZ67..

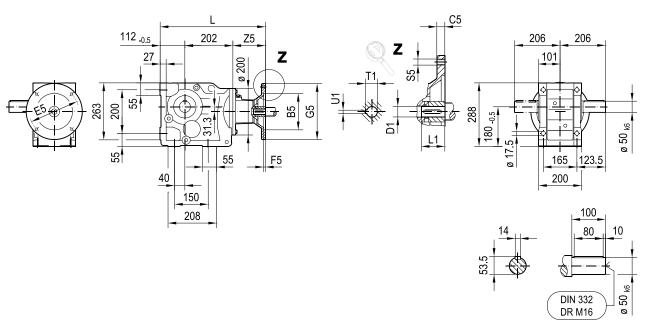
KHZ67..


KVZ67..


(→ [] 7.2.10)	B5	C5	E5	F5	G5	L	S5	Z5	D1	L1	T1	U1
AM63	95	10	115	3.5	140	340	M8	66	11	23	12.8	4
AM71	110	10	130	4	160	340	M8	66	14	30	16.3	5
AM80	130	12	165	4.5	200	373	M10	99	19	40	21.8	6
AM90	130	12	165	4.5	200	373	M10	99	24	50	27.3	8
AM100	180	15	215	5	250	408	M12	134	28	60	31.3	8
AM112	180	15	215	5	250	408	M12	134	28	60	31.3	8
AM132S/M	230	16	265	5	300	465	M12	191	38	80	41.3	10

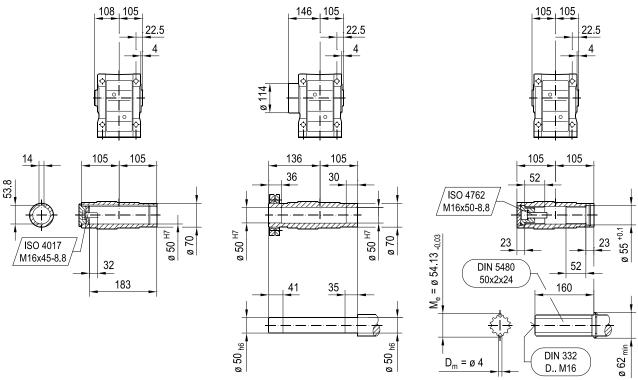
33 034 00 16

KZ67..

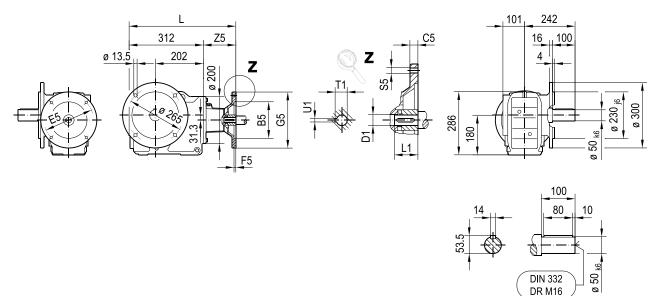

(→ [7.2.10)	B5	C5	E5	F5	G5	L	S5	Z5	D1	L1	T1	U1
AM63	95	10	115	3.5	140	340	M8	66	11	23	12.8	4
AM71	110	10	130	4	160	340	M8	66	14	30	16.3	5
AM80	130	12	165	4.5	200	373	M10	99	19	40	21.8	6
AM90	130	12	165	4.5	200	373	M10	99	24	50	27.3	8
AM100	180	15	215	5	250	408	M12	134	28	60	31.3	8
AM112	180	15	215	5	250	408	M12	134	28	60	31.3	8
AM132S/M	230	16	265	5	300	465	M12	191	38	80	41.3	10
						•					•	

(→ [] 7.2.10)	B5	C5	E5	F5	G5	L	S5	Z5	D1	L1	T1	U1
AM63	95	10	115	3.5	140	340	M8	66	11	23	12.8	4
AM71	110	10	130	4	160	340	M8	66	14	30	16.3	5
AM80	130	12	165	4.5	200	373	M10	99	19	40	21.8	6
AM90	130	12	165	4.5	200	373	M10	99	24	50	27.3	8
AM100	180	15	215	5	250	408	M12	134	28	60	31.3	8
AM112	180	15	215	5	250	408	M12	134	28	60	31.3	8
AM132S/M	230	16	265	5	300	465	M12	191	38	80	41.3	10

33 018 03 01


K77..

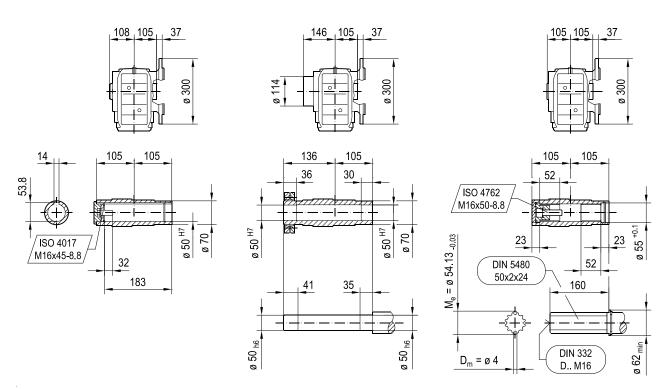
KV77B..



5		
ĺ		
7		
:		
1		
5		
•		
)		
,		
J		
)		
5		
)		
÷		
5		
_		
Ċ		
1		

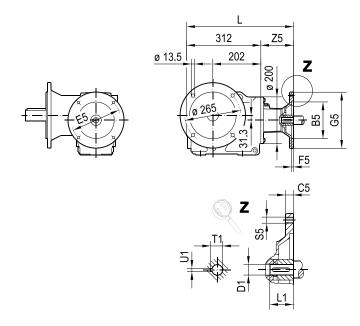
(→ []] 7.2.10)	B5	C5	E5	F5	G5	L	S5	Z5	D1	L1	T1	U1
AM63	95	10	115	3.5	140	374	M8	60	11	23	12.8	4
AM71	110	10	130	4	160	374	M8	60	14	30	16.3	5
AM80	130	12	165	4.5	200	406	M10	92	19	40	21.8	6
AM90	130	12	165	4.5	200	406	M10	92	24	50	27.3	8
AM100	180	15	215	5	250	440	M12	126	28	60	31.3	8
AM112	180	15	215	5	250	440	M12	126	28	60	31.3	8
AM132S/M	230	16	265	5	300	493	M12	179	38	80	41.3	10
AM132ML	230	16	265	5	300	493	M12	179	38	80	41.3	10

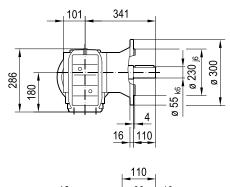
33 019 03 01

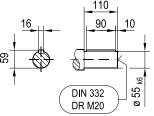

KF77...

KAF77..

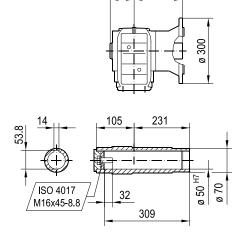
KHF77..


KVF77..

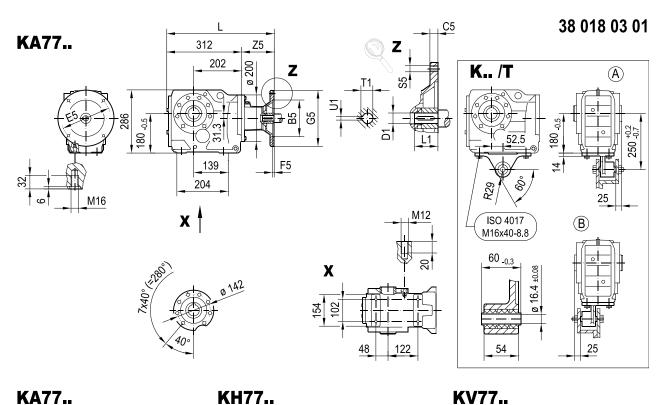

(→ [] 7.2.10)	B5	C5	E5	F5	G5	L	S5	Z5	D1	L1	T1	U1
AM63	95	10	115	3.5	140	372	M8	60	11	23	12.8	4
AM71	110	10	130	4	160	372	M8	60	14	30	16.3	5
AM80	130	12	165	4.5	200	404	M10	92	19	40	21.8	6
AM90	130	12	165	4.5	200	404	M10	92	24	50	27.3	8
AM100	180	15	215	5	250	438	M12	126	28	60	31.3	8
AM112	180	15	215	5	250	438	M12	126	28	60	31.3	8
AM132S/M	230	16	265	5	300	491	M12	179	38	80	41.3	10
AM132ML	230	16	265	5	300	491	M12	179	38	80	41.3	10

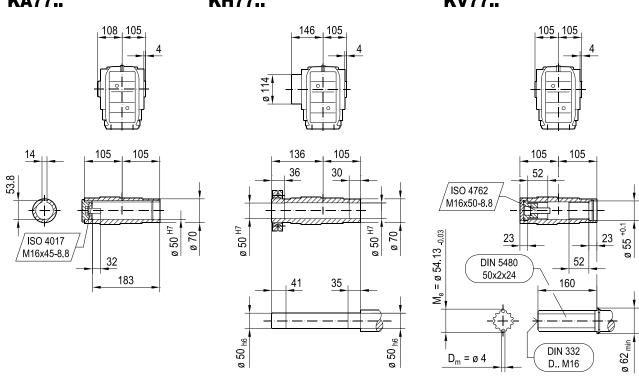

33 120 00 18

KM77..



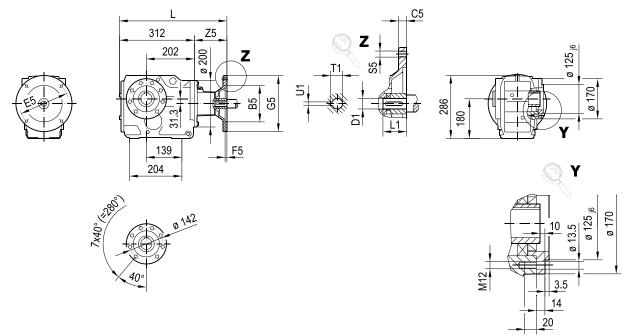
231





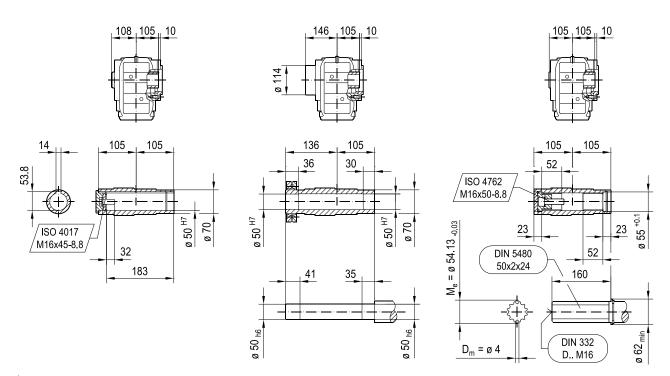
KAM77...

(→ [] 7.2.10)	B5	C5	E5	F5	G5	L	S5	Z5	D1	L1	T1	U1
AM63	95	10	115	3.5	140	372	M8	60	11	23	12.8	4
AM71	110	10	130	4	160	372	M8	60	14	30	16.3	5
AM80	130	12	165	4.5	200	404	M10	92	19	40	21.8	6
AM90	130	12	165	4.5	200	404	M10	92	24	50	27.3	8
AM100	180	15	215	5	250	438	M12	126	28	60	31.3	8
AM112	180	15	215	5	250	438	M12	126	28	60	31.3	8
AM132S/M	230	16	265	5	300	491	M12	179	38	80	41.3	10
AM132ML	230	16	265	5	300	491	M12	179	38	80	41.3	10



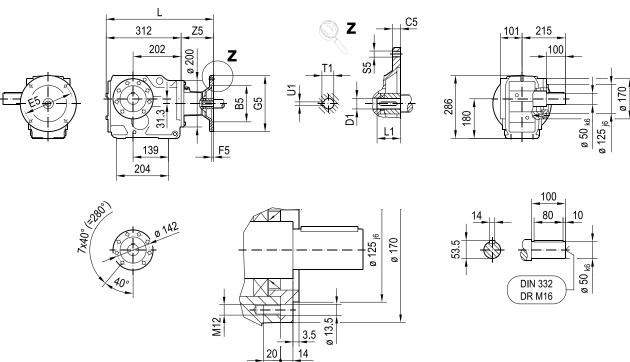
(→ [] 7.2.10)	B5	C5	E5	F5	G5	L	S5	Z 5	D1	L1	T1	U1
AM63	95	10	115	3.5	140	372	M8	60	11	23	12.8	4
AM71	110	10	130	4	160	372	M8	60	14	30	16.3	5
AM80	130	12	165	4.5	200	404	M10	92	19	40	21.8	6
AM90	130	12	165	4.5	200	404	M10	92	24	50	27.3	8
AM100	180	15	215	5	250	438	M12	126	28	60	31.3	8
AM112	180	15	215	5	250	438	M12	126	28	60	31.3	8
AM132S/M	230	16	265	5	300	491	M12	179	38	80	41.3	10
AM132ML	230	16	265	5	300	491	M12	179	38	80	41.3	10

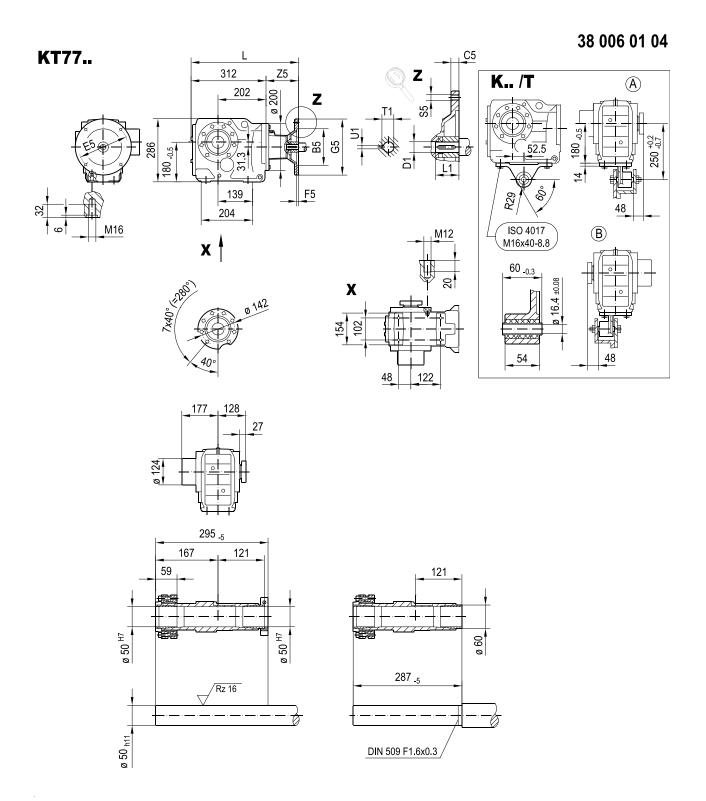
38 019 03 01


KAZ77..

KAZ77..

KHZ77..

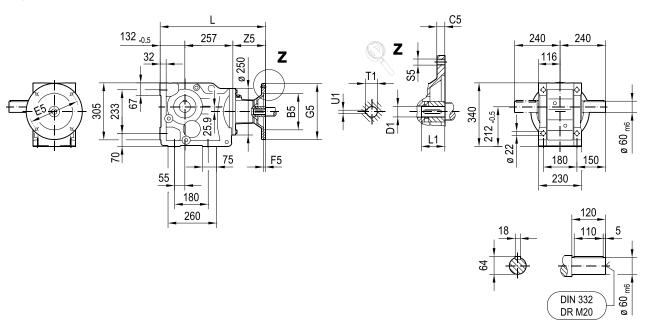

KVZ77..

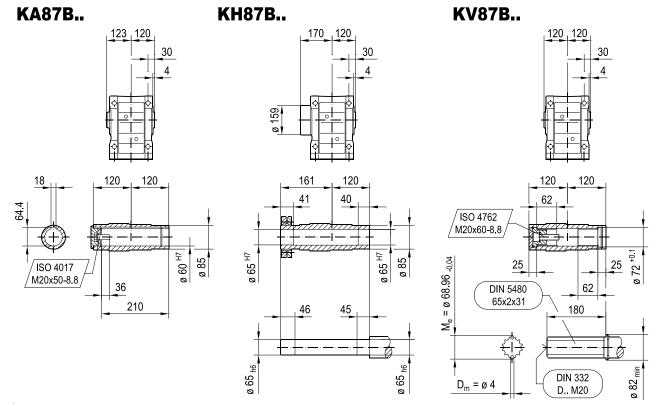

(→ [] 7.2.10)	B5	C5	E5	F5	G5	L	S5	Z 5	D1	L1	T1	U1
AM63	95	10	115	3.5	140	372	M8	60	11	23	12.8	4
AM71	110	10	130	4	160	372	M8	60	14	30	16.3	5
AM80	130	12	165	4.5	200	404	M10	92	19	40	21.8	6
AM90	130	12	165	4.5	200	404	M10	92	24	50	27.3	8
AM100	180	15	215	5	250	438	M12	126	28	60	31.3	8
AM112	180	15	215	5	250	438	M12	126	28	60	31.3	8
AM132S/M	230	16	265	5	300	491	M12	179	38	80	41.3	10
AM132ML	230	16	265	5	300	491	M12	179	38	80	41.3	10
AW132WL	230	16	∠05	5	300	491	IVI12	179	38	80	41.3	10

33 035 00 16

KZ77..

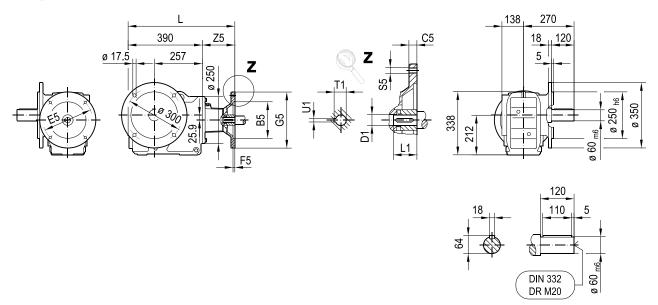
(→ [] 7.2.10)	B5	C5	E5	F5	G5	L	S5	Z5	D1	L1	T1	U1
AM63	95	10	115	3.5	140	372	M8	60	11	23	12.8	4
AM71	110	10	130	4	160	372	M8	60	14	30	16.3	5
AM80	130	12	165	4.5	200	404	M10	92	19	40	21.8	6
AM90	130	12	165	4.5	200	404	M10	92	24	50	27.3	8
AM100	180	15	215	5	250	438	M12	126	28	60	31.3	8
AM112	180	15	215	5	250	438	M12	126	28	60	31.3	8
AM132S/M	230	16	265	5	300	491	M12	179	38	80	41.3	10
AM132ML	230	16	265	5	300	491	M12	179	38	80	41.3	10


03/2020
I N
650/E
9154
c/


(→ [] 7.2.10)	B5	C5	E5	F5	G5	L	S5	Z5	D1	L1	T1	U1
AM63	95	10	115	3.5	140	372	M8	60	11	23	12.8	4
AM71	110	10	130	4	160	372	M8	60	14	30	16.3	5
AM80	130	12	165	4.5	200	404	M10	92	19	40	21.8	6
AM90	130	12	165	4.5	200	404	M10	92	24	50	27.3	8
AM100	180	15	215	5	250	438	M12	126	28	60	31.3	8
AM112	180	15	215	5	250	438	M12	126	28	60	31.3	8
AM132S/M	230	16	265	5	300	491	M12	179	38	80	41.3	10
AM132ML	230	16	265	5	300	491	M12	179	38	80	41.3	10

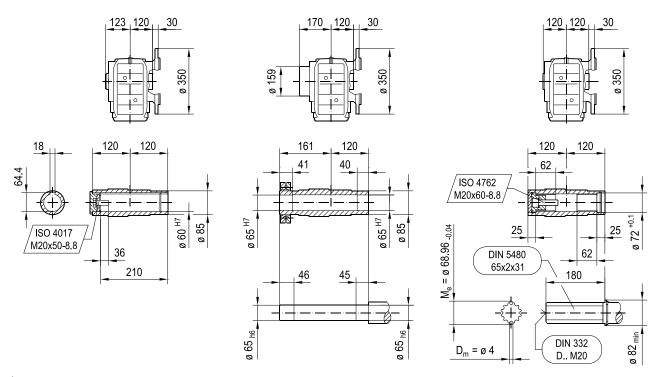
33 020 02 01

K87..



(→ []] 7.2.10)	B5	C5	E5	F5	G5		S5	Z 5	D1	1.1	T1	U1
AM80	130	12	165	4.5	200	476	M10	87	19	40	21.8	6
												-
AM90	130	12	165	4.5	200	476	M10	87	24	50	27.3	8
AM100	180	15	215	5	250	510	M12	121	28	60	31.3	8
AM112	180	15	215	5	250	510	M12	121	28	60	31.3	8
AM132S/M	230	16	265	5	300	563	M12	174	38	80	41.3	10
AM132ML	230	16	265	5	300	563	M12	174	38	80	41.3	10
AM160	250	18	300	6	350	621	M16	232	42	110	45.3	12
AM180	250	18	300	6	350	621	M16	232	48	110	51.8	14

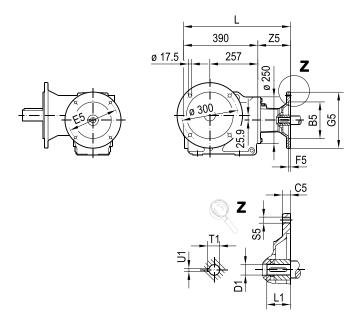
33 021 02 01

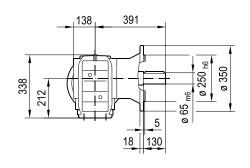

KF87..

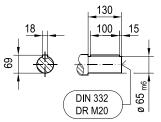
KAF87..

KHF87..

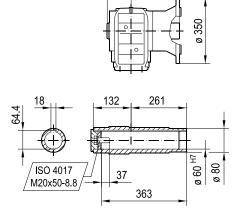
KVF87..

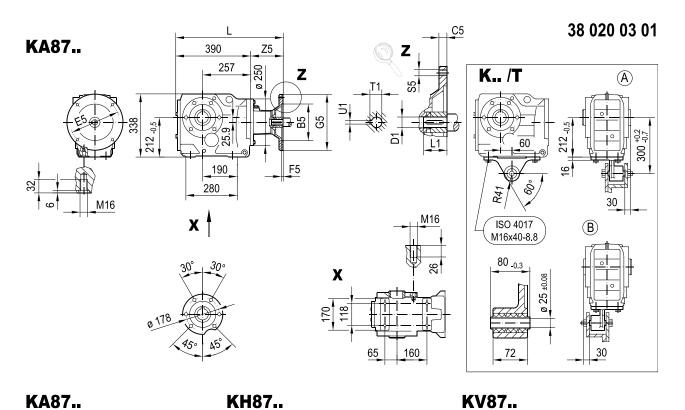



ľ	Ξ)	
Ī	7	ĺ	
C		Ó	
	1	1	
	Ŷ	5	
C		Š	
	i		
	•	_	
	7	~	
ĺ	ī	j	
	Ī	į	
	Ī	ī	
	1	200	
	100		
	200		
L	•	5000	
	•		


						_						
(→ [] 7.2.10)	B5	C5	E5	F5	G5	L	S5	Z 5	D1	L1	T1	U1
AM80	130	12	165	4.5	200	477	M10	87	19	40	21.8	6
AM90	130	12	165	4.5	200	477	M10	87	24	50	27.3	8
AM100	180	15	215	5	250	511	M12	121	28	60	31.3	8
AM112	180	15	215	5	250	511	M12	121	28	60	31.3	8
AM132S/M	230	16	265	5	300	564	M12	174	38	80	41.3	10
AM132ML	230	16	265	5	300	564	M12	174	38	80	41.3	10
AM160	250	18	300	6	350	622	M16	232	42	110	45.3	12
AM180	250	18	300	6	350	622	M16	232	48	110	51.8	14

33 121 00 18

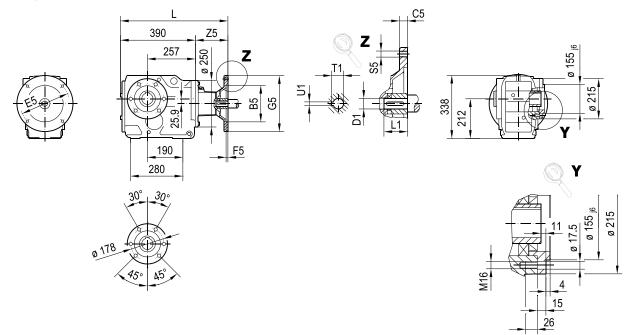

KM87..


KAM87...

134

261

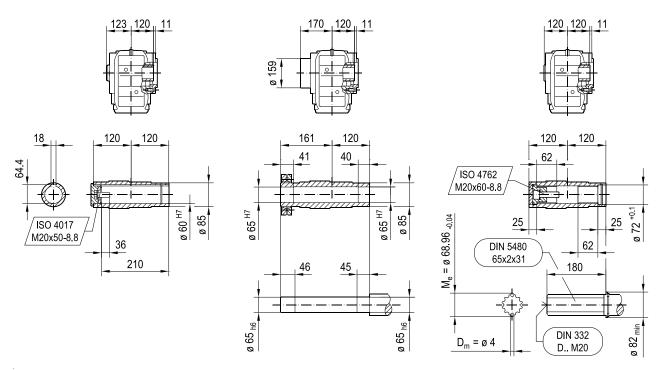
(→ [7.2.10)	B5	C5	E5	F5	G5	L	S5	Z5	D1	L1	T1	U1
AM80	130	12	165	4.5	200	477	M10	87	19	40	21.8	6
AM90	130	12	165	4.5	200	477	M10	87	24	50	27.3	8
AM100	180	15	215	5	250	511	M12	121	28	60	31.3	8
AM112	180	15	215	5	250	511	M12	121	28	60	31.3	8
AM132S/M	230	16	265	5	300	564	M12	174	38	80	41.3	10
AM132ML	230	16	265	5	300	564	M12	174	38	80	41.3	10
AM160	250	18	300	6	350	622	M16	232	42	110	45.3	12
AM180	250	18	300	6	350	622	M16	232	48	110	51.8	14



123 120 120 120 120 161 120 120 120 41 40 62 64.4 /ISO 4762 M20x60-8.8 ø 65 H7 ø 60 ^{H7} ø 65 ^{H7} ø 85 ø 85 $= \emptyset 68.96_{-0.04}$ 25 25 ISO 4017 M20x50-8.8 36 62 DIN 5480 65x2x31 210 46 45 180 ø 65 _{h6} ø 65 _{h6} ø 82 _{min} **DIN 332** $D_m = \emptyset 4$ D.. M20

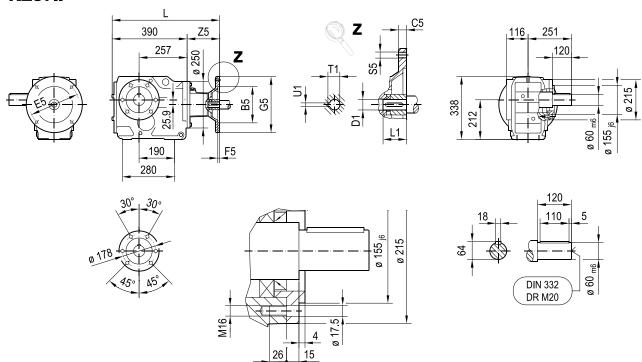
(→ [] 7.2.10)	B5	C5	E5	F5	G5		S5	Z 5	D1	L1	T1	U1
(→ [7.2.10) AM80	130	12	165	4.5	200	477	M10	87	19	40	21.8	6
AM90	130	12	165	4.5	200	477	M10	87	24	50	27.3	8
AM100	180	15	215	5	250	511	M12	121	28	60	31.3	8
AM112	180	15	215	5	250	511	M12	121	28	60	31.3	8
AM132S/M	230	16	265	5	300	564	M12	174	38	80	41.3	10
AM132ML	230	16	265	5	300	564	M12	174	38	80	41.3	10
AM160	250	18	300	6	350	622	M16	232	42	110	45.3	12
AM180	250	18	300	6	350	622	M16	232	48	110	51.8	14

38 021 02 01

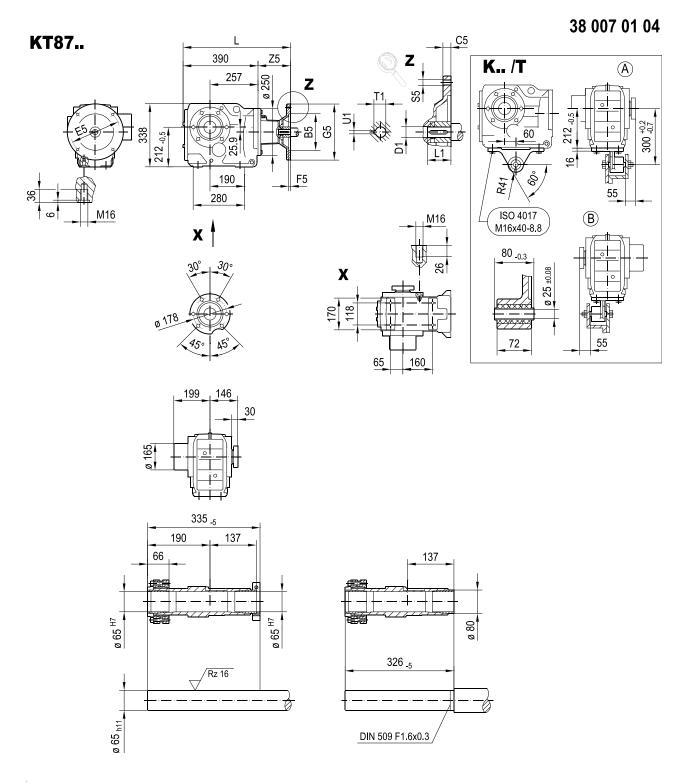

KAZ87..

KAZ87..

KHZ87..

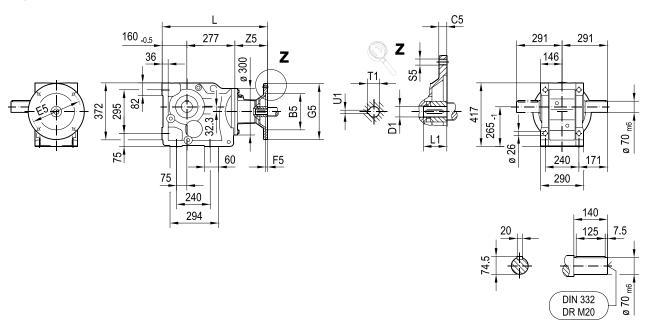

KVZ87..

(→ []] 7.2.10)	B5	C5	E5	F5	G5		S5	Z 5	D1	11	T1	U1
AM80	130	12	165	4.5	200	477	M10	87	19	40	21.8	6
AM90	130	12	165	4.5	200	477	M10	87	24	50	27.3	8
AM100	180	15	215	5	250	511	M12	121	28	60	31.3	8
AM112	180	15	215	5	250	511	M12	121	28	60	31.3	8
AM132S/M	230	16	265	5	300	564	M12	174	38	80	41.3	10
AM132ML	230	16	265	5	300	564	M12	174	38	80	41.3	10
AM160	250	18	300	6	350	622	M16	232	42	110	45.3	12
AM180	250	18	300	6	350	622	M16	232	48	110	51.8	14


33 036 00 16

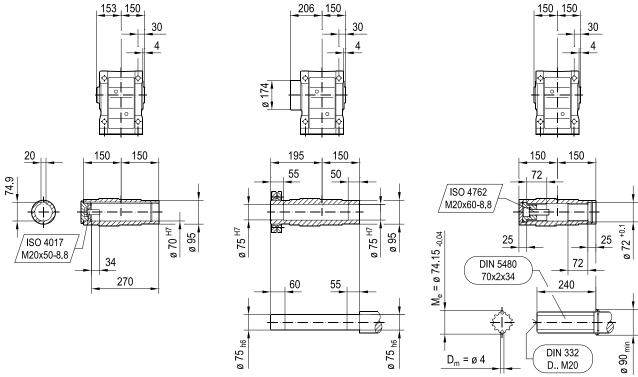
KZ87..

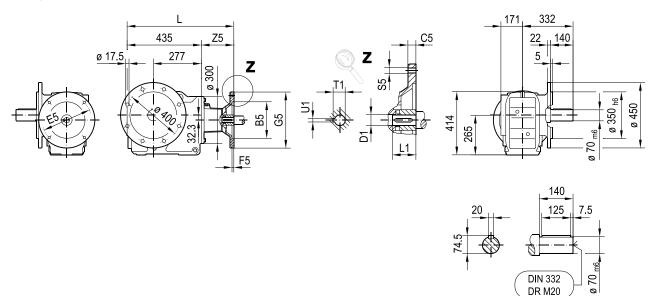
29154650/EN - 03/2020


(→ [7.2.10)	B5	C5	E5	F5	G5	L	S5	Z5	D1	L1	T1	U1
AM80	130	12	165	4.5	200	477	M10	87	19	40	21.8	6
AM90	130	12	165	4.5	200	477	M10	87	24	50	27.3	8
AM100	180	15	215	5	250	511	M12	121	28	60	31.3	8
AM112	180	15	215	5	250	511	M12	121	28	60	31.3	8
AM132S/M	230	16	265	5	300	564	M12	174	38	80	41.3	10
AM132ML	230	16	265	5	300	564	M12	174	38	80	41.3	10
AM160	250	18	300	6	350	622	M16	232	42	110	45.3	12
AM180	250	18	300	6	350	622	M16	232	48	110	51.8	14

(→ [] 7.2.10)	B5	C5	E5	F5	G5	L	S5	Z5	D1	L1	T1	U1
AM80	130	12	165	4.5	200	477	M10	87	19	40	21.8	6
AM90	130	12	165	4.5	200	477	M10	87	24	50	27.3	8
AM100	180	15	215	5	250	511	M12	121	28	60	31.3	8
AM112	180	15	215	5	250	511	M12	121	28	60	31.3	8
AM132S/M	230	16	265	5	300	564	M12	174	38	80	41.3	10
AM132ML	230	16	265	5	300	564	M12	174	38	80	41.3	10
AM160	250	18	300	6	350	622	M16	232	42	110	45.3	12
AM180	250	18	300	6	350	622	M16	232	48	110	51.8	14

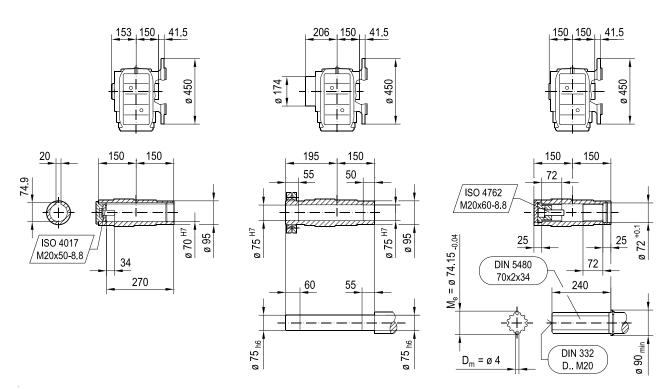
33 022 02 01


K97..


KV97B..

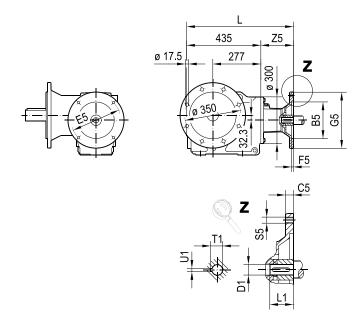
(→ [] 7.2.10)	B5	C5	E5	F5	G5	L	S5	Z5	D1	L1	T1	U1
AM100	180	15	215	5	250	553	M12	116	28	60	31.3	8
AM112	180	15	215	5	250	553	M12	116	28	60	31.3	8
AM132S/M	230	16	265	5	300	606	M12	169	38	80	41.3	10
AM132ML	230	16	265	5	300	606	M12	169	38	80	41.3	10
AM160	250	18	300	6	350	664	M16	227	42	110	45.3	12
AM180	250	18	300	6	350	664	M16	227	48	110	51.8	14
AM200	300	20	350	7	400	705	M16	268	55	110	59.3	16

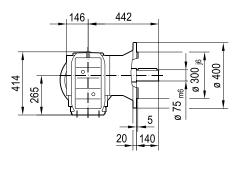
33 023 02 01

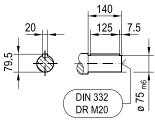

KF97..

KAF97...

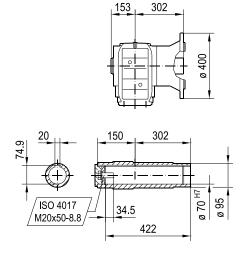
KHF97..

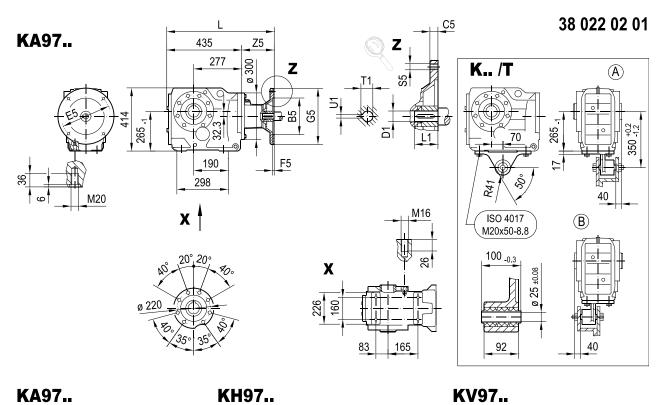

KVF97..

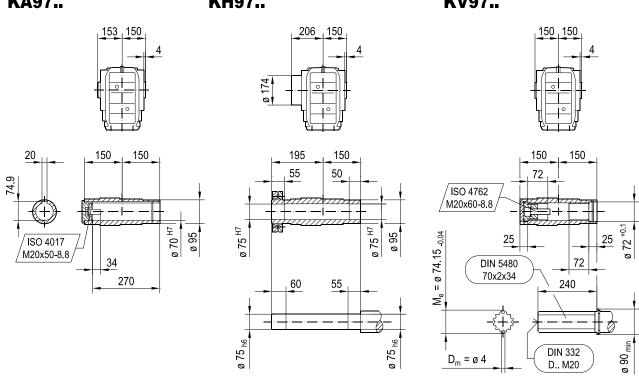



(→ []] 7.2.10)	B5	C5	E5	F5	G5	L	S5	Z 5	D1	L1	T1	U1
AM100	180	15	215	5	250	551	M12	116	28	60	31.3	8
AM112	180	15	215	5	250	551	M12	116	28	60	31.3	8
AM132S/M	230	16	265	5	300	604	M12	169	38	80	41.3	10
AM132ML	230	16	265	5	300	604	M12	169	38	80	41.3	10
AM160	250	18	300	6	350	662	M16	227	42	110	45.3	12
AM180	250	18	300	6	350	662	M16	227	48	110	51.8	14
AM200	300	20	350	7	400	703	M16	268	55	110	59.3	16

33 122 00 18

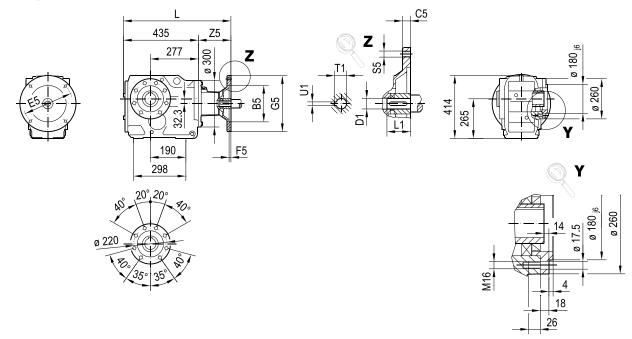

KM97..





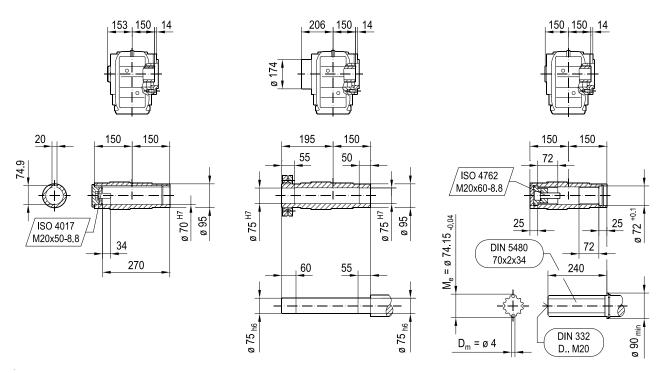
KAM97...

(→ [] 7.2.10)	B5	C5	E5	F5	G5	L	S5	Z5	D1	L1	T1	U1
AM100	180	15	215	5	250	551	M12	116	28	60	31.3	8
AM112	180	15	215	5	250	551	M12	116	28	60	31.3	8
AM132S/M	230	16	265	5	300	604	M12	169	38	80	41.3	10
AM132ML	230	16	265	5	300	604	M12	169	38	80	41.3	10
AM160	250	18	300	6	350	662	M16	227	42	110	45.3	12
AM180	250	18	300	6	350	662	M16	227	48	110	51.8	14
AM200	300	20	350	7	400	703	M16	268	55	110	59.3	16
						•	•	•	-	-	-	



(→ [7.2.10)	B5	C5	E5	F5	G5	L	S5	Z5	D1	L1	T1	U1
AM100	180	15	215	5	250	551	M12	116	28	60	31.3	8
AM112	180	15	215	5	250	551	M12	116	28	60	31.3	8
AM132S/M	230	16	265	5	300	604	M12	169	38	80	41.3	10
AM132ML	230	16	265	5	300	604	M12	169	38	80	41.3	10
AM160	250	18	300	6	350	662	M16	227	42	110	45.3	12
AM180	250	18	300	6	350	662	M16	227	48	110	51.8	14
AM200	300	20	350	7	400	703	M16	268	55	110	59.3	16

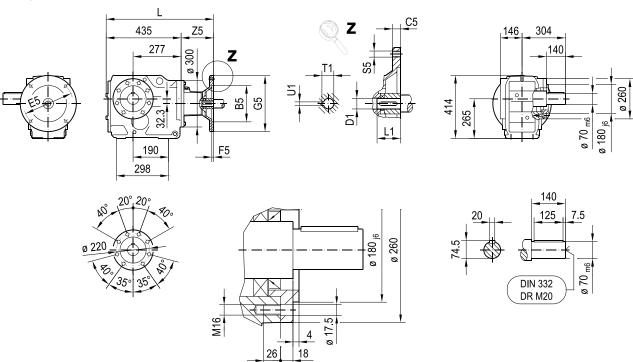
38 023 02 01


KAZ97..

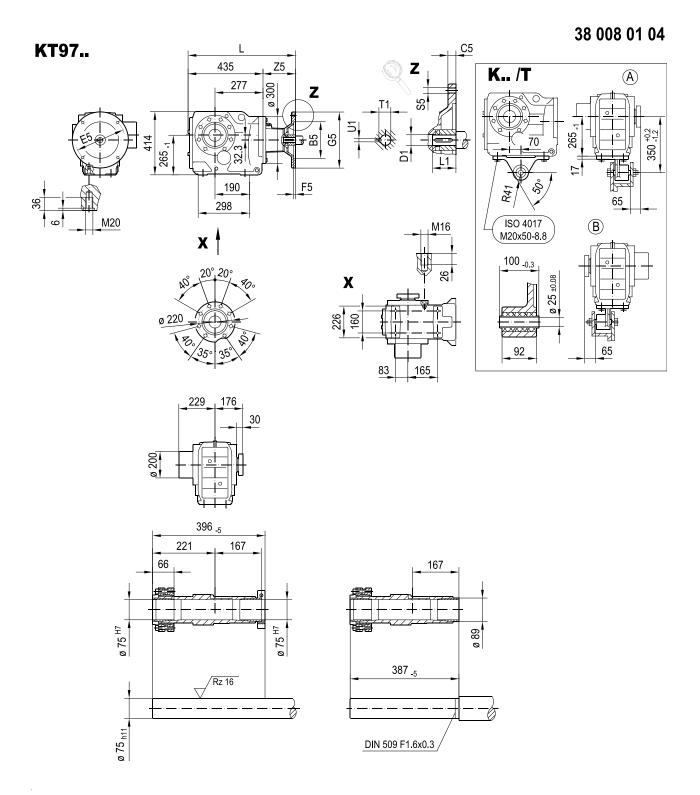
KAZ97..

KHZ97..

KVZ97..



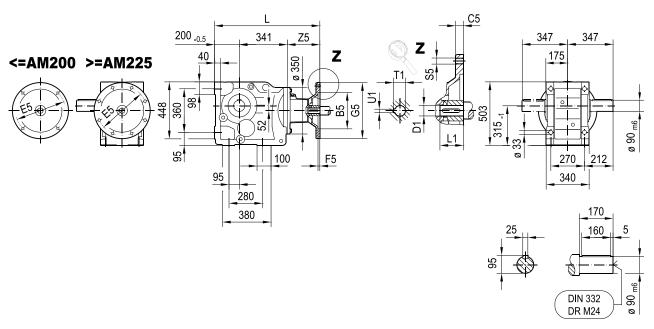
(→ [7.2.10)	B5	C5	E5	F5	G5	L	S5	Z5	D1	L1	T1	U1
AM100	180	15	215	5	250	551	M12	116	28	60	31.3	8
AM112	180	15	215	5	250	551	M12	116	28	60	31.3	8
AM132S/M	230	16	265	5	300	604	M12	169	38	80	41.3	10
AM132ML	230	16	265	5	300	604	M12	169	38	80	41.3	10
AM160	250	18	300	6	350	662	M16	227	42	110	45.3	12
AM180	250	18	300	6	350	662	M16	227	48	110	51.8	14
AM200	300	20	350	7	400	703	M16	268	55	110	59.3	16

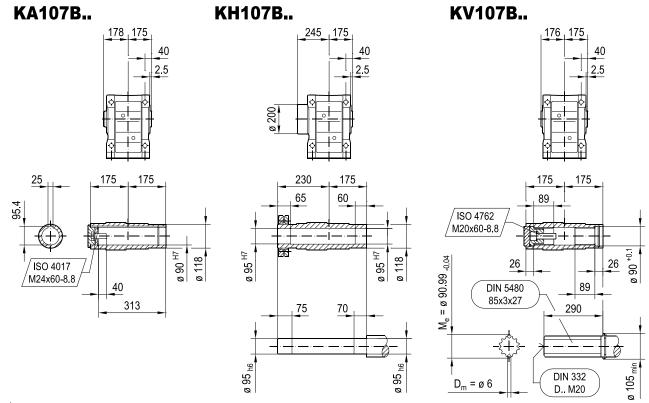


33 037 00 16

KZ97..

(→ []] 7.2.10)	B5	C5	E5	F5	G5	L	S5	Z 5	D1	L1	T1	U1
AM100	180	15	215	5	250	551	M12	116	28	60	31.3	8
AM112	180	15	215	5	250	551	M12	116	28	60	31.3	8
AM132S/M	230	16	265	5	300	604	M12	169	38	80	41.3	10
AM132ML	230	16	265	5	300	604	M12	169	38	80	41.3	10
AM160	250	18	300	6	350	662	M16	227	42	110	45.3	12
AM180	250	18	300	6	350	662	M16	227	48	110	51.8	14
AM200	300	20	350	7	400	703	M16	268	55	110	59.3	16

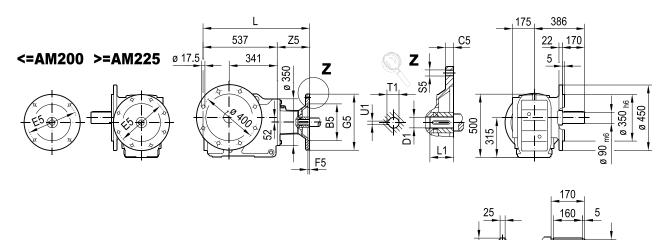



03/2020	
9154650/EN -	

(→ []] 7.2.10)	B5	C5	E5	F5	G5	L	S5	Z 5	D1	L1	T1	U1
AM100	180	15	215	5	250	551	M12	116	28	60	31.3	8
AM112	180	15	215	5	250	551	M12	116	28	60	31.3	8
AM132S/M	230	16	265	5	300	604	M12	169	38	80	41.3	10
AM132ML	230	16	265	5	300	604	M12	169	38	80	41.3	10
AM160	250	18	300	6	350	662	M16	227	42	110	45.3	12
AM180	250	18	300	6	350	662	M16	227	48	110	51.8	14
AM200	300	20	350	7	400	703	M16	268	55	110	59.3	16

33 024 02 01

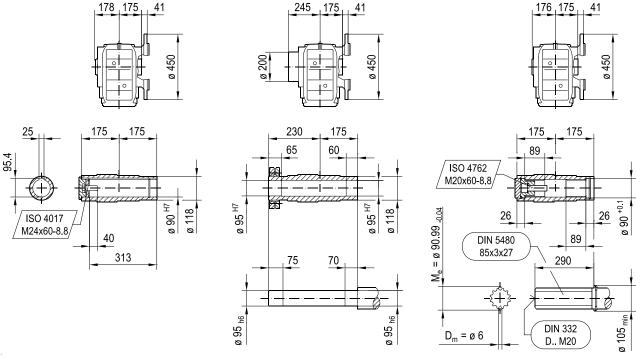
K107...


(→ []] 7.2.10)	B5	C5	E5	F5	G5	L	S5	Z 5	D1	L1	T1	U1
AM100	180	15	215	5	250	651	M12	110	28	60	31.3	8
AM112	180	15	215	5	250	651	M12	110	28	60	31.3	8
AM132S/M	230	16	265	5	300	704	M12	163	38	80	41.3	10
AM132ML	230	16	265	5	300	704	M12	163	38	80	41.3	10
AM160	250	18	300	6	350	762	M16	221	42	110	45.3	12
AM180	250	18	300	6	350	762	M16	221	48	110	51.8	14
AM200	300	20	350	7	400	803	M16	262	55	110	59.3	16
AM225	350	22	400	7	450	818	M16	277	60	140	64.4	18

33 025 02 01

ø 90 ^{ше}

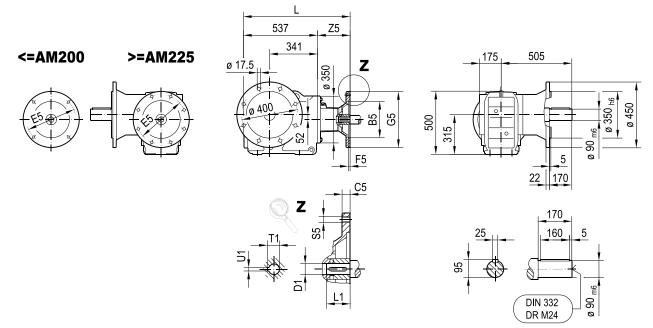
DIN 332 DR M24


KF107...

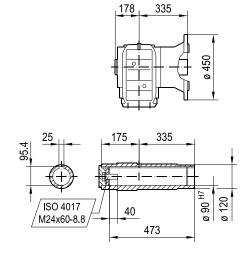
KAF107...

KHF107..

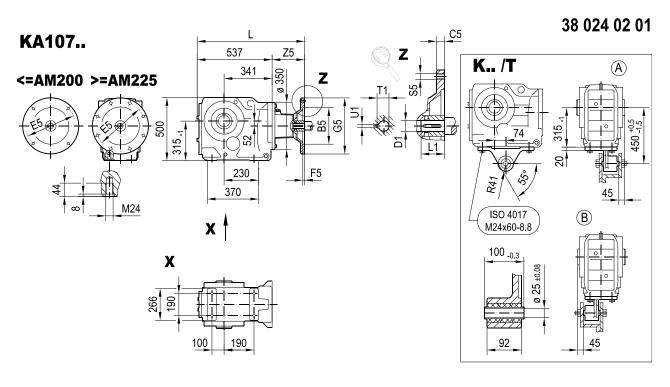
KVF107..


\lesssim	
\sim	
$\overline{}$	
\sim	
03	
õ	
I	
Z,	
ш	
₹	
₹	
₹	
₹	
₹	
4650/E	

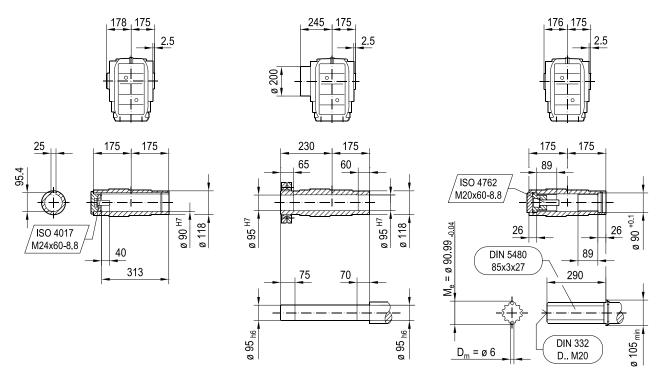
(→ [7.2.10)	B5	C5	E5	F5	G5	L	S5	Z5	D1	L1	T1	U1
AM100	180	15	215	5	250	647	M12	110	28	60	31.3	8
AM112	180	15	215	5	250	647	M12	110	28	60	31.3	8
AM132S/M	230	16	265	5	300	700	M12	163	38	80	41.3	10
AM132ML	230	16	265	5	300	700	M12	163	38	80	41.3	10
AM160	250	18	300	6	350	758	M16	221	42	110	45.3	12
AM180	250	18	300	6	350	758	M16	221	48	110	51.8	14
AM200	300	20	350	7	400	799	M16	262	55	110	59.3	16
AM225	350	22	400	7	450	814	M16	277	60	140	64.4	18



33 123 00 18

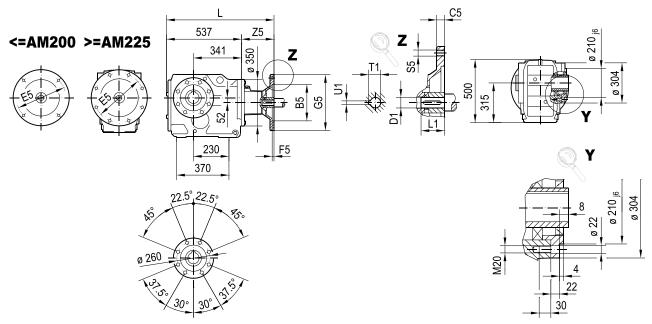

KM107..

KAM107...


(→ [7.2.10)	B5	C5	E5	F5	G5	L	S5	Z5	D1	L1	T1	U1
AM100	180	15	215	5	250	647	M12	110	28	60	31.3	8
AM112	180	15	215	5	250	647	M12	110	28	60	31.3	8
AM132S/M	230	16	265	5	300	700	M12	163	38	80	41.3	10
AM132ML	230	16	265	5	300	700	M12	163	38	80	41.3	10
AM160	250	18	300	6	350	758	M16	221	42	110	45.3	12
AM180	250	18	300	6	350	758	M16	221	48	110	51.8	14
AM200	300	20	350	7	400	799	M16	262	55	110	59.3	16
AM225	350	22	400	7	450	814	M16	277	60	140	64.4	18

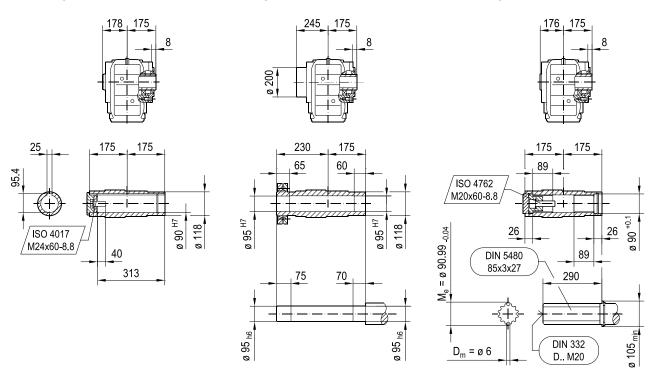
KH107...

KV107...


2020
- 03/
0/EN
5465(
291

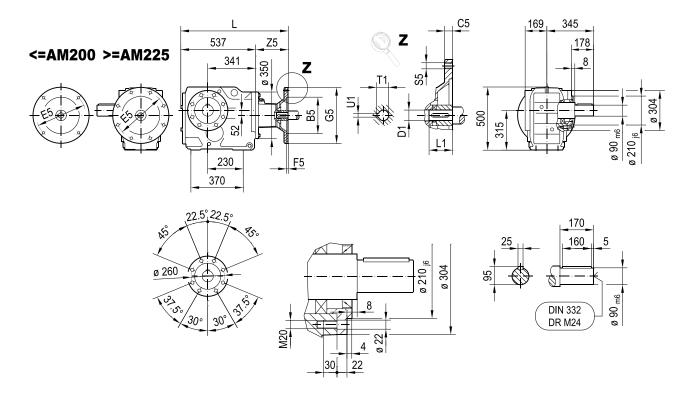
(→ [7.2.10)	B5	C5	E5	F5	G5	L	S5	Z5	D1	L1	T1	U1
AM100	180	15	215	5	250	647	M12	110	28	60	31.3	8
AM112	180	15	215	5	250	647	M12	110	28	60	31.3	8
AM132S/M	230	16	265	5	300	700	M12	163	38	80	41.3	10
AM132ML	230	16	265	5	300	700	M12	163	38	80	41.3	10
AM160	250	18	300	6	350	758	M16	221	42	110	45.3	12
AM180	250	18	300	6	350	758	M16	221	48	110	51.8	14
AM200	300	20	350	7	400	799	M16	262	55	110	59.3	16
AM225	350	22	400	7	450	814	M16	277	60	140	64.4	18

38 025 02 01

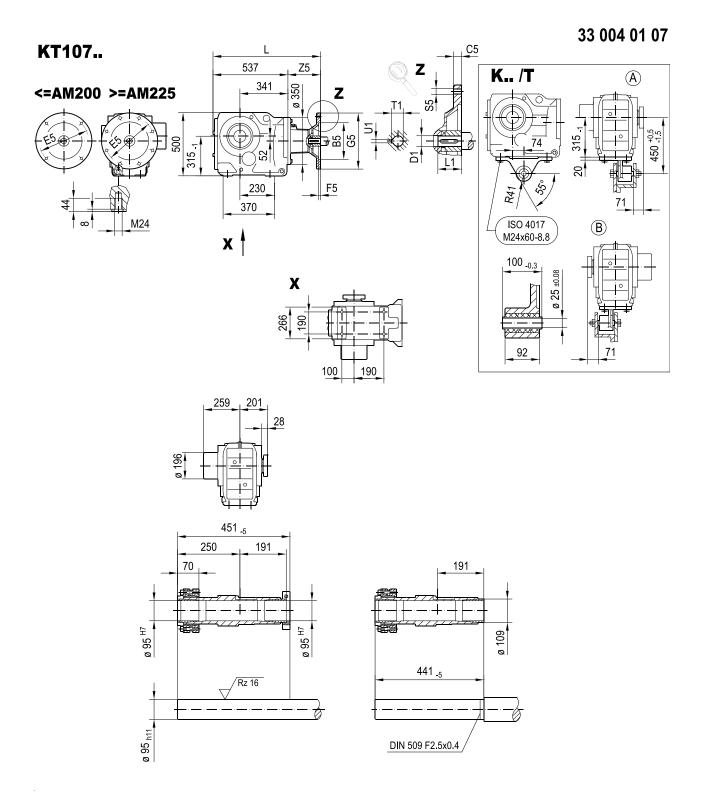

KAZ107...

KAZ107...

KHZ107..


KVZ107...

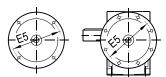
(→ []] 7.2.10)	B5	C5	E5	F5	G5		S5	Z 5	D1	11	T1	U1
AM100	180	15	215	5	250	647	M12	110	28	60	31.3	8
AM112	180	15	215	5	250	647	M12	110	28	60	31.3	8
AM132S/M	230	16	265	5	300	700	M12	163	38	80	41.3	10
AM132ML	230	16	265	5	300	700	M12	163	38	80	41.3	10
AM160	250	18	300	6	350	758	M16	221	42	110	45.3	12
AM180	250	18	300	6	350	758	M16	221	48	110	51.8	14
AM200	300	20	350	7	400	799	M16	262	55	110	59.3	16
AM225	350	22	400	7	450	814	M16	277	60	140	64.4	18

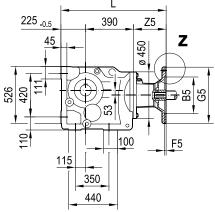

KZ107..

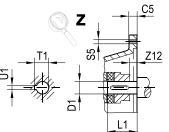
33 038 00 16

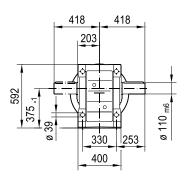
Ñ
0
S
ത്
0
1
7
ĒΠ
õ
2
9
4
Ω
$\overline{}$
ന

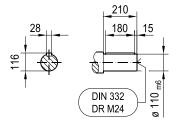
(→ [] 7.2.10)	B5	C5	E5	F5	G5	L	S5	Z5	D1	L1	T1	U1
AM100	180	15	215	5	250	647	M12	110	28	60	31.3	8
AM112	180	15	215	5	250	647	M12	110	28	60	31.3	8
AM132S/M	230	16	265	5	300	700	M12	163	38	80	41.3	10
AM132ML	230	16	265	5	300	700	M12	163	38	80	41.3	10
AM160	250	18	300	6	350	758	M16	221	42	110	45.3	12
AM180	250	18	300	6	350	758	M16	221	48	110	51.8	14
AM200	300	20	350	7	400	799	M16	262	55	110	59.3	16
AM225	350	22	400	7	450	814	M16	277	60	140	64.4	18

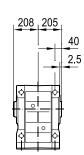

(→ [] 7.2.10)	B5	C5	E5	F5	G5	L	S5	Z5	D1	L1	T1	U1
AM100	180	15	215	5	250	647	M12	110	28	60	31.3	8
AM112	180	15	215	5	250	647	M12	110	28	60	31.3	8
AM132S/M	230	16	265	5	300	700	M12	163	38	80	41.3	10
AM132ML	230	16	265	5	300	700	M12	163	38	80	41.3	10
AM160	250	18	300	6	350	758	M16	221	42	110	45.3	12
AM180	250	18	300	6	350	758	M16	221	48	110	51.8	14
AM200	300	20	350	7	400	799	M16	262	55	110	59.3	16
AM225	350	22	400	7	450	814	M16	277	60	140	64.4	18

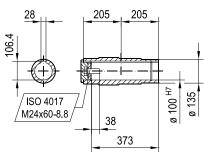

33 026 02 01

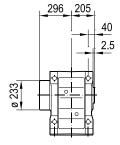

K127..

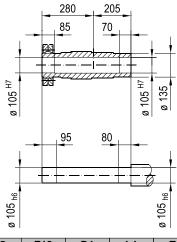


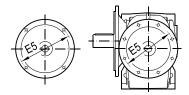

>=AM225

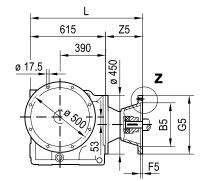


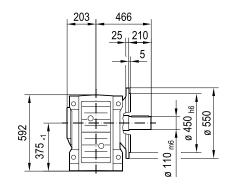


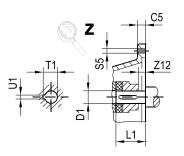


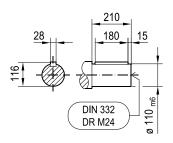

KA127B...

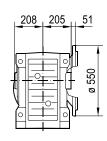

B5	C5	E5	F5	G5	L	S5	Z 5	Z12	D1	L1	T1	U1
230	16	265	5	300	763	M12	148	0	38	80	41.3	10
230	16	265	5	300	763	M12	148	0	38	80	41.3	10
250	18	300	6	350	821	M16	206	0	42	110	45.3	12
250	18	300	6	350	821	M16	206	0	48	110	51.8	14
300	20	350	7	400	862	M16	247	0	55	110	59.3	16
350	22	400	7	450	877	M16	262	0	60	140	64.4	18
450	25	500	7	550	951	M16	336	19	65	140	69.4	18
450	25	500	7	550	951	M16	336	19	75	140	79.9	20
	230 230 250 250 300 350 450	230 16 230 16 230 16 250 18 250 18 300 20 350 22 450 25	230 16 265 230 16 265 230 16 265 250 18 300 250 18 300 300 20 350 350 22 400 450 25 500	230 16 265 5 230 16 265 5 250 18 300 6 250 18 300 6 300 20 350 7 350 22 400 7 450 25 500 7	230 16 265 5 300 230 16 265 5 300 250 18 300 6 350 250 18 300 6 350 300 20 350 7 400 350 22 400 7 450 450 25 500 7 550	230 16 265 5 300 763 230 16 265 5 300 763 250 18 300 6 350 821 250 18 300 6 350 821 300 20 350 7 400 862 350 22 400 7 450 877 450 25 500 7 550 951	230 16 265 5 300 763 M12 230 16 265 5 300 763 M12 250 18 300 6 350 821 M16 250 18 300 6 350 821 M16 300 20 350 7 400 862 M16 350 22 400 7 450 877 M16 450 25 500 7 550 951 M16	230 16 265 5 300 763 M12 148 230 16 265 5 300 763 M12 148 250 18 300 6 350 821 M16 206 250 18 300 6 350 821 M16 206 300 20 350 7 400 862 M16 247 350 22 400 7 450 877 M16 262 450 25 500 7 550 951 M16 336	230 16 265 5 300 763 M12 148 0 230 16 265 5 300 763 M12 148 0 250 18 300 6 350 821 M16 206 0 250 18 300 6 350 821 M16 206 0 300 20 350 7 400 862 M16 247 0 350 22 400 7 450 877 M16 262 0 450 25 500 7 550 951 M16 336 19	230 16 265 5 300 763 M12 148 0 38 230 16 265 5 300 763 M12 148 0 38 250 18 300 6 350 821 M16 206 0 42 250 18 300 6 350 821 M16 206 0 48 300 20 350 7 400 862 M16 247 0 55 350 22 400 7 450 877 M16 262 0 60 450 25 500 7 550 951 M16 336 19 65	230 16 265 5 300 763 M12 148 0 38 80 230 16 265 5 300 763 M12 148 0 38 80 250 18 300 6 350 821 M16 206 0 42 110 250 18 300 6 350 821 M16 206 0 48 110 300 20 350 7 400 862 M16 247 0 55 110 350 22 400 7 450 877 M16 262 0 60 140 450 25 500 7 550 951 M16 336 19 65 140	230 16 265 5 300 763 M12 148 0 38 80 41.3 230 16 265 5 300 763 M12 148 0 38 80 41.3 250 18 300 6 350 821 M16 206 0 42 110 45.3 250 18 300 6 350 821 M16 206 0 48 110 51.8 300 20 350 7 400 862 M16 247 0 55 110 59.3 350 22 400 7 450 877 M16 262 0 60 140 64.4 450 25 500 7 550 951 M16 336 19 65 140 69.4

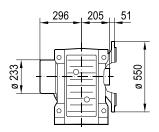

33 027 01 01

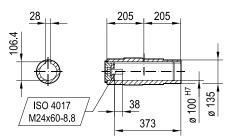

KF127..

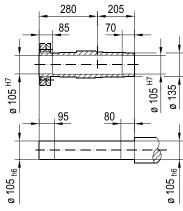

<=AM200

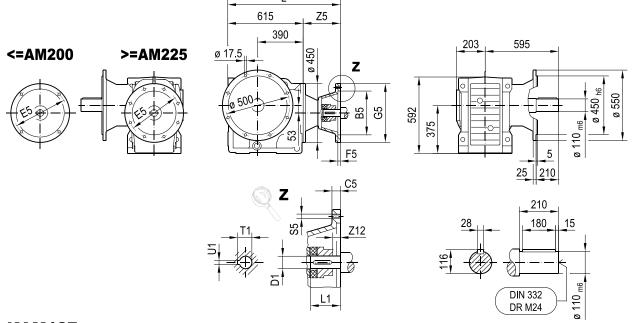

>=AM225

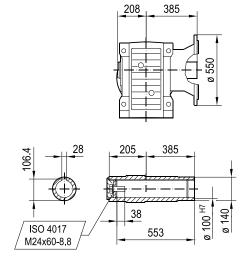




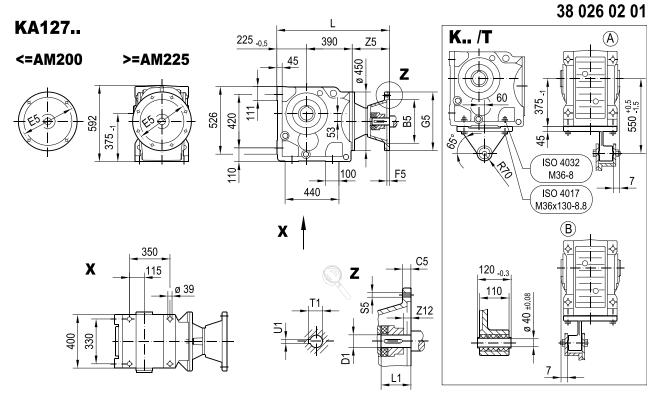


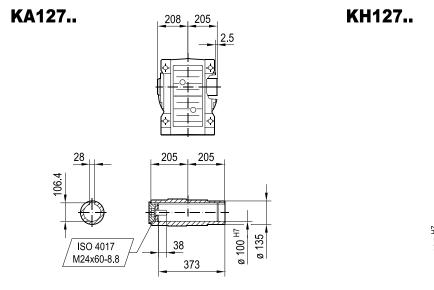

KAF127..

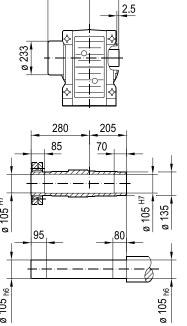



(→ [] 7.2.10)	B5	C5	E5	F5	G5	L	S5	Z 5	Z12	D1	L1	T1	U1
AM132S/M	230	16	265	5	300	763	M12	148	0	38	80	41.3	10
AM132ML	230	16	265	5	300	763	M12	148	0	38	80	41.3	10
AM160	250	18	300	6	350	821	M16	206	0	42	110	45.3	12
AM180	250	18	300	6	350	821	M16	206	0	48	110	51.8	14
AM200	300	20	350	7	400	862	M16	247	0	55	110	59.3	16
AM225	350	22	400	7	450	877	M16	262	0	60	140	64.4	18
AM250	450	25	500	7	550	951	M16	336	19	65	140	69.4	18
AM280	450	25	500	7	550	951	M16	336	19	75	140	79.9	20

33 124 00 18


KM127..

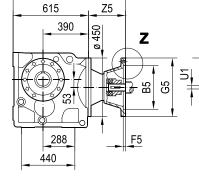


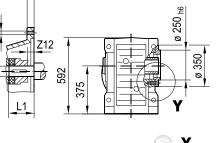

KAM127..

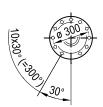
(→ [7.2.10)	B5	C5	E5	F5	G5	L	S5	Z 5	Z12	D1	L1	T1	U1
AM132S/M	230	16	265	5	300	763	M12	148	0	38	80	41.3	10
AM132ML	230	16	265	5	300	763	M12	148	0	38	80	41.3	10
AM160	250	18	300	6	350	821	M16	206	0	42	110	45.3	12
AM180	250	18	300	6	350	821	M16	206	0	48	110	51.8	14
AM200	300	20	350	7	400	862	M16	247	0	55	110	59.3	16
AM225	350	22	400	7	450	877	M16	262	0	60	140	64.4	18
AM250	450	25	500	7	550	951	M16	336	19	65	140	69.4	18
AM280	450	25	500	7	550	951	M16	336	19	75	140	79.9	20

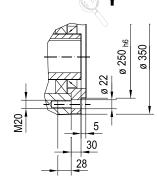
296

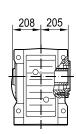
(→ [] 7.2.10)	B5	C5	E5	F5	G5	L	S5	Z 5	Z12	D1	L1	T1	U1
AM132S/M	230	16	265	5	300	763	M12	148	0	38	80	41.3	10
AM132ML	230	16	265	5	300	763	M12	148	0	38	80	41.3	10
AM160	250	18	300	6	350	821	M16	206	0	42	110	45.3	12
AM180	250	18	300	6	350	821	M16	206	0	48	110	51.8	14
AM200	300	20	350	7	400	862	M16	247	0	55	110	59.3	16
AM225	350	22	400	7	450	877	M16	262	0	60	140	64.4	18
AM250	450	25	500	7	550	951	M16	336	19	65	140	69.4	18
AM280	450	25	500	7	550	951	M16	336	19	75	140	79.9	20

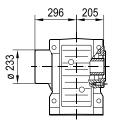

38 027 01 01

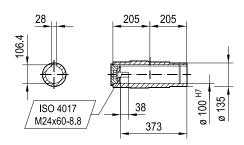

<=AM200 >=AM225

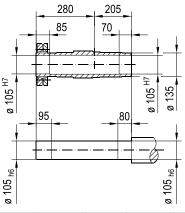


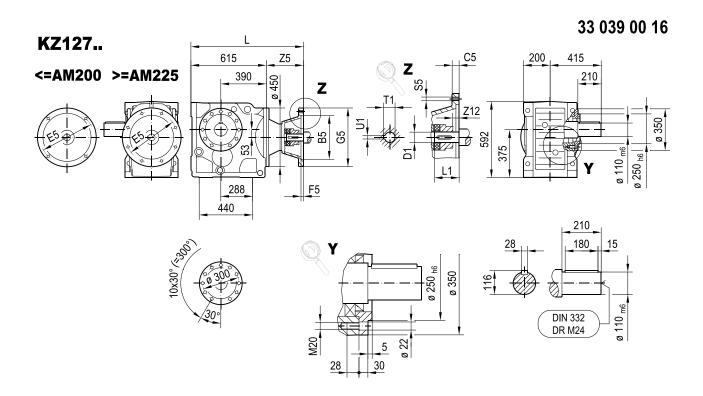

KAZ127..

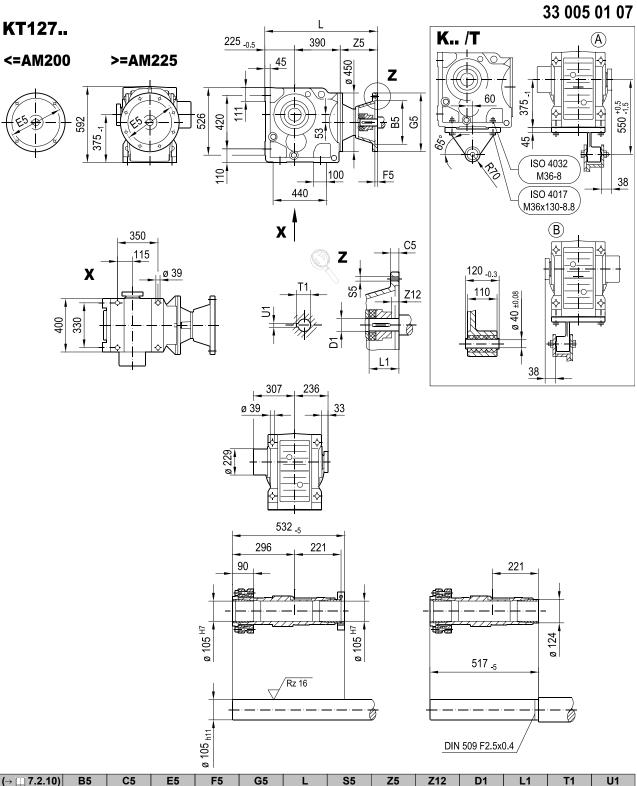





KAZ127..

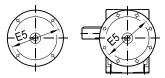


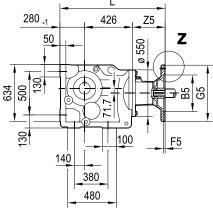

Z

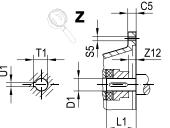


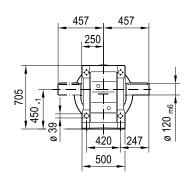
(→ [] 7.2.10)	B5	C5	E5	F5	G5	L	S5	Z 5	Z12	D1	L1	T1	U1
AM132S/M	230	16	265	5	300	763	M12	148	0	38	80	41.3	10
AM132ML	230	16	265	5	300	763	M12	148	0	38	80	41.3	10
AM160	250	18	300	6	350	821	M16	206	0	42	110	45.3	12
AM180	250	18	300	6	350	821	M16	206	0	48	110	51.8	14
AM200	300	20	350	7	400	862	M16	247	0	55	110	59.3	16
AM225	350	22	400	7	450	877	M16	262	0	60	140	64.4	18
AM250	450	25	500	7	550	951	M16	336	19	65	140	69.4	18
AM280	450	25	500	7	550	951	M16	336	19	75	140	79.9	20

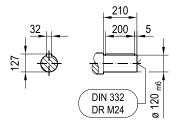
(→ [] 7.2.10)	B5	C5	E5	F5	G5	L	S5	Z5	Z12	D1	L1	T1	U1
AM132S/M	230	16	265	5	300	763	M12	148	0	38	80	41.3	10
AM132ML	230	16	265	5	300	763	M12	148	0	38	80	41.3	10
AM160	250	18	300	6	350	821	M16	206	0	42	110	45.3	12
AM180	250	18	300	6	350	821	M16	206	0	48	110	51.8	14
AM200	300	20	350	7	400	862	M16	247	0	55	110	59.3	16
AM225	350	22	400	7	450	877	M16	262	0	60	140	64.4	18
AM250	450	25	500	7	550	951	M16	336	19	65	140	69.4	18
AM280	450	25	500	7	550	951	M16	336	19	75	140	79.9	20

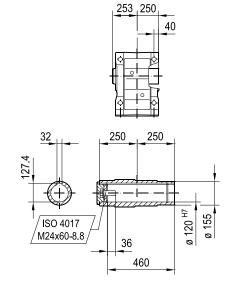

(→ [7.2.10)	B5	C5	E5	F5	G5	L	S5	Z 5	Z12	D1	L1	T1	U1
AM132S/M	230	16	265	5	300	763	M12	148	0	38	80	41.3	10
AM132ML	230	16	265	5	300	763	M12	148	0	38	80	41.3	10
AM160	250	18	300	6	350	821	M16	206	0	42	110	45.3	12
AM180	250	18	300	6	350	821	M16	206	0	48	110	51.8	14
AM200	300	20	350	7	400	862	M16	247	0	55	110	59.3	16
AM225	350	22	400	7	450	877	M16	262	0	60	140	64.4	18
AM250	450	25	500	7	550	951	M16	336	19	65	140	69.4	18
AM280	450	25	500	7	550	951	M16	336	19	75	140	79.9	20

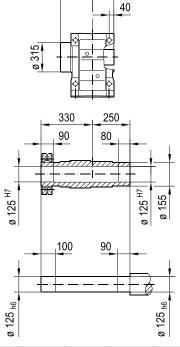

33 028 02 01


K157..



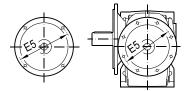

>=AM225

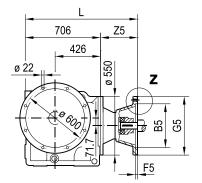


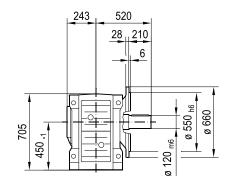


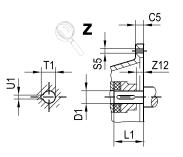
KA157B...

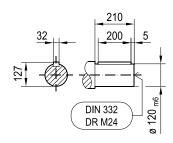
KH157B..

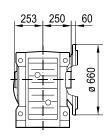

(→ [7.2.10)	B5	C5	E5	F5	G5	L	S5	Z 5	Z12	D1	L1	T1	U1
AM160	250	18	300	6	350	904	M16	198	0	42	110	45.3	12
AM180	250	18	300	6	350	904	M16	198	0	48	110	51.8	14
AM200	300	20	350	7	400	945	M16	239	0	55	110	59.3	16
AM225	350	22	400	7	450	960	M16	254	0	60	140	64.4	18
AM250	450	25	500	7	550	1034	M16	328	19	65	140	69.4	18
AM280	450	25	500	7	550	1034	M16	328	19	75	140	79.9	20

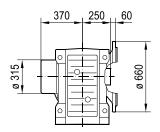

33 029 01 01

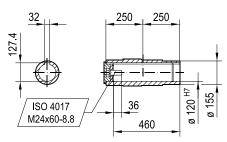

KF157...

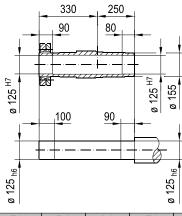

<=AM200

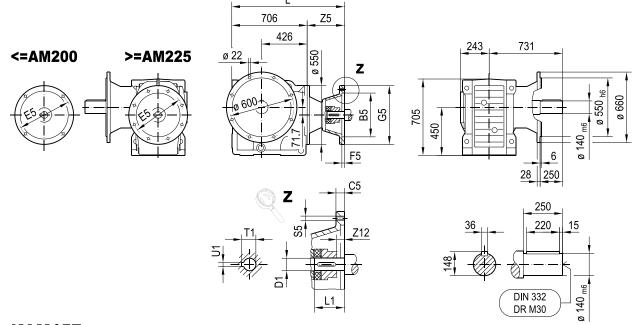

>=AM225

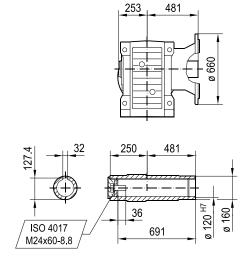




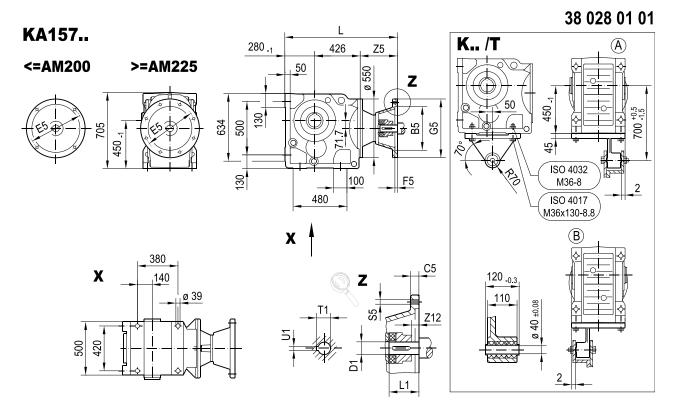


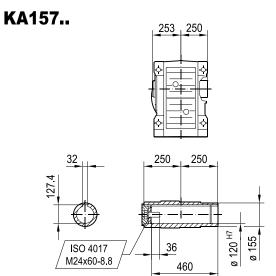

KAF157...

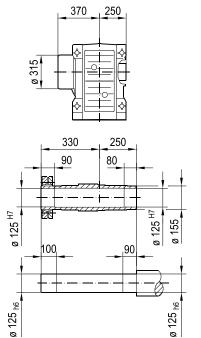



B5	C5	E5	F5	G5	L	S5	Z 5	Z12	D1	L1	T1	U1
250	18	300	6	350	904	M16	198	0	42	110	45.3	12
250	18	300	6	350	904	M16	198	0	48	110	51.8	14
300	20	350	7	400	945	M16	239	0	55	110	59.3	16
350	22	400	7	450	960	M16	254	0	60	140	64.4	18
450	25	500	7	550	1034	M16	328	19	65	140	69.4	18
450	25	500	7	550	1034	M16	328	19	75	140	79.9	20
	250 250 300 350 450	250 18 250 18 300 20 350 22 450 25	250 18 300 250 18 300 300 20 350 350 22 400 450 25 500	250 18 300 6 250 18 300 6 300 20 350 7 350 22 400 7 450 25 500 7	250 18 300 6 350 250 18 300 6 350 300 20 350 7 400 350 22 400 7 450 450 25 500 7 550	250 18 300 6 350 904 250 18 300 6 350 904 300 20 350 7 400 945 350 22 400 7 450 960 450 25 500 7 550 1034	250 18 300 6 350 904 M16 250 18 300 6 350 904 M16 300 20 350 7 400 945 M16 350 22 400 7 450 960 M16 450 25 500 7 550 1034 M16	250 18 300 6 350 904 M16 198 250 18 300 6 350 904 M16 198 300 20 350 7 400 945 M16 239 350 22 400 7 450 960 M16 254 450 25 500 7 550 1034 M16 328	250 18 300 6 350 904 M16 198 0 250 18 300 6 350 904 M16 198 0 300 20 350 7 400 945 M16 239 0 350 22 400 7 450 960 M16 254 0 450 25 500 7 550 1034 M16 328 19	250 18 300 6 350 904 M16 198 0 42 250 18 300 6 350 904 M16 198 0 48 300 20 350 7 400 945 M16 239 0 55 350 22 400 7 450 960 M16 254 0 60 450 25 500 7 550 1034 M16 328 19 65	250 18 300 6 350 904 M16 198 0 42 110 250 18 300 6 350 904 M16 198 0 48 110 300 20 350 7 400 945 M16 239 0 55 110 350 22 400 7 450 960 M16 254 0 60 140 450 25 500 7 550 1034 M16 328 19 65 140	250 18 300 6 350 904 M16 198 0 42 110 45.3 250 18 300 6 350 904 M16 198 0 48 110 51.8 300 20 350 7 400 945 M16 239 0 55 110 59.3 350 22 400 7 450 960 M16 254 0 60 140 64.4 450 25 500 7 550 1034 M16 328 19 65 140 69.4

33 125 00 18


KM157...

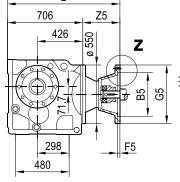

KAM157...

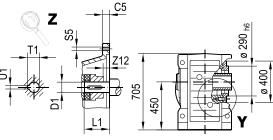


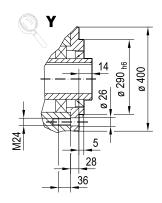
(→ [] 7.2.10)	B5	C5	E5	F5	G5	L	S5	Z 5	Z12	D1	L1	T1	U1
AM160	250	18	300	6	350	904	M16	198	0	42	110	45.3	12
AM180	250	18	300	6	350	904	M16	198	0	48	110	51.8	14
AM200	300	20	350	7	400	945	M16	239	0	55	110	59.3	16
AM225	350	22	400	7	450	960	M16	254	0	60	140	64.4	18
AM250	450	25	500	7	550	1034	M16	328	19	65	140	69.4	18
AM280	450	25	500	7	550	1034	M16	328	19	75	140	79.9	20

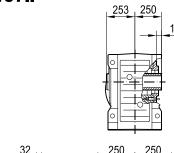
KH157...

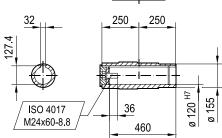
(→ [7.2.10)	B5	C5	E5	F5	G5	L	S5	Z5	Z12	D1	L1	T1	U1
AM160	250	18	300	6	350	904	M16	198	0	42	110	45.3	12
AM180	250	18	300	6	350	904	M16	198	0	48	110	51.8	14
AM200	300	20	350	7	400	945	M16	239	0	55	110	59.3	16
AM225	350	22	400	7	450	960	M16	254	0	60	140	64.4	18
AM250	450	25	500	7	550	1034	M16	328	19	65	140	69.4	18
AM280	450	25	500	7	550	1034	M16	328	19	75	140	79.9	20

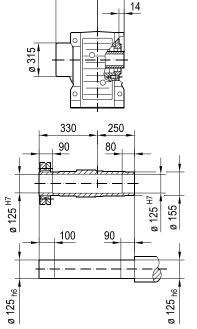

38 029 02 01


<=AM200 >=AM225

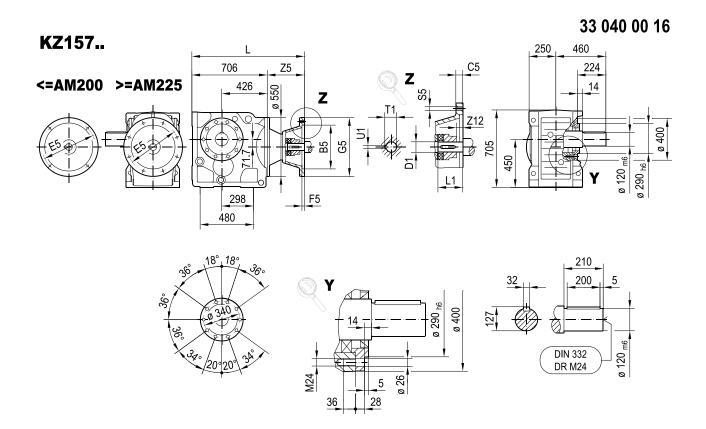

KAZ157...

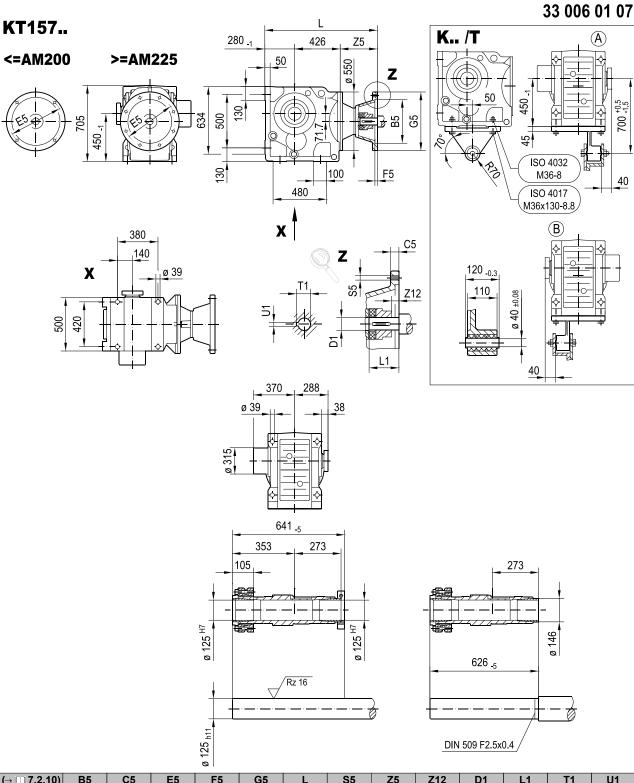




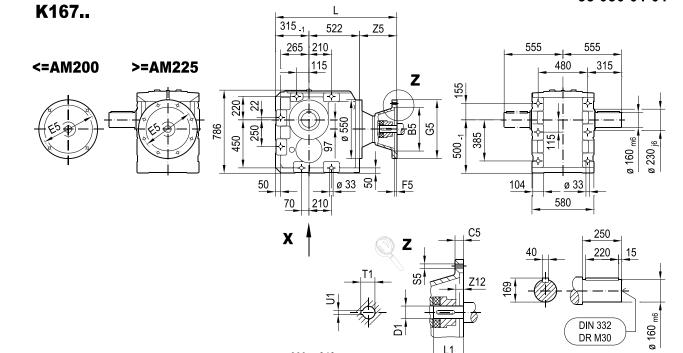


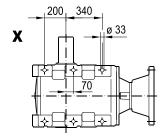
KAZ157..

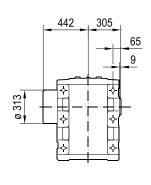


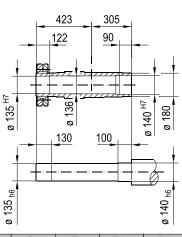

KHZ157..

(→ []] 7.2.10)	B5	C5	E5	F5	G5		S5	Z 5	Z12	D1	1.4	T4	U1
(→ 🔔 7.2.10)	DO	Co	ES	ГЭ	Go	L	33	25	Z 1 Z	וט	LI	- 11	UI
AM160	250	18	300	6	350	904	M16	198	0	42	110	45.3	12
AM180	250	18	300	6	350	904	M16	198	0	48	110	51.8	14
AM200	300	20	350	7	400	945	M16	239	0	55	110	59.3	16
AM225	350	22	400	7	450	960	M16	254	0	60	140	64.4	18
AM250	450	25	500	7	550	1034	M16	328	19	65	140	69.4	18
AM280	450	25	500	7	550	1034	M16	328	19	75	140	79.9	20




(→ [] 7.2.10)	B5	C5	E5	F5	G5	L	S5	Z 5	Z12	D1	L1	T1	U1
AM160	250	18	300	6	350	904	M16	198	0	42	110	45.3	12
AM180	250	18	300	6	350	904	M16	198	0	48	110	51.8	14
AM200	300	20	350	7	400	945	M16	239	0	55	110	59.3	16
AM225	350	22	400	7	450	960	M16	254	0	60	140	64.4	18
AM250	450	25	500	7	550	1034	M16	328	19	65	140	69.4	18
AM280	450	25	500	7	550	1034	M16	328	19	75	140	79.9	20

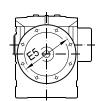

(→ [] 7.2.10)	B5	C5	E5	F5	G5	L	S5	Z 5	Z12	D1	L1	T1	U1
AM160	250	18	300	6	350	904	M16	198	0	42	110	45.3	12
AM180	250	18	300	6	350	904	M16	198	0	48	110	51.8	14
AM200	300	20	350	7	400	945	M16	239	0	55	110	59.3	16
AM225	350	22	400	7	450	960	M16	254	0	60	140	64.4	18
AM250	450	25	500	7	550	1034	M16	328	19	65	140	69.4	18
AM280	450	25	500	7	550	1034	M16	328	19	75	140	79.9	20

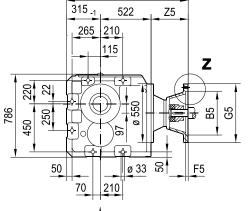

33 030 01 01

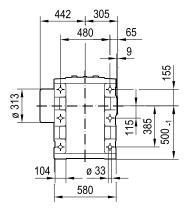
KH167B...

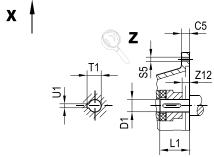

_L1

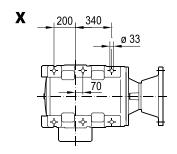
(→ []] 7.2.10)	B5	C5	E5	F5	G5	L	S5	Z 5	Z12	D1	L1	T1	U1
AM160	250	18	300	6	350	1035	M16	198	0	42	110	45.3	12
AM180	250	18	300	6	350	1035	M16	198	0	48	110	51.8	14
AM200	300	20	350	7	400	1076	M16	239	0	55	110	59.3	16
AM225	350	22	400	7	450	1091	M16	254	0	60	140	64.4	18
AM250	450	25	500	7	550	1165	M16	328	19	65	140	69.4	18
AM280	450	25	500	7	550	1165	M16	328	19	75	140	79.9	20

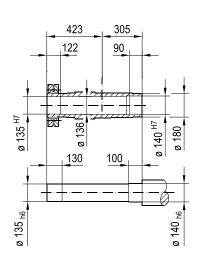


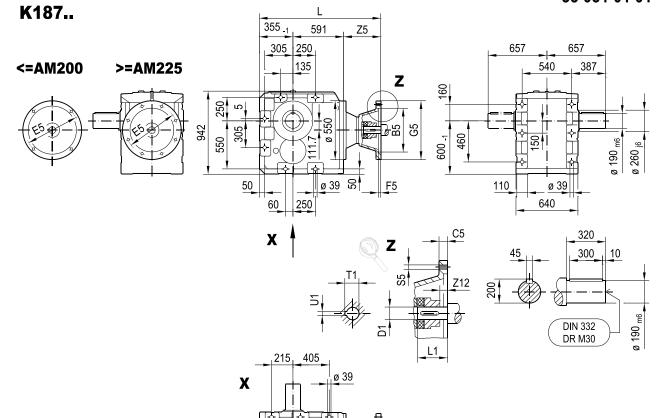

<=AM200

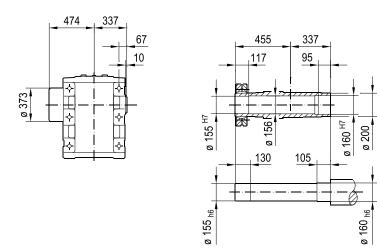

KH167..







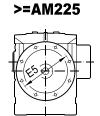


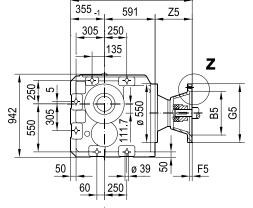


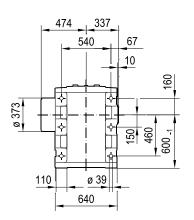
(→ [7.2.10)	B5	C5	E5	F5	G5	L	S5	Z 5	Z12	D1	L1	T1	U1
AM160	250	18	300	6	350	1035	M16	198	0	42	110	45.3	12
AM180	250	18	300	6	350	1035	M16	198	0	48	110	51.8	14
AM200	300	20	350	7	400	1076	M16	239	0	55	110	59.3	16
AM225	350	22	400	7	450	1091	M16	254	0	60	140	64.4	18
AM250	450	25	500	7	550	1165	M16	328	19	65	140	69.4	18
AM280	450	25	500	7	550	1165	M16	328	19	75	140	79.9	20

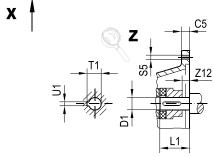
33 031 01 01

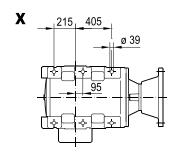
KH187B...

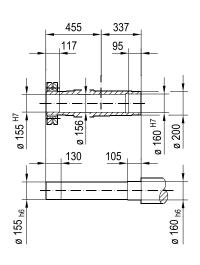

(→ [] 7.2.10)	B5	C5	E5	F5	G5	L	S5	Z5	Z12	D1	L1	T1	U1
AM160	250	18	300	6	350	1144	M16	198	0	42	110	45.3	12
AM180	250	18	300	6	350	1144	M16	198	0	48	110	51.8	14
AM200	300	20	350	7	400	1185	M16	239	0	55	110	59.3	16
AM225	350	22	400	7	450	1200	M16	254	0	60	140	64.4	18
AM250	450	25	500	7	550	1274	M16	328	19	65	140	69.4	18
AM280	450	25	500	7	550	1274	M16	328	19	75	140	79.9	20

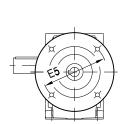


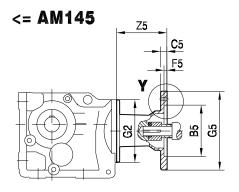

<=AM200

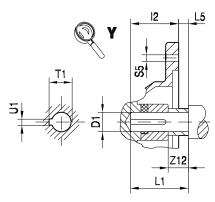

KH187..

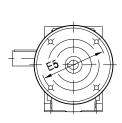


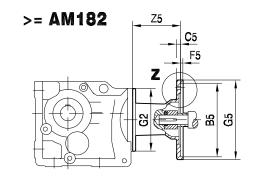


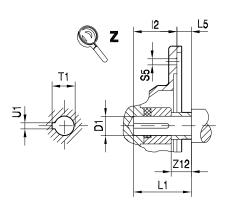


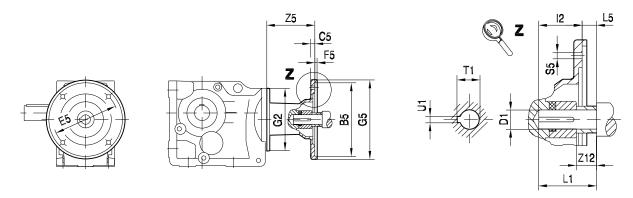



(→ [7.2.10)	B5	C5	E5	F5	G5	L	S5	Z 5	Z12	D1	L1	T1	U1
AM160	250	18	300	6	350	1144	M16	198	0	42	110	45.3	12
AM180	250	18	300	6	350	1144	M16	198	0	48	110	51.8	14
AM200	300	20	350	7	400	1185	M16	239	0	55	110	59.3	16
AM225	350	22	400	7	450	1200	M16	254	0	60	140	64.4	18
AM250	450	25	500	7	550	1274	M16	328	19	65	140	69.4	18
AM280	450	25	500	7	550	1274	M16	328	19	75	140	79.9	20

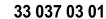

10.5 Dimension sheets for adapters for mounting NEMA motors (AM..)

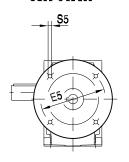

33 032 03 01



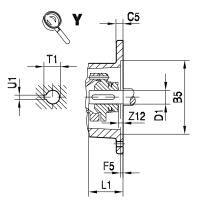


		B5	C5	E5	F5	G2	G5	I2	L5	S5	Z 5	Z12	D1	L1	T1	U1
K19	AM56	114.3	11	149.2	4.5	120	170	52.55	-4.8	10.5	93.5	16.5	15.875	47.75	18.1	4.76
K29	AM143	114.3	12	149.2	4.5	120	170	54.1	3.05	10.5	117	14.5	22.225	57.15	24.7	4.76
K37	AM145	114.3	12	149.2	4.5	120	170	54.1	3.05	10.5	117	14.5	22.225	57.15	24.7	4.76
	AM56	114.3	11	149.2	4.5	160	170	52.55	-4.8	10.5	87	16.5	15.875	47.75	18.1	4.76
	AM143	114.3	12	149.2	4.5	160	170	54.1	3.05	10.5	110.5	14.5	22.225	57.15	24.7	4.76
K39 K47	AM145	114.3	12	149.2	4.5	160	170	54.1	3.05	10.5	110.5	14.5	22.225	57.15	24.7	4.76
1147	AM182	215.9	10	184	5	160	228	66.675	3	15	147.5	16.5	28.575	69.85	31.7	6.35
	AM184	215.9	10	184	5	160	228	66.675	3	15	147.5	16.5	28.575	69.85	31.7	6.35
	AM56	114.3	11	149.2	4.5	160	170	52.55	-4.8	10.5	87	16.5	15.875	47.75	18.1	4.76
	AM143	114.3	12	149.2	4.5	160	170	54.1	3.05	10.5	110.5	14.5	22.225	57.15	24.7	4.76
K57	AM145	114.3	12	149.2	4.5	160	170	54.1	3.05	10.5	110.5	14.5	22.225	57.15	24.7	4.76
K67	AM182	215.9	10	184	5	160	228	66.675	3	15	147.5	16.5	28.575	69.85	31.7	6.35
	AM184	215.9	10	184	5	160	228	66.675	3	15	147.5	16.5	28.575	69.85	31.7	6.35
	AM213/215	215.9	11	184	5	160	228	79.55	6.3	15	200.5	15.8	34.925	85.85	38.7	7.94
	AM56	114.3	11	149.2	4.5	200	170	52.55	-4.8	10.5	81	16.5	15.875	47.75	18.1	4.76
	AM143	114.3	12	149.2	4.5	200	170	54.1	3.05	10.5	103.5	14.5	22.225	57.15	24.7	4.76
K49	AM145	114.3	12	149.2	4.5	200	170	54.1	3.05	10.5	103.5	14.5	22.225	57.15	24.7	4.76
K77	AM182	215.9	10	184	5	200	228	66.675	3	15	139.5	16.5	28.575	69.85	31.7	6.35
	AM184	215.9	10	184	5	200	228	66.675	3	15	139.5	16.5	28.575	69.85	31.7	6.35
	AM213/215	215.9	11	184	5	200	228	79.55	6.3	15	188.5	15.8	34.925	85.85	38.7	7.94

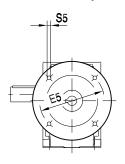

33 033 03 01

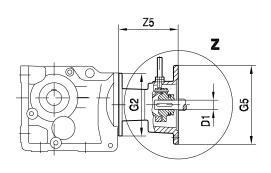


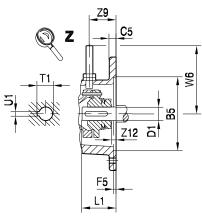

		B5	C5	E5	F5	G2	G5	12	L5	S5	Z 5	Z12	D1	L1	T1	U1
	AM143	114.3	12	149.2	4.5	250	170	54.1	3.05	10.5	98.5	14.5	22.225	57.15	24.7	4.76
	AM145	114.3	12	149.2	4.5	250	170	54.1	3.05	10.5	98.5	14.5	22.225	57.15	24.7	4.76
	AM182	215.9	10	184	5	250	228	66.675	3	15	134.5	16.5	28.575	69.85	31.7	6.35
K87	AM184	215.9	10	184	5	250	228	66.675	3	15	134.5	16.5	28.575	69.85	31.7	6.35
	AM213/215	215.9	11	184	5	250	228	79.55	6.3	15	183.5	15.8	34.925	85.85	38.7	7.94
	AM254/256	215.9	12	184	5	250	228	95.3	6.3	15	234	9	41.275	101.6	45.8	9.53
	AM284/286	266.7	15	228.6	5	250	286	111.05	6.3	15	241	15.8	47.625	117.35	53.4	12.7
	AM182	215.9	10	184	5	300	228	66.675	3	15	129.5	16.5	28.575	69.85	31.7	6.35
	AM184	215.9	10	184	5	300	228	66.675	3	15	129.5	16.5	28.575	69.85	31.7	6.35
	AM213/215	215.9	11	184	5	300	228	79.55	6.3	15	178.5	15.8	34.925	85.85	38.7	7.94
K97	AM254/256	215.9	12	184	5	300	228	95.3	6.3	15	229	9	41.275	101.6	45.8	9.53
	AM284/286	266.7	15	228.6	5	300	286	111.05	6.3	15	236	15.8	47.625	117.35	53.4	12.7
	AM324/326	317.5	17	279.4	5	300	356	127.05	6.3	17.5	296	34.8	53.975	133.35	60	12.7
	AM364/365	317.5	17	279.4	5	300	356	143.05	6.3	17.5	296	34.8	60.325	149.35	67.6	15.875
	AM182	215.9	10	184	5	350	228	66.85	3	15	123.5	16.5	28.575	69.85	31.7	6.35
	AM184	215.9	10	184	5	350	228	66.85	3	15	123.5	16.5	28.575	69.85	31.7	6.35
	AM213/215	215.9	11	184	5	350	228	79.55	6.3	15	172.5	15.8	34.925	85.85	38.7	7.94
K107	AM254/256	215.9	12	184	5	350	228	95.3	6.3	15	223	9	41.275	101.6	45.8	9.53
	AM284/286	266.7	15	228.6	5	350	286	111.05	6.3	15	230	15.8	47.625	117.35	53.4	12.7
	AM324/326	317.5	17	279.4	5	350	356	127.05	6.3	17.5	290	34.8	53.975	133.35	60	12.7
	AM364/365	317.5	17	279.4	5	350	356	143.05	6.3	17.5	290	34.8	60.325	149.35	67.6	15.875
	AM213/215	215.9	11	184	5	450	228	79.55	6.3	15	157.5	15.8	34.925	85.85	38.7	7.94
	AM254/256	215.9	12	184	5	450	228	95.3	6.3	15	208	9	41.275	101.6	45.8	9.53
K127	AM284/286	266.7	15	228.6	5	450	286	111.05	6.3	15	215	15.8	47.625	117.35	53.4	12.7
	AM324/326	317.5	17	279.4	5	450	356	127.05	6.3	17.5	275	34.8	53.975	133.35	60	12.7
	AM364/365	317.5	17	279.4	5	450	356	143.05	6.3	17.5	275	34.8	60.325	149.35	67.6	15.875
V 457	AM254/256	215.9	12	184	5	550	228	95.3	6.3	15	200	9	41.275	101.6	45.8	9.53
K157 K167	AM284/286	266.7	15	228.6	5	550	286	111.05	6.3	15	207	15.8		117.35	53.4	12.7
K187	AM324/326	317.5	17	279.4	5	550	356	127.05	6.3	17.5	267	34.8	53.975	133.35	60	12.7
	AM364/365	317.5	17	279.4	5	550	356	143.05	6.3	17.5	267	34.8	60.325	149.35	67.6	15.875


10.6 Dimension sheets for adapters with slip clutch (AR..)

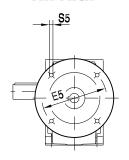
K.. AR..

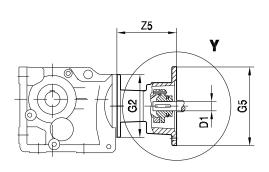


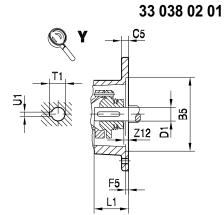




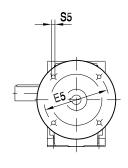
K.. AR../W

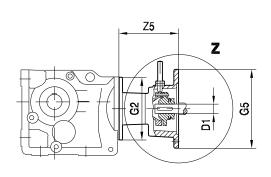


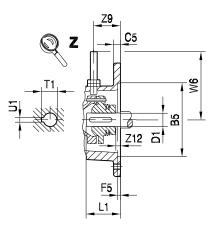




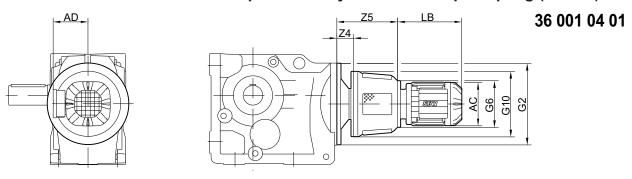
		B5	C5	E5	F5	G2	G5	S5	W6	Z 5	Z 9	Z12	D1	L1	T1	U1
K19	AR71	110	10	130	3.5		160	M8		104			14	30	16.3	5
K29	AR80	130	12	165	4.5	120	200	M10	120	140.5	37	0	19	40	21.8	6
K37	AR90	130	12	105	4.5		200	IVITO		140.5			24	50	27.3	8
	AR71	110	10	130	3.5		160	M8		97.5			14	30	16.3	5
K39	AR80	130	12	165	4.5		200	M10	120	134	37	0	19	40	21.8	6
K47 K57	AR90	130	12	105	4.5	160	200	IVITO		134			24	50	27.3	8
K67	AR100	180	15	215	5		250	M12	130	174.5	52	5.5	28	60	31.3	8
	AR112	160	15	213	5		250	IVIIZ	130	174.5	52	5.5	20	00	31.3	0
	AR71	110	10	130	3.5		160	M8		91.5			14	30	16.3	5
	AR80	130	12	165	4.5		200	M10	120	127	37	0	19	40	21.8	6
16 40	AR90	130	12	105	4.5		200	IVITO		121			24	50	27.3	8
K49 K77	AR100	180	15	215	5	200	250	M12	130	166.5	52	5.5	28	60	31.3	8
	AR112	100	13	213	3		230	IVIIZ	130	100.5	52	5.5	20	00	31.3	
	AR132S/M	230	16	265	5		300	M12	145	234	72	5	38	80	41.3	10
	AR132ML	230	10	203	3		300	IVIIZ	143	234	12	3	30	00	41.3	10
	AR80	130	12	165	4.5		200	M10	120	122	37	0	19	40	21.8	6
	AR90	130	12	103	4.5		200	IVITO	120	122	31	U	24	50	27.3	8
	AR100	180	15	215	5		250	M12	130	161.5	52	5.5	28	60	31.3	8
K87	AR112	100	13	213		250	230	IVIIZ	130	101.5	52	5.5	20	00	31.3	
K01	AR132S/M	230	16	265	5	230	300	M12	145	229	72	5	38	80	41.3	10
	AR132ML	230	10	200	· ·		300	IVIIZ	140	229	12	Ü	36	00	41.3	10
	AR160	250	18	300	6		350	M16	165	306.5	105	35	42	110	45.3	12
	AR180	250	10	300	U		350	IVI IO	100	300.5	105	33	48	110	51.8	14

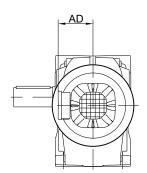

K.. AR..

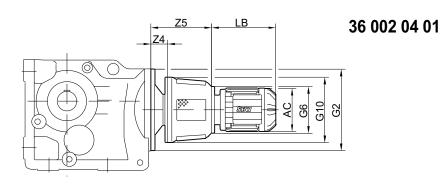




K.. AR../W

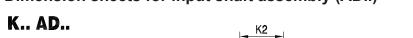


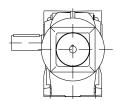


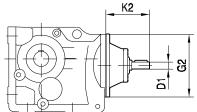

		B5	C5	E5	F5	G2	G5	S5	W6	Z 5	Z 9	Z12	D1	L1	T1	U1
	AR100	180	15	045	5		250	N440	400	450 F	52		28	60	24.2	8
	AR112	180	15	215	5		250	M12	130	156.5	52	5.5	28	60	31.3	ð
L 07	AR132S/M	220	16	205	_	200	200	N440	4.45	204	72	_	38	80	44.0	40
K97	AR132ML	230	16	265	5	300	300	M12	145	224	12	5	38	80	41.3	10
	AR160	050	40	000			050	N440	405	004.5	405	٥.	42	110	45.3	12
	AR180	250	18	300	6		350	M16	165	301.5	105	35	48	110	51.8	14
	AR100	180	15	215	5		250	M12	130	150.5	52	5.5	28	60	31.3	8
	AR112	100	15	215	5		250	IVIIZ	130	150.5	52	5.5	20	60	31.3	0
V 407	AR132S/M	230	16	265	_	350	300	MAA	115	240	72	E	38	80	41.3	10
K107	AR132ML	230	10	200	5	350	300	M12	145	218	12	5	30	00	41.3	10
	AR160	250	18	200	6		250	N440	405	205.5	405	35	42	110	45.3	12
	AR180	250	18	300	О		350	M16	165	295.5	105	35	48	110	51.8	14
	AR132S/M	230	16	265	5		300	M12	145	203	72	5	38	80	41.3	10
K127	AR132ML	230	10	200	5	450	300	IVIIZ	145	203	12	ວ	30	00	41.3	10
N121	AR160	250	18	300	6	450	350	M16	165	200 E	105	35	42	110	45.3	12
	AR180	250	18	300	Ö		330	IVITO	100	280.5	105	ან	48	110	51.8	14
K157	AR160												42	110	45.3	12
K167 K187	AR180	250	18	300	6	550	350	M16	165	272.5	105	35	48	110	51.8	14

10.7 Dimension sheets for adapters with hydraulic start-up coupling (K..AT..)

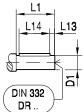
			AC	AD	G6	G10	LB	Z4	Z 5	G2
		DRN71M	139	118			222			
		DRN80MK					241			
		DRN80MS	156	128			259			
	AT311	DRN80M			200	280	287	97	286	
	AT312	DRN90S	179	140	200	200	281	91	200	
K67		DRN90L	179	140			313			160
		DRN100LM	197	157			359			
		DRN112M	221	170			387			
		DRN90L	179	140			313			
	AT321 AT322	DRN100LS	407	457	250	350	309	97	333	
	A1322	DRN100L	197	157			359			
		DRN71M	139	118			222			
		DRN80MK					241			
		DRN80MS	156	128			259			
	AT311	DRN80M			200	200	287	00	070	
	AT312	DRN90S	470	440	200	280	281	89	278	
		DRM90L	179	140			313			
V77		DRN100LM	197	157			359			200
K77		DRN112M	221	170			387			200
	AT321	DRN132S	221	170	250	350	437	93	328	
		DRN90L	179	140			313			
		DRN100LS	407	457			309			
	AT421 AT422	DRN100L	197	157	250	350	359	133	368	
	A1722	DRN112M	221	170			387			
		DRN132S	221	170			437			
		DRN90S	470	140			281			
	AT311	DRM90L	179	140	200	200	313	0.4	070	
	AT312	DRN100LM	197	157	200	280	359	84	273	
		DRN112M	221	170			387			
	AT321	DRN132S	221	170	250	350	437	84	320	
		DRN90L	179	140			313			
		DRN100LS	407	457			309			
K87	AT421 AT422	DRN100L	197	157	250	350	359	128	363	250
	A1722	DRN112M	004	470			387			
		DRN132S	221	170			437			
		DRN132S	221	170			437			
		DRN132M	201	220			439			
	AT541 AT542	DRN132L	261	228	350	470	464	159	478	
	A1372	DRN160M	240	050			532			
		DRN160L	316	253			532			

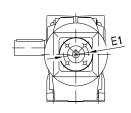


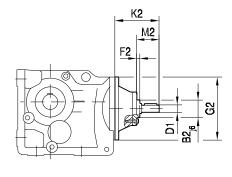


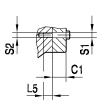

			AC	AD	G6	G10	LB	Z4	Z5	G2
		DRN90S	179	140			281			
	AT311	DRM90L	179	140	200	200	313	70	260	
	AT312	DRN100LM	197	157	200	280	359	79	268	
		DRN112M	221	170			387			
	AT321	DRN132S	221	170	250	350	437	79	315	
		DRN90L	179	140			313			
	47404	DRN100LS	197	157			309			
	AT421 AT422	DRN100L	197	157	250	350	359	123	358	
K97	71722	DRN112M	221	170			387			300
		DRN132S	221	170			437			
		DRN132S	221	170			437			
		DRN132M	261	228			439			
		DRN132L	201	220			464			
	AT541 AT542	DRN160M	316	253	350	470	532	154	473	
	A1042	DRN160L	310	255			532			
		DRN180M	357	268			557			
		DRN180L	337	200			557			
	AT311	DRN100LM	197	157	200	280	359	73	262	
	AT312	DRN112M	221	170	200	200	387	73	202	
	AT321	DRN132S	221	170	250	350	437	73	309	
		DRN100LS	197	157			309			
	AT421	DRN100L	197	137	250	350	359	117	352	
	AT422	DRN112M	221	170	230	330	387	'''	332	
K107		DRN132S	221	170			437			350
KIUI		DRN132S	221	170			437			330
		DRN132M	261	228			439			
	ATE44	DRN132L	201	220			464			
	AT541 AT542	DRN160M	316	253	350	470	532	148	467	
	7.1.0.12	DRN160L	310	255			532			
		DRN180M	357	268			557			
		DRN180L	337	200			557			
	AT421	DRN132S	221	170	250	350	437	102	337	
		DRN132M	261	228			439			
		DRN132L	201	220			464			
K127	AT541	DRN160M	316	253	350	470	532	133	452	450
	AT542	DRN160L	310	255	330	470	532	100	432	
		DRN180M	357	268			557			
		DRN180L	331	200			557			
		DRN160M	316	253			532	_		
K157 K167	AT541	DRN160L	310	200	350	470	532	125	444	550
K187	AT542	DRN180M	357	268	330	770	557	120	744	330
		DRN180L	331	200			557			

33 039 03 01

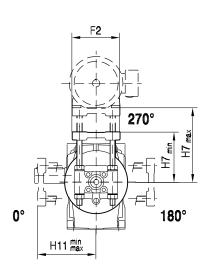

10.8 Dimension sheets for input shaft assembly (AD..)

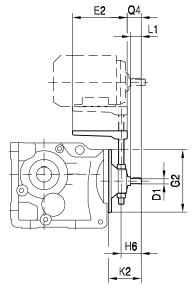


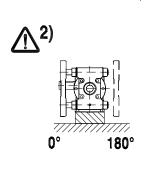




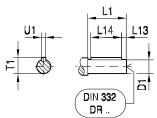
K.. AD../ZR

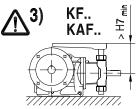

		B2	C1	E1	F2	G2	K2	L5	M2	S1	S2	D1	L1	L13	L14	T1	U1
K19	AD1	-	-	-	-		102	-	-	-	-	16	40	4	32	18	5
K29 K37	AD2, AD2/ZR	55	13.5	80	8	120	130	12	50	9	M8	19	40	4	32	21.5	6
K39	AD2, AD2/ZR	55	13.5	80	8		123	12	50	9	M8	19	40	4	32	21.5	6
K47 K57 K67	AD3, AD3/ZR	70	15.5	105	8	160	159	16	60	11	M10	24	50	5	40	27	8
	AD2, AD2/ZR	55	13.5	80	8		116	12	50	9	M8	19	40	4	32	21.5	6
K49 K77	AD3, AD3/ZR	70	15.5	105	8	200	151	16	60	11	M10	24	50	5	40	27	8
137	AD4, AD4/ZR	100	16	130	13		224	20	95.5	13.5	M12	38	80	5	70	41	10
	AD2, AD2/ZR	55	13.5	80	8		111	12	50	9	M8	19	40	4	32	21.5	6
K87	AD3, AD3/ZR	70	15.5	105	8	250	156	16	70	11	M10	28	60	5	50	31	8
N01	AD4, AD4/ZR	100	16	130	13	250	219	20	95.5	13.5	M12	38	80	5	70	41	10
	AD5, AD5/ZR	120	24	180	11		292	20	126	13.5	M12	42	110	10	70	45	12
	AD3, AD3/ZR	70	15.5	105	8		151	16	70	11	M10	28	60	5	50	31	8
K97	AD4, AD4/ZR	100	16	130	13	300	214	20	95.5	13.5	M12	38	80	5	70	41	10
N97	AD5, AD5/ZR	120	24	180	11	300	287	20	126	13.5	M12	42	110	10	70	45	12
	AD6, AD6/ZR	130	22.5	200	11		327	26	130.5	17.5	M16	48	110	10	80	51.5	14
	AD3, AD3/ZR	70	15.5	105	8		145	16	70	11	M10	28	60	5	50	31	8
K107	AD4, AD4/ZR	100	16	130	13	350	208	20	95.5	13.5	M12	38	80	5	70	41	10
K107	AD5, AD5/ZR	120	24	180	11	350	281	20	126	13.5	M12	42	110	10	70	45	12
	AD6, AD6/ZR	130	22.5	200	11		321	26	130.5	17.5	M16	48	110	10	80	51.5	14
	AD4, AD4/ZR	100	16	130	13		193	20	95.5	13.5	M12	38	80	5	70	41	10
	AD5, AD5/ZR	120	24	180	11		266	20	126	13.5	M12	42	110	10	70	45	12
K127	AD6, AD6/ZR	130	22.5	200	11	450	306	26	130.5	17.5	M16	48	110	10	80	51.5	14
	AD7, AD7/ZR	125	19	190	13		300	30	133	22	M20	55	110	10	90	59	16
	AD8, AD8/ZR	120	22.5	210	5		383	19.5	155	13.5	M12	70	140	15	110	74.5	20

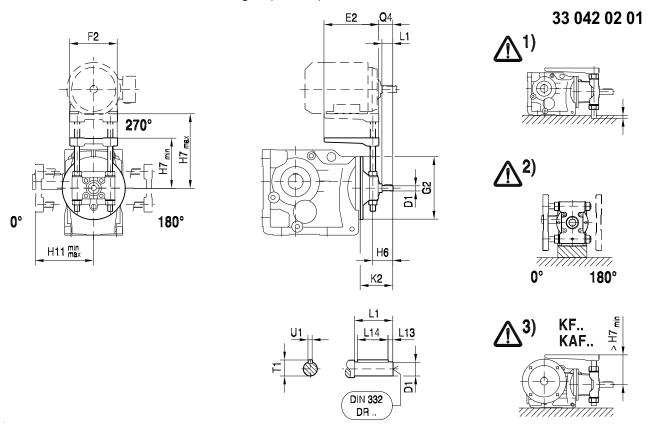

K.. helical-bevel gear units
Dimension sheets for input shaft assembly (AD..)


		B2	C1	E1	F2	G2	K2	L5	M2	S1	S2	D1	L1	L13	L14	T1	U1	
	AD5, AD5/ZR	120	24	180	11		258	20	126	13.5	M12	42	110	10	70	45	12	
K157	AD6, AD6/ZR	130	22.5	200	11		298	26	130.5	17.5	M16	48	110	10	80	51.5	14	
K167 K187	AD7, AD7/ZR	125	19	190	13	550	292	30	133	22	M20	55	110	10	90	59	16	
	AD8, AD8/ZR	120	22.5	210	5		374	19.5	155	13.5	M12	70	140	15	110	74.5	20	

<u>(1)</u>

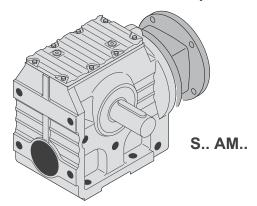

10.9 Dimension sheets for input shaft assembly with motor platform (AD../P)

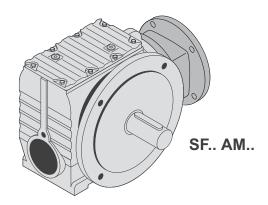


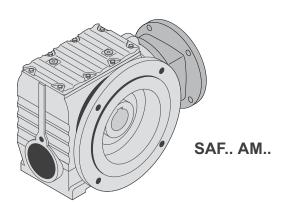

33 040 03 01

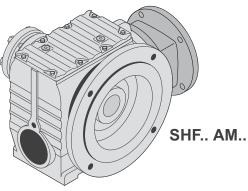
		E2	F2	G2	Н6	H7 min	H7 max	H11 min	H11 max	K2	Q4	D1	L1	L13	L14	T1	U1	<u>^</u> (→ <u>•</u> 71)
K19 K29 K37	AD2/P	195	180	120	65	100	165	95	165	130	43	19	40	4	32	21.5	6	1)
K39	AD2/P	195	180	400	65	110	165	110	165	123	43	19	40	4	32	21.5	6	1)
K47	AD3/P	230	240	160	80	125	175	125	175	159	54	24	50	5	40	27	8	1), 2)
V 57	AD2/P	195	180	160	65	120	165	120	165	123	43	19	40	4	32	21.5	6	
K57	AD3/P	230	240	160	80	130	175	130	175	159	54	24	50	5	40	27	8	1), 2), 3)
V 67	AD2/P	195	180	160	65	130	200	125	165	123	43	19	40	4	32	21.5	6	1)
K67	AD3/P	230	240	160	80	135	175	130	175	159	54	24	50	5	40	27	8	3)
	AD2/P	195	180		65	160	260	140	260	116	43	19	40	4	32	21.5	6	1)
K49 K77	AD3/P	230	240	200	80	160	230	145	175	151	54	24	50	5	40	27	8	1)
137	AD4/P	345	291		118	170	210	150	210	224	83	38	80	5	70	41	10	3)
	AD2/P	195	180		65	180	260	170	200	111	43	19	40	4	32	21.5	6	
V 07	AD3/P	230	240	250	90	180	230	175	230	156	64	28	60	5	50	31	8	
K87	AD4/P	345	291	250	118	190	280	180	210	219	83	38	80	5	70	41	10	1)
	AD5/P	430	355		153	190	250	185	250	292	113	42	110	10	70	45	12	1), 3)
	AD3/P	230	240		90	210	320	210	320	151	64	28	60	5	50	31	8	
K97	AD4/P	345	291	300	118	215	280	215	280	214	83	38	80	5	70	41	10	
	AD5/P	430	355		153	225	325	215	250	287	113	42	110	10	70	45	12	1), 3)
	AD3/P	230	240		90	260	320	220	320	145	64	28	60	5	50	31	8	
V 407	AD4/P	345	291	350	118	265	360	220	280	208	83	38	80	5	70	41	10	
K107	AD5/P	430	355	300	153	270	325	225	325	281	113	42	110	10	70	45	12	
	AD6/P	495	457		163	270	310	250	310	321	114	48	110	10	80	51.5	14	3)

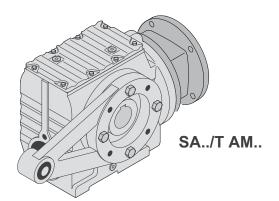
For bore dimensions and weight of the motor platform, refer to the chapter "Bore dimensions and weight" (\rightarrow $\stackrel{\square}{=}$ 70).

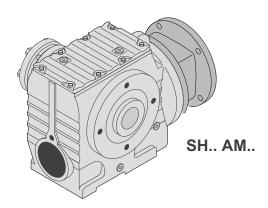


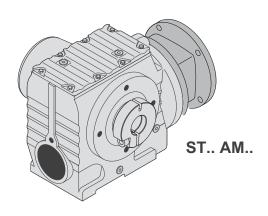

		E2	F2	G2	Н6	H7 min	H7 max	H11 min	H11 max	K2	Q4	D1	L1	L13	L14	T1	U1	<u> </u>
	AD4/P	345	291		118	305	360	245	280	193	83	38	80	5	70	41	10	
K 407	AD5/P	430	355	450	153	310	405	255	325	266	113	42	110	10	70	45	12	
K127	AD6/P	495	457	450	163	305	360	300	360	306	114	48	110	10	80	51.5	14	3)
	AD7/P	650	570		170	305	365	305	365	300	112	55	110	10	90	59	16	3)
	AD5/P	430	355		153	360	405	295	325	258	113	42	110	10	70	45	12	
K157	AD6/P	495	457	550	163	375	475	375	475	298	114	48	110	10	80	51.5	14	3)
	AD7/P	650	570		170	375	475	375	475	292	112	55	110	10	90	59	16	3)
	AD5/P	430	355		153	415	495	350	405	258	113	42	110	10	70	45	12	
K167	AD6/P	495	457	550	163	420	475	375	475	298	114	48	110	10	80	51.5	14	
	AD7/P	650	570		170	420	475	375	475	292	112	55	110	10	90	59	16	
	AD5/P	430	355		153	480	545	380	495	258	113	42	110	10	70	45	12	
K187	AD6/P	495	457	550	163	485	525	380	475	298	114	48	110	10	80	51.5	14	
	AD7/P	650	570		170	485	525	380	475	292	112	55	110	10	90	59	16	

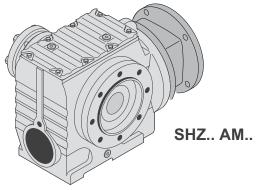

For bore dimensions and weight of the motor platform, refer to the chapter "Bore dimensions and weight" (\rightarrow $\stackrel{\text{le}}{=}$ 70).


11 S.. helical-worm gear units


Selection tables for adapters for mounting IEC/NEMA motors (AM..) 11.1







1		nin ⁻¹ , M _{am}		1 1				92 N
i	n _a	M _{a max G}	F _{Ra} 1)	φ _(/R)			AM	
	min ⁻¹	Nm	N	•	63	71	80	90
					ę.	25 2		
3.972)	353	32	1400	-	18	18	32	32
4.862)	288	33	1520	-	22	22	33	33
5.382)	260	34	1570	-	24	24	34	34
6.332)	221	35	1670	-	29	29	35	35
6.802)	206	43	1630	-	31	31	43	43
8.002)	175	45	1730	-	36	36	45	45
9.022)	155	46	1810	-	41	41	46	46
10.23 ²⁾	137	47	1900	-	46	46	47	47
10.91 ²⁾	128	48	1940	-	48	48	48	48
12.48 ²⁾	112	48	2060	-	48	48	48	48
13.39 ²⁾	105	49	2110	-	49	49	49	49
15.53	90	50	2240	-	50	50	50	
18.24	77	52	2380	-	52	52		
19.13 ²⁾	73	71	2380	- 1	71	71	71	71
19.89	70	52	2470	-	52	52		
22.50 ²⁾	62	73	2530	-	73	73	73	73
25.38 ²⁾	55	74	2660	-	74	74	74	74
28.76 ²⁾	49	75	2800	-	75	75	75	75
30.68 ²⁾	46	76	2860	- 1	76	76	76	76
35.10 ²⁾	40	78	3000	-	78	78	78	78
37.66 ²⁾	37	79	3000	-	79	79	79	79
43.68	32	81	3000	-	81	81	81	
51.30	27	81	3000	-	81	81		
53.83 ²⁾	26	80	3000	- 1	80	80	80	80
55.93	25	81	3000	-	81	81		
63.33 ²⁾	22	82	3000	-	82	82	82	82
71.44 ²⁾	20	84	3000	-	84	84	84	84
80.962)	17	85	3000	-	85	85	85	85
86.36 ²⁾	16	86	3000	-	86	86	86	86
98.80 ²⁾	14	87	3000	- 1	87	87	87	87
106.002)	13	88	3000	-	88	88	88	88
122.942)	11	91	3000	-	91	91	91	
144.40	9.7	92	3000	-	92	92		
157.43	8.9	92	3000	_	92	92		

S37, m /kg			AM							
	IEC	s	63	71	80	90				
		∂3 3 2	8.8	9.0	11	11				
S	NEMA	s	-	56	143	145				
		∂3 3 2	-	9.4	11	11				
SF: + 1.3 kg /										

S47, n _e :	= 1400 n	nin ⁻¹ , M _{an}	_{nax} /Nm					170 Nm
i	n _a	M _{a max G}	F _{Ra} 1)	φ _(/R)			AM	
	min ⁻¹	Nm	N		63	71	80	90
					d	3 2		
4.002)	350	61	1980	_	18	18	54	54
4.762)	294	72	2010	_	21	21	65	65
5.39 ²⁾	260	74	2110	_	24	24	73	73
6.402)	219	76	2260	-	29	29	76	76
6.832)	205	78	2300	-	31	31	78	78
7.282)	192	103	2110	-	32	32	98	98
8.642)	162	109	2230	-	39	39	109	109
9.232)	152	109	2310	-	41	41	109	109
10.80 ²⁾	130	109	2500	-	49	49	109	109
12.10 ²⁾	116	109	2650	-	54	54	109	109
14.242)	98	110	2850	-	64	64	110	110
16.47	85	110	3060	-	74	74	110	110
17.62	79	110	3160	-	79	79	110	110
19.54 ²⁾	72	144	3370	-			144	144
20.33	69	110	3370	-	91	91	110	
23.202)	60	152	3570	-	95	95	152	152
24.772)	57	155	3650	-	102	102	155	155
29.00 ²⁾	48	155	3920	-	119	119	155	155
32.48 ²⁾	43	155	4120	-	133	133	155	155
38.23 ²⁾	37	155	4420	-	155	155	155	155
44.222)	32	155	4710	-	155	155	155	155
47.32 ²⁾	30	155	4850	-	155	155	155	155
54.59	26	155	5150	-	155	155	155	
56.61 ²⁾	25	165	5320	-			165	165
63.80	22	155	5370	-	155	155		
67.20 ²⁾	21	167	5360	-	167	167	167	167
69.39	20	155	5370	-	155	155		
71.75 ²⁾	20	167	5360	-	167	167	167	167
84.00 ²⁾	17	167	5360	-	167	167	167	167
94.082)	15	168	5350	-	168	168	168	168
110.732)	13	168	5350	-	168	168	168	168
128.10 ²⁾	11	168	5350	-	168	168	168	168
137.052)	10	168	5350	-	168	168	168	168
158.12 ²⁾	8.9	170	5340	-	170	170	170	
184.80	7.6	170	5340	-	170	170		
201.00	7.0	170	5340	-	170	170		

S47, m /kg			AM						
	IEC	s	63	71	80	90			
		∂3 3 2	12	12	14	14			
S	NEMA	s	-	56	143	145			
		∂3 3 2	-	12	14	14			
SF: + 3.6 kg/									

S57, n _e	= 1400 n	nin ⁻¹ , M _{an}	_{nax} /Nm					295 Nm
i	n _a	M _{a max G}	F _{Ra} 1)	φ _(/R)			АМ	
	min ⁻¹	Nm	N		63	71	80	90
					ď	25 2		
4.002)	350	88	3380	_	18	18	54	54
4.762)	294	93	3590	_	21	21	65	65
5.39 ²⁾	260	95	3760	_	24	24	73	73
6.402)	219	98	4010	-	29	29	87	87
6.832)	205	100	4100	-	31	31	93	93
7.282)	192	146	3790	-	33	33	98	98
8.642)	162	166	3900	-	39	39	116	116
9.232)	152	169	3990	_	41	41	124	124
10.80 ²⁾	130	169	4290	-	49	49	145	145
12.10 ²⁾	116	169	4520	-	55	55	162	162
14.24	98	169	4860	-	64	64	169	169
16.47	85	168	5200	-	74	74	168	168
17.62	79	168	5350	-	80	80	168	168
19.54 ²⁾	72	215	5720	-			215	215
20.33	69	168	5690	-	92	92	168	
23.20 ²⁾	60	245	5930	-	96	96	245	245
24.772)	57	245	6100	-	103	103	245	245
29.00 ²⁾	48	245	6520	-	120	120	245	245
32.48 ²⁾	43	245	6840	-	135	135	245	245
38.23 ²⁾	37	245	7320	-	158	158	245	245
44.222)	32	245	7520	-	182	182	245	245
47.322)	30	245	7520	-	194	194	245	245
54.59	26	245	7520	-	220	220	245	
56.61 ²⁾	25	265	7370	-			265	265
63.80	22	245	7520	-	245	245		
67.20 ²⁾	21	285	7220	-	225	225	285	285
69.39	20	245	7520	-	245	245		
71.75 ²⁾	20	290	7170	-	240	240	290	290
84.00 ²⁾	17	295	7130	-	275	275	295	295
94.082)	15	295	7130	-	295	295	295	295
110.73 ²⁾	13	295	7130	-	295	295	295	295
128.10 ²⁾	11	295	7130	-	295	295	295	295
137.05 ²⁾	10	295	7130	-	295	295	295	295
158.12	8.9	295	7130	-	295	295	295	
184.80	7.6	295	7130	-	295	295		
201.00	7.0	295	7130	-	295	295		

S57, m /kg			AM						
	IEC	s	63	71	80	90			
		∂3 3 2	16	16	18	18			
S	NEMA	s	-	56	143	145			
		₽ 2	-	16	18	18			
SF: + 3.8 kg/	SA: + -0.30 H	rg / SAF: + 2.6 l	(q						

29154650/EN - 03/2020

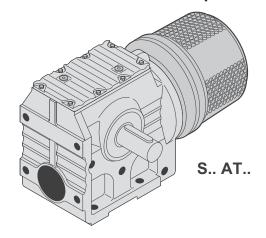
S67, n _e	= 1400 n	nin ⁻¹ , M _{an}	_{nax} /Nm								520 Nm
i	n _a	M _{a max G}	F _{Ra} 1)	φ _(/R)				AM			
	min ⁻¹	Nm	N	•	63	71	80	90	100	112	132S/M
						- - 25	2				
7.562)	185	295	3220	-			100	100	285	285	295
8.69 ²⁾	161	335	2860	-	37	37	116	116	325	325	335
10.03 ²⁾	140	340	3290	-	43	43	134	134	340	340	340
11.03 ²⁾	127	340	3660	-	48	48	147	147	340	340	340
12.96 ²⁾	108	340	4310	-	56	56	173	173	340	340	340
13.73 ²⁾	102	340	4510	-	60	60	183	183	340	340	340
15.60	90	340	4820	-	69	69	205	205	340	340	
17.28	81	340	5080	-	76	76	230	230	340	340	
20.302)	69	425	5760	-						425	425
20.37	69	340	5520	-	91	91	270	270	340		
23.22	60	340	5890	-	104	104	295	295			
23.33 ²⁾	60	480	5810	-					480	480	480
24.44	57	340	6040	-	109	109	295	295			
26.93 ²⁾	52	480	6240	-	107	107	330	330	480	480	480
29.63 ²⁾	47	480	6540	-	118	118	365	365	480	480	480
34.80 ²⁾	40	480	7060	-	140	140	425	425	480	480	480
36.85 ²⁾	38	480	7250	-	148	148	450	450	480	480	480
41.89 ²⁾	33	480	7690	-	169	169	480	480	480	480	
46.402)	30	480	8060	-	188	188	480	480	480	480	
54.70	26	480	8670	-	220	220	480	480	480		
58.80 ²⁾	24	500	8850	-						500	500
62.35	22	480	9020	-	250	250	480	480			
65.63	21	480	9020	-	265	265	480	480			
67.57 ²⁾	21	520	8680	-					520	520	520
75.06	19	480	9020	-	300	300	480				
78.00 ²⁾	18	520	8680	-			520	520	520	520	520
85.83 ²⁾	16	520	8680	-	280	280	520	520	520	520	520
100.802)	14	520	8680	-	325	325	520	520	520	520	520
106.75 ²⁾	13	520	8680	-	345	345	520	520	520	520	520
121.33 ²⁾	12	520	8680	-	390	390	520	520	520	520	
134.402)	10	520	8680	-	435	435	520	520	520	520	
158.45 ²⁾		520	8680	-	505	505	520	520	520		
180.60 ²⁾		520	8680	-	520	520	520	520			
190.11 ²⁾	7.4	520	8680	-	520	520	520	520			
217.41	6.4	520	8680	-	520	520	520				
S67, m	/kg							AM			
	IE				63	71	80	90	100	112	132S/M

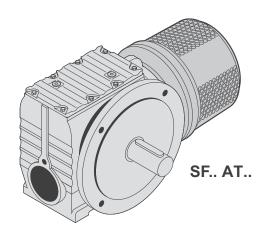
S67, m /kg			AM								
	IEC	s	63	71	80	90	100	112	132S/M		
•		∂ }3 2	27	27	29	29	34	34	41		
S	NEMA	s	-	56	143	145	182	184	213/215		
		∂ 36 2	-	27	29	29	33	33	39		
SF: + 6.5 kg / SA: + 1.0 kg / SAF: + 5.5 kg											

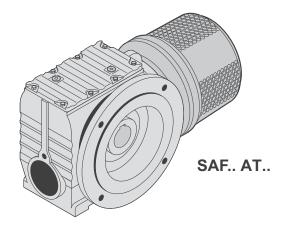
S77, n _e =	= 1400 n	nin ⁻¹ , M _{am}										1270 Nm
i	n _a	M _{a max G}	F _{Ra} 1)	φ _(/R)				_ A	M			
	min ⁻¹	Nm	N	•	63	71	80	90	100	112	132S/M	132ML
						d	2 2					
8.062)	174	680	440	-			105	105	305	305	675	675
9.442)	148	725	415	-			123	123	355	355	725	725
10.652)	131	720	1130	-			140	140	400	400	720	720
12.072)	116	720	1800	-	49	49	159	159	455	455	720	720
13.76 ²⁾	102	710	2710	-	56	56	182	182	520	520	710	710
15.28	92	710	3320	-	63	63	200	200	575	575	710	
17.45	80	710	4120	-	74	74	230	230	655	655	710	
18.42	76	705	4550	-	78	78	245	245	695	695	705	
18.972)	74	930	6390	-							930	930
20.99	67	705	5380	-	90	90	280	280	705	705		
22.222)	63	980	6740	-							980	980
22.89	61	705	5960	-	99	99	305	305	705	705		
25.07 ²⁾	56	1020	7010	-			315	315	900	900	1020	1020
28.412)	49	1050	7370	-	110	110	355	355	1020	1020	1050	1050
32.382)	43	1090	7720	-	127	127	405	405	1090	1090	1090	1090
35.94 ²⁾	39	1100	8140	-	142	142	450	450	1100	1100	1100	
41.072)	34	1100	8750	-	165	165	515	515	1100	1100	1100	
43.33 ²⁾	32	1100	9010	-	175	175	545	545	1100	1100	1100	
49.38	28	1100	9650	-	200	200	620	620	1100	1100		
53.87	26	1100	10100	-	220	220	680	680	1100	1100		
56.922)	25	990	11600	-			600	600	990	990	990	990
63.03	22	1100	10900	-	260	260	790	790	1100			
66.672)	21	1040	12300	-			700	700	1040	1040	1040	1040
71.33	20	1100	11600	-	295	295	890	890				
75.09	19	1100	11900	-	310	310	880	880				
75.20 ²⁾	19	1070	12800	-					1070	1070	1070	1070
85.22 ²⁾	16	1100	13100	-	275	275	890	890	1100	1100	1100	1100
97.14 ²⁾	14	1140	12800	-	315	315	1010	1010	1140	1140	1140	1140
107.832)	13	1170	12600	-	350	350	1120	1120	1170	1170	1170	
123.202)	11	1200	12300	-	405	405	1200	1200	1200	1200	1200	
130.002)	11	1210	12200	-	430	430	1210	1210	1210	1210	1210	
148.15 ²⁾	9.4	1240	12000	-	490	490	1240	1240	1240	1240		
161.60 ²⁾	8.7	1260	11800	-	535	535	1260	1260	1260	1260		
189.09 ²⁾	7.4	1270	11700	-	630	630	1270	1270	1270			
214.00	6.5	1270	11700	-	710	710	1270	1270				
225.26	6.2	1270	11700	-	745	745	1270	1270				
256.47	5.5	1270	11700	-	840	840	1270					

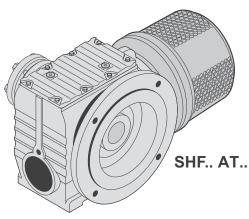
S77, m /kg			AM									
	IEC	s	63	71	80	90	100	112	132S/M	132ML		
•		∂3 8 2	47	47	49	49	54	54	61	61		
S	NEMA	s	-	56	143	145	182	184	213/215	-		
		∂3 8 2	-	47	49	49	53	53	59	-		
SF: + 9.7 kg /	SA: + -0.55 k	rg / SAF: + 6.2 l	kg	•			•		•			

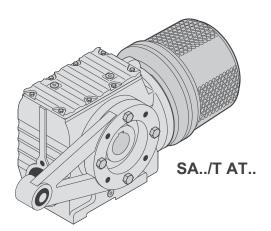
29154650/EN - 03/2020

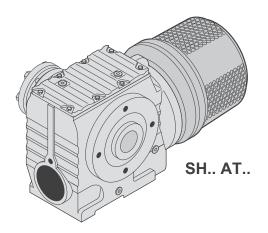

S87, n _e =	= 1400 n	nin ⁻¹ , M _{an}	_{nax} /Nm								2280 Nm
i	n _a	M _{a max G}	F _{Ra} 1)	φ _(/R)				AM			
	min ⁻¹	Nm	N		80	90	100	112	132S/M	132ML	160
							2				
7 003)	470	4040	45700						200	000	4040
7.882)	178	1010	15700	-					660	660	1010
9.072)	154	1140	15900	-			335	335	760	760	1140
10.932)	128	1240	16400	-			410	410	910	910	1240
12.21 ²⁾	115	1240	17400	-	155	155	455	455	1020	1020	1240
14.06 ²⁾	100	1240	18500	-	181	181	530	530	1170	1170	1240
15.64 ²⁾	90	1240	19300	-	200	200	590	590	1240	1240	1240
17.49	80	1240	20200	-	225	225	660	660	1240	1240	1240
19.70	71	1240	21100	-	255	255	740	740	1240	1240	1240
20.272)	69	1600	22100	-						1600	1600
21.43	65	1240	21800	-	280	280	810	810	1240		
24.432)	57	1600	23700	-						1600	1600
25.50	55	1240	23400	-	335	335	960	960	1240		
27.28 ²⁾	51	1600	24700	-	335	335	980	980	1600	1600	1600
31.432)	45	1600	26000	-	385	385	1130	1130	1600	1600	1600
34.962)	40	1600	27100	-	435	435	1260	1260	1600	1600	1600
39.10 ²⁾	36	1600	28200	-	485	485	1410	1410	1600	1600	1600
44.032)	32	1600	29000	-	550	550	1590	1590	1600	1600	1600
47.91	29	1600	29000	-	600	600	1600	1600	1600		
57.00	25	1600	29000	-	720	720	1600	1600	1600		
64.00 ²⁾	22	1700	28900	-					1700	1700	1700
64.27	22	1600	29000	-	810	810	1600	1600			
70.43	20	1600	29000	-	890	890	1600	1600			
77.142)	18	1820	28700	-			1820	1820	1820	1820	1820
81.76	17	1600	29000	_	1030	1030	1600				
86.15 ²⁾	16	1880	28600	-	900	900	1880	1880	1880	1880	1880
91.20	15	1510	29100	-	1150	1150					
99.262)	14	1960	28500	-	1040	1040	1960	1960	1960	1960	1960
110.402)	13	2000	28400	_	1160	1160	2000	2000	2000	2000	2000
123.48 ²⁾	11	2060	28300	-	1300	1300	2060	2060	2060	2060	2060
139.05 ²⁾	10	2100	28300	-	1460	1460	2100	2100	2100	2100	2100
151.30 ²⁾	9.3	2150	28200	_	1590	1590	2150	2150	2150		
180.00 ²⁾	7.8	2210	28100	_	1880	1880	2210	2210	2210		
202.96	6.9	2260	28000	-	2120	2120	2260	2260			
222.40	6.3	2280	27900	-	2280	2280	2280	2280			
258.18	5.4	2280	27900	_	2280	2280	2280				
288.00	4.9	2280	27900	_	2280	2280					

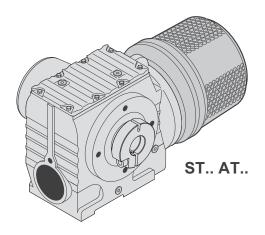

S87, m /kg			AM								
	IEC	s	80	90	100	112	132S/M	132ML	160		
		₽ 2	85	85	90	90	97	97	115		
S	NEMA	s	143	145	182	184	213/215	-	254/256		
		∂ 3 2	85	85	89	89	95	-	110		
SF: + 22 kg / S	SF: + 22 kg / SA: + -2.4 kg / SAF: + 14 kg										

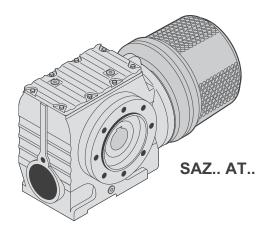

1		nin⁻¹, M _{a m} ∣		1 1						4000 Nr
i	n _a	M _{a max G}	F _{Ra} 1)	φ _(/R)		l	1	M I		l.
	min ⁻¹	Nm	N	'	100	112	132S/M	132ML	160	180
						2 2				
8.262)	169	1770	18800	-			690	690	1440	1730
9.55 ²⁾	147	2040	18200	-			795	795	1670	2000
11.412)	123	2210	18400	-			950	950	2000	2210
13.072)	107	2330	18800	-	485	485	1090	1090	2290	2330
15.42 ²⁾	91	2470	19400	-	575	575	1290	1290	2470	2470
17.05 ²⁾	82	2570	19700	-	640	640	1430	1430	2570	2570
19.23	73	2600	21200	-	725	725	1620	1620	2600	2600
21.23	66	2600	22800	-	800	800	1790	1790	2600	2600
23.59	59	2600	24500	-	890	890	1980	1980	2600	
24.13 ²⁾	58	2870	28000	-						2870
26.39	53	2600	26100	-	1000	1000	2220	2220	2600	
27.63 ²⁾	51	3010	29000	-						3010
32.60 ²⁾	43	3200	30400	-	1170	1170	2640	2640	3200	3200
36.05 ²⁾	39	3300	31300	-	1300	1300	2920	2920	3300	3300
40.65 ²⁾	34	3300	32800	-	1470	1470	3290	3290	3300	3300
44.89 ²⁾	31	3300	34100	-	1630	1630	3300	3300	3300	3300
49.87	28	3300	34500	-	1810	1810	3300	3300	3300	
55.79	25	3300	34500	-	2030	2030	3300	3300	3300	
60.59	23	3300	34500	-	2200	2200	3300			
65.45 ²⁾	21	2900	35100	-			2900	2900	2900	2900
71.43	20	3300	34500	-	2590	2590	3300			
78.26 ²⁾	18	3080	34800	-			3080	3080	3080	3080
80.85	17	3230	34600	-	2930	2930				
89.60 ²⁾	16	3240	34600	-	2790	2790	3240	3240	3240	3240
105.71 ²⁾	13	3440	34300	-	3280	3280	3440	3440	3440	3440
116.92 ²⁾	12	3510	34100	-	3510	3510	3510	3510	3510	3510
131.85 ²⁾	11	3650	33900	-	3650	3650	3650	3650	3650	3650
145.60 ²⁾	9.6	3730	33700	-	3730	3730	3730	3730	3730	3730
161.74 ²⁾	8.7	3840	33500	-	3840	3840	3840	3840	3840	
180.95 ²⁾	7.7	3920	33400	-	3920	3920	3920	3920	3920	
196.52 ²⁾	7.1	4000	33200	-	4000	4000	4000			
231.672)	6.0	4000	33200	-	4000	4000	4000			
262.22	5.3	4000	33200	_	4000	4000				
286.40	4.9	4000	33200	_	4000	4000				

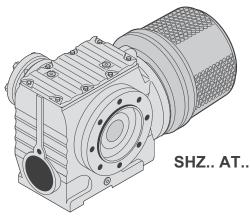

S97, m /kg			AM						
	IEC	s	100	112	132S/M	132ML	160	180	
		∂3 3 2	150	150	155	155	175	175	
S	NEMA	s	182	184	213/215	-	254/256	284/286	
		∂3 3 2	150	150	155	-	170	170	
SF: + 33 kg / SA: + -5.4 kg / SAF: + 21 kg									


11.2 Selection tables for adapters with hydraulic start-up coupling (AT..)

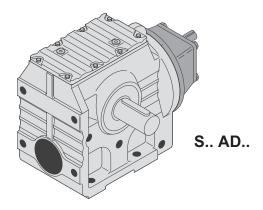


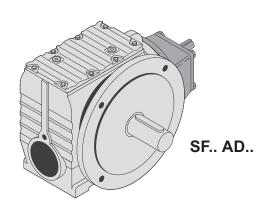


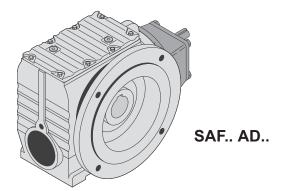


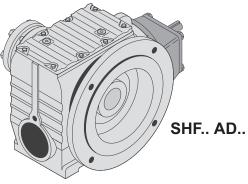


11.2.1 S..AT/DRN..4

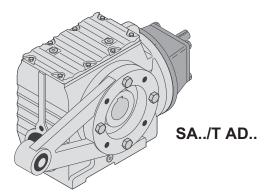

4		P _{Mot} kW		- : }-		Sn %	k <u>□</u> >
S67	DRN71M4	0.37	AT311	T11	0.42	12	
	DRN80MK4	0.55	AT312	T11D	0.55	11	
	DRN80M4	0.75	AT312	T11D	0.7	11	
	DRN90S4	1.1	AT312	T11D	0.72	15	
	DRN90L4	1.5	AT321	T21	0.85	9	
	DRN100LS4	2.2	AT321	T21	0.9	13	
	DRN100L4	3	AT322	T21D	1.53	11	
	DRN71M4	0.37	AT311	T11	0.42	12	
S77	DRN80MK4	0.55	AT312	T11D	0.55	11	(→ 🗎 588)
	DRN80M4 DRN90S4 DRN90L4	0.75	AT312	T11D	0.7	11	
		1.1	AT312	T11D	0.72	15	
		1.5	AT421	T21	0.85	9	
	DRN100LS4	2.2	AT421	T21	0.9	13	
	DRN100L4	3	AT422	T21D	1.53	11	
	DRN112M4	4	AT422	T21D	1.6	12	
S87	DRN90S4	1.1	AT312	T11D	0.72	15	
	DRN90L4	1.5	AT421	T21	0.85	9	
	DRN100LS4	2.2	AT421	T21	0.9	13	
	DRN100L4	3	AT422	T21D	1.53	11	
	DRN112M4	4	AT422	T21D	1.6	12	
	DRN132S4	5.5	AT541	T41	2	6	
	DRN132M4	7.5	AT541	T41	2.4	8	
	DRN132L4	9.2	AT541	T41	2.5	10	
	DRN160M4	11	AT541	T41	2.5	13	
	DRN160L4	15	AT542	T41D	4.2	8	

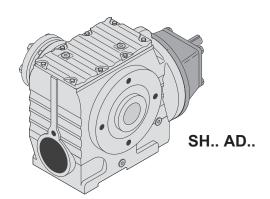

4		P _{Mot} kW		-∤}-		Sn %	├
	DRN90S4	1.1	AT312	T11D	0.72	15	
	DRN90L4	1.5	AT421	T21	0.85	9	
	DRN100LS4	2.2	AT421	T21	0.9	13	
	DRN100L4	3	AT422	T21D	1.53	11	
	DRN112M4	4	AT422	T21D	1.6	12	
S97	DRN132S4	5.5	AT541	T41	2	6	(→ 🖺 588)
391	DRN132M4	7.5	AT541	T41	2.4	8	(→ ■ 300)
	DRN132L4	9.2	AT541	T41	2.5	10	
	DRN160M4	11	AT541	T41	2.5	13	
	DRN160L4	15	AT542	T41D	4.2	8	
	DRN180M4	18.5	AT542	T41D	4.3 10		
	DRN180L4	22	AT542	T41D	4.3	14	

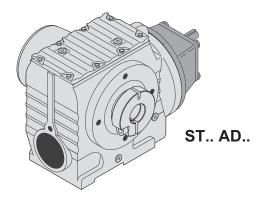

11.2.2 S..AT/DRN..2

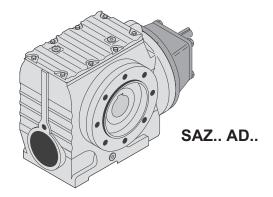

4]]		P _{Mot}		-1:3-		Sn	k [□] ≯
	DRN71M2	0.55	AT311	T11	0.19	3	
	DRN80MS2	0.75	AT311	T11	0.22	4.5	
	DRN80M2	1.1	AT311	T11	0.27	6	
S67	DRN90S2	1.5	AT311	T11	0.29	8.5	
	DRN90L2	2.2	AT311	T11	0.31	11.5	
	DRN100LM2	3	AT311	T11	0.4	12	
	DRN112M2	4	AT312	T11D	0.52	10	
	DRN71M2	0.55	AT311	T11	0.19	3	
	DRN80MS2	0.75	AT311	T11	0.22	4.5	
	DRN80M2	1.1	AT311	T11	0.27	6	
	DRN90S2	1.5	AT311	T11	0.29	8.5	
S77	DRN90L2	2.2	AT311	T11	0.31	11.5	
	DRN100LM2	3	AT311	T11	0.4	12	
	DRN112M2	4	AT312	T11D	0.52	10	(→ 🖺 588)
	DRN132S2	5.5	AT321	T21	0.6	8	(→ ■ 300)
		5.5	AT421	T21	0.6	8	
	DRN90S2	1.5	AT311	T11	0.29	8.5	
	DRN90L2	2.2	AT311	T11	0.31	11.5	
S87	DRN100LM2	3	AT311	T11	0.4	12	
301	DRN112M2	4	AT312	T11D	0.52	10	
	DRN132S2	5.5	AT321	T21	0.6	8	
	DRN132S2	5.5	AT421	T21	0.6	8	
	DRN90S2	1.5	AT311	T11	0.29	8.5	
	DRN90L2	2.2	AT311	T11	0.31	11.5	
S97	DRN100LM2	3	AT311	T11	0.4	12	
391	DRN112M2	4	AT312	T11D	0.52	10	
	DRN132S2	5.5	AT321	T21	0.6	8	
	DRN132S2	5.5	AT421	T21	0.6	8	

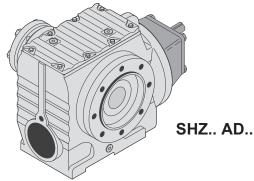
11.3 Selection tables for input shaft assembly (AD..)










21460891787

21460894219

S37 AD	, n _e = 140	0 min ⁻¹										92 Nm
i	n _a min ⁻¹	M _{amax} Nm	P _e kW	F _{Ra} ¹⁾ N	F _{Re} N	$\phi_{\text{(/R)}}$	\triangle				m kg	KEN
157.43 144.40*	8.9 9.7	92 92	0.18 0.19	3000 3000	745 745	-						
122.94	11	91	0.22	3000	740	_	_					
106.00*	13	88	0.24	3000	745	-	-	S	37	AD1	8.3	593
98.80*	14	87	0.25	3000	745	-	-	SF	37	AD1	9.6	593
86.36	16	86	0.27	3000	740	-	-	SA	37	AD1	8.0	593
80.96	17	85	0.29	3000	740	-	-	SAF	37	AD1	9.5	593
71.44*	20	84	0.31	3000	740	-	-					
63.33	22	82	0.34	3000	740	-	-					
55.93	25	81	0.31	3000	575	-	-					
53.83	26	80	0.39	3000	1820	-	-	S	37	AD2	9.4	593
								SF	37	AD2	11	593
								SA	37	AD2	9.1	593
								SAF	37	AD2	11	593
51.30*	27	81	0.33	3000	565	-	-					
43.68	32	81	0.38	3000	555	-	-					
37.66	37	79	0.43	3000	555	-	-	S	37	AD1	8.3	593
35.10*	40	78	0.45	3000	550	-	-	SF	37	AD1	9.6	593
30.68	46	76	0.49	2860	550	-	-	SA	37	AD1	8.0	593
28.76	49	75 74	0.52	2800	545	-	-	SAF	37	AD1	9.5	593
25.38* 22.50*	55 62	74 73	0.57 0.63	2660 2530	535 520	-	-					
19.89	70	73 52	0.63	2470	330	-	-					
								_		4.00		500
19.13*	73	71	0.72	2380	1740	-	-	S SF SA	37 37 37	AD2 AD2 AD2	9.4 11 9.1	593 593 593
								SAF	37	AD2	11	593
18.24*	77	52	0.51	2380	320	-	-	S	37	AD1	8.3	593
15.53	90	50	0.57	2240	320	-	-	SF	37	AD1	9.6	593
								SA	37	AD1	8.0	593
								SAF	37	AD1	9.5	593
13.39	105	49	0.65	2110	1500	-	-					
12.48*	112	48	0.68	2060	1500	-	-					
10.91	128	48	0.78	1940	1470	-	-					
10.23	137	47	0.81	1900	1470	-	-	s	37	AD2	9.4	593
9.02*	155	46	0.89	1810	1460	-	-	SF	37	AD2	11	593
8.00*	175	45	0.98	1730	1440	-	-	SA	37	AD2	9.1	593
6.80*	206	43	1.1	1630	1660	-	-	SAF	37	AD2	11	593
6.33	221	35	0.95	1670	1670	-	-					
5.38 4.86*	260 288	34 33	1.1 1.1	1570 1520	1660 1650	-	-					
3.97	200 353	33 32	1.1	1400	1630	-	-					
3.31	555	- 32	1.4	1400	1030							

S47 AD	, n _e = 140	00 min ⁻¹										170 Nm
i	n _a min ⁻¹	M _{amax} Nm	P _e kW	F _{Ra} ¹⁾ N	F _{Re} N	$\phi_{\text{(/R)}}$	\triangle			Þ	m kg	KEEN
201.00*	7.0	170	0.25	5340	680	-	-					
184.80*	7.6	170	0.27	5340	680	-	-					
158.12	8.8	170	0.30	5340	670	-	-					
137.05	10	168	0.34	5350	670	-	-					
128.10*	11	168	0.36	5350	665	-	-	S	47	AD1	11	593
110.73	13	168	0.40	5350	655	-	-	SF	47	AD1	15	593
94.08*	15	168	0.46	5350	645	-	-	SA	47	AD1	12	598
84.00*	17	167	0.51	5360	640	-	-	SAF	47	AD1	14	593
71.75*	20	167	0.58	5360	625	-	-					
69.39	20	155	0.46	5370	385	-	-					
67.20*	21	167	0.62	5360	615	-	-					
63.80*	22	155	0.50	5370	380	-	-					
56.61	25	165	0.72	5320	1780	-	-	S SF SA	47 47 47	AD2 AD2 AD2	12 16 14	593 593 598
								SAF	47	AD2	15	593

S47 AD	, n _e = 140	00 min ⁻¹										170 Nm
i	n _a min ⁻¹	M _{amax} Nm	P _e kW	F _{Ra} ¹⁾ N	F _{Re} N	$\phi_{\text{(/R)}}$	\triangle			Þ	m kg	KEH
54.59	26	155	0.57	5150	360	-	-	S	47	AD1	11	593
47.32	30	155	0.65	4850	345	-	-	SF	47	AD1	15	593
44.22*	32	155	0.69	4710	335	-	-	SA SAF	47 47	AD1 AD1	12 14	598 593
38.23	37	155	0.80	4420	1480	-	-			, , , , , , , , , , , , , , , , , , , ,		
32.48*	43	155	0.93	4120	1460	-	-					
29.00*	48	155	1.0	3920	1430	-	-					
24.77	57	155	1.2	3650	1660	-	-					
23.20*	60	152	1.2	3570	1660	-	-					
20.33	69	110	0.95	3370	990	-	-					
19.54	72	144	1.4	3370	1650	-	-					
17.62	79	110	1.1	3160	1560	-	-					
16.47*	85	110	1.2	3060	1550	-	-	S	47	AD2	12	593
14.24	98	110	1.3	2850	1530	-	-	SF	47	AD2	16	593
12.10*	116	109	1.6	2650	1520	-	M1-6	SA	47	AD2	14	598
10.80*	130	109	1.7	2500	1510	-	M1-6	SAF	47	AD2	15	593
9.23*	152	109	2.0	2310	1480	-	M1-6					
8.64*	162	109	2.1	2230	1470	-	M1-6					
7.28	192	103	2.4	2110	1460	-	M1-6					
6.83	205	78	1.9	2300	1500	-	M1-6					
6.40*	219	76	2.0	2260	1500	-	M1-6					
5.39	260	74	2.3	2110	1480	-	M1-6					
4.76	294	72	2.5	2010	1460	-	M1-6					
4.00*	350	61	2.5	1980	1500	-	M1-6					

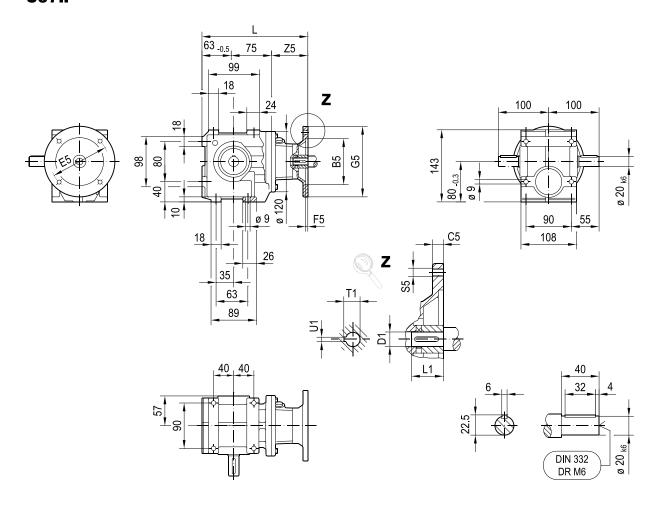
S57 AD	, n _e = 140	0 min ⁻¹										295 Nm
i	n _a min ⁻¹	M _{amax} Nm	P _e kW	F _{Ra} ¹⁾ N	F _{Re} N	$\phi_{\text{(/R)}}$	\triangle)	m kg	KEN
201.00*	7.0	295	0.40	7130	455	-	-					
184.80*	7.6	295	0.43	7130	455	-	-					
158.12	8.8	295	0.49	7130	450	-	-	S	57	AD1	15	593
137.05	10	295	0.55	7130	440	-	-	SF	57	AD1	19	593
128.10*	11	295	0.58	7130	435	-	-	SA	57	AD1	15	593
110.73	13	295	0.66	7130	410	-	-	SAF	57	AD1	18	593
94.08*	15	295	0.76	7130	395	-	-					
84.00*	17	295	0.84	7130	380	-	-					
71.75*	20	290	0.96	7170	1570	-	-					
69.39	20	245	0.71	7520	1120	-	-					
67.20*	21	285	1.0	7220	1570	-	-					
63.80*	22	245	0.77	7520	1100	-	-					
56.61	25	265	1.1	7370	1700	-	-					
54.59	26	245	0.88	7520	1080	-	-					
47.32	30	245	1.0	7520	1050	-	-					
44.22*	32	245	1.1	7520	1570	-	-					
38.23	37	245	1.2	7320	1560	-	-					
32.48*	43	245	1.4	6840	1540	-	-					
29.00*	48	245	1.6	6520	1530	-	-					
24.77	57	245	1.8	6100	1510	-	-					
23.20*	60	245	1.9	5930	1500	-	-	S	57	AD2	16	593
20.33	69	168	1.4	5690	1380	-	-	SF	57	AD2	20	593
19.54	72	215	2.0	5720	1520	-	-	SA	57	AD2	16	593
17.62	79	168	1.6	5350	1360	-	-	SAF	57	AD2	19	593
16.47*	85	168	1.8	5200	1350	-	-					
14.24	98	169	2.0	4860	1320	-	-					
12.10*	116	169	2.4	4520	1300	-	-					
10.80*	130	169	2.6	4290	1270	-	-					
9.23*	152	169	3.1	3990	1230	-	M1-6					
8.64*	162	166	3.2	3900	1230	-	M1-6					
7.28	192	146	3.3	3790	1260	-	M1-6					
6.83	205	100	2.4	4100	1380	-	M1-6					
6.40*	219	98	2.5	4010	1370	-	M1-6					
5.39	260	95	2.9	3760	1340	-	M1-6					
4.76	294	93	3.2	3590	1320	-	M1-6					
4.00*	350	88	3.6	3380	1300	-	M1-6					

29154650/EN - 03/2020

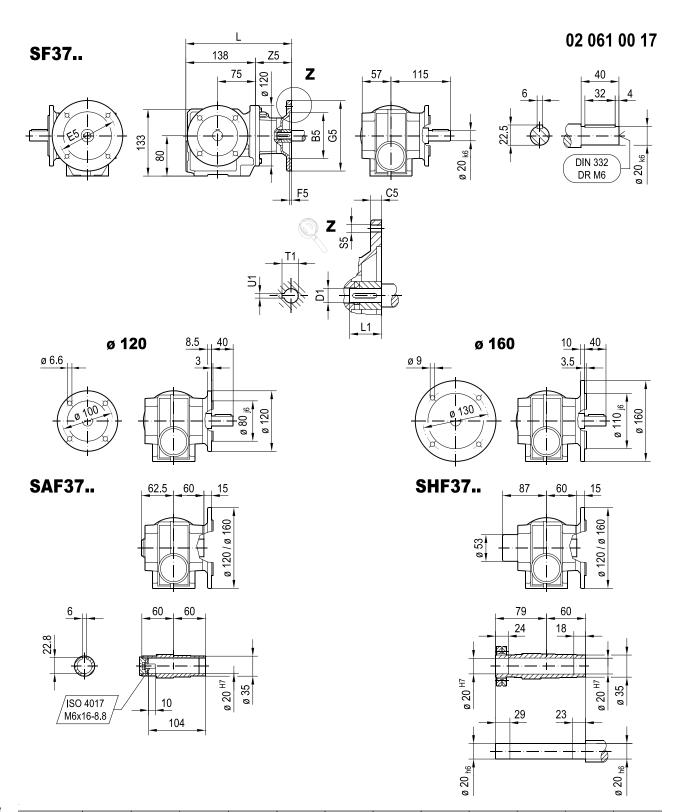
S67 AD	, n _e = 140	0 min ⁻¹									520 Nn
i	n _a min ⁻¹	M _{amax} Nm	P _e kW	F _{Ra} ¹⁾ N	F _{Re} N	$\phi_{\text{(/R)}}$	\triangle			m kg	KEY
217.41	6.4	520	0.62	8680	1480	-	-				
190.11	7.4	520	0.70	8680	1470	-	-				
180.60*	7.8	520	0.73	8680	1470	-	-				
158.45	8.8	520	0.82	8680	1440	-	-				
134.40*	10	520	0.95	8680	1420	-	-				
121.33	12	520	1.0	8680	1400	-	-	S 67		27	593
106.75*	13	520	1.2	8680	1660	-	-	SF 67		34	593
100.80*	14	520	1.2	8680	1650	-	-	SA 67		28	593
85.83	16	520	1.4	8680	1640	-	-	SAF 67	7 AD2	33	593
78.00*	18	520	1.5	8680	1630	-	-				
75.06	19	480	1.2	9020	1460	-	-				
67.57	21	520	1.7	8680	1620	-	-				
65.63	21	480	1.4	9020	1450	-	-				
62.35*	22	480	1.5	9020	1450	-	-				
58.80*	24	500	1.9	8850	2620	-	-	S 67 SF 67 SA 67 SAF 67	AD3 AD3	30 37 32 36	593 593 593 593
54.70	26	480	1.7	8670	1420			JAI UI	AD3	- 30	333
46.40*	30	480	1.9	8060	1410	_	_				
41.89	33	480	2.1	7690	1390	_	_				
36.85	38	480	2.4	7250	1380	_	_				
34.80*	40	480	2.5	7060	1370	_	_	S 67		27	593
29.63	47	480	3.0	6540	1330	_	_	SF 67		34	593
26.93	52	480	3.2	6240	1310	_	_	SA 67		28	593
24.44	52 57	340	2.4	6040	1120	_	-	SAF 67	7 AD2	33	593
23.33	60	480	3.7	5810	1280	-	-				
23.22*	60			5890		-	-				
20.37	69	340 340	2.5 2.8	5520	1120 1080	-	-				
								-			
20.30*	69	425	3.8	5760	2340	-	-	S 67 SF 67 SA 67 SAF 67	AD3 AD3	30 37 32 36	593 593 593 593
17.28*	81	340	3.3	5080	1050	-	_	S 67	7 AD2	27	593
15.60*	90	340	3.6	4820	1020	_	-	SF 67		34	593
13.73*	102	340	4.1	4510	1000	_	-	SA 67		28	593
12.96*	108	340	4.4	4310	980	-	-	SAF 67		33	593
11.03	127	340	5.1	3660	1940	_	_	S 67		30	593
10.03	140	340	5.6	3290	1910	_	M1-6	SF 67		37	593
8.69	161	335	6.4	2860	1860	_	M1-6	SA 67		32	593
7.56*	185	295	6.4	3220	1930	_	M1-6	SAF 67		36	593

S77 AD	, n _e = 140	0 min ⁻¹										1270 Nm
i	n _a min ⁻¹	M _{amax} Nm	P _e kW	F _{Ra} 1) N	F _{Re} N	$\phi_{\text{(/R)}}$	\triangle			.	m kg	KEN
256.47	5.5	1270	1.2	11700	1510	-	-					
225.26	6.2	1270	1.3	11700	1500	-	-					
214.00*	6.5	1270	1.4	11700	1510	-	-					
189.09	7.4	1270	1.5	11700	1480	-	-					
161.60*	8.7	1260	1.8	11800	1480	-	-					
148.15	9.4	1240	1.9	12000	1480	-	-					
130.00*	11	1210	2.0	12200	1480	-	-					
123.20*	11	1200	2.1	12300	1480	-	-					
107.83	13	1170	2.4	12600	1470	-	-		77	AD2	47	502
97.14	14	1140	2.5	12800	1460	-	-	S SF	77	AD2 AD2	47 57	593
85.22	16	1100	2.8	13100	1460	-	-	SA	77		57 47	593
75.20*	19	1070	3.0	12800	1450	-	-		77	AD2		593
75.09	19	1100	2.6	11900	1090	-	-	SAF	//	AD2	53	593
71.33	20	1100	2.8	11600	1090	-	-					
66.67	21	1040	3.3	12300	1440	-	-					
63.03	22	1100	3.1	10900	1040	-	-					
56.92	25	990	3.6	11600	1430	-	-					
53.87	26	1100	3.6	10100	1010	-	-					
49.38	28	1100	3.9	9650	1000	-	-					
43.33	32	1100	4.4	9010	970	-	-					
41.07	34	1100	4.7	8750	950	-	-					

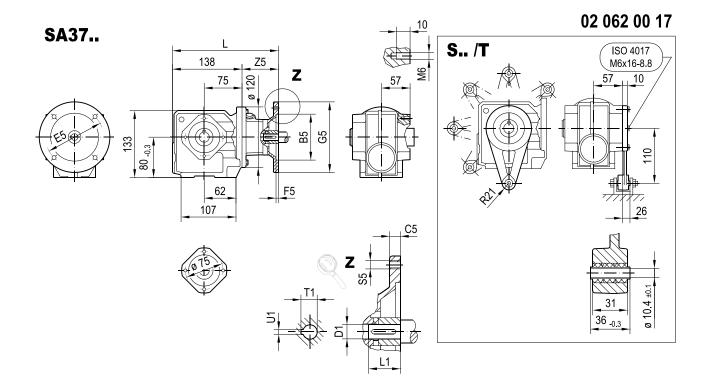
S77 AD	, n _e = 140	0 min ⁻¹										1270 Nm
i	n _a min ⁻¹	M _{amax} Nm	P _e kW	F _{Ra} ¹⁾ N	F _{Re} N	$\phi_{\text{(/R)}}$	\triangle			=	m kg	KEN
35.94	39	1100	5.3	8140	1950	-	-					
32.38	43	1090	5.8	7720	1920	-	-					
28.41	49	1050	6.4	7370	1910	-	-					
25.07	56	1020	7.0	7010	1890	-	-					
22.89	61	705	5.1	5960	1680	-	-		77	AD2	ΕO	502
22.22	63	980	7.5	6740	1880	-	-	S SF	77	AD3 AD3	50 60	593 593
20.99	67	705	5.6	5380	1660	-	-	SA	77		50	
18.97	74	930	8.3	6390	1860	-	-	SAF	77	AD3	50 57	593 503
18.42	76	705	6.3	4550	1620	-	-	SAF	11	AD3	57	593
17.45	80	710	6.7	4120	1590	-	-					
15.28	92	710	7.6	3320	1540	-	-					
13.76	102	710	8.4	2710	1480	-	-					
12.07	116	720	9.7	1800	1390	-	M1-6					
10.65	131	720	11.0	1130	3300	-	M1-6	S	77	AD4	57	593
9.44	148	725	12.4	415	3220	-	M1-6	SF	77	AD4	66	593
8.06	174	680	13.6	440	3210	-	M1-6	SA SAF	77 77	AD4 AD4	56 63	593 593

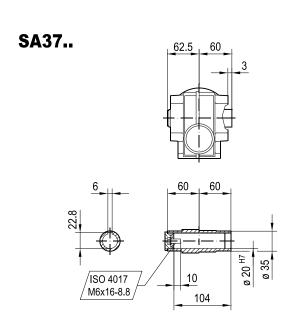

S87 AD	, n _e = 140	00 min ⁻¹										2280 Nm
i	n _a min ⁻¹	M _{amax} Nm	P _e kW	F _{Ra} ¹⁾ N	F _{Re} N	$\phi_{\text{(/R)}}$	\triangle				m kg	KEN
288.00*	4.9	2280	1.8	27900	1390	-	-					
258.18	5.4	2280	1.9	27900	1380	-	-					
222.40*	6.3	2280	2.2	27900	1370	-	-					
202.96	6.9	2260	2.4	28000	1370	-	-					
180.00*	7.8	2210	2.6	28100	1370	-	-					
151.30	9.2	2150	3.0	28200	1360	-	-					
139.05	10	2100	3.2	28300	1360	-	-	S	87	AD2	83	593
123.48	11	2060	3.5	28300	1360	-	-	SF	87	AD2	105	593
110.40*	13	2000	3.8	28400	1350	-	-	SA	87	AD2	80	593
99.26	14	1960	4.1	28500	1340	-	-	SAF	87	AD2	97	593
91.20*	15	1510	2.9	29100	1040	-	-					
86.15	16	1880	4.5	28600	1340	-	-					
81.76	17	1600	3.4	29000	970	-	-					
77.14	18	1820	4.8	28700	1330	-	-					
70.43	20	1600	4.0	29000	950	-	-					
64.27	22	1600	4.3	29000	930	-	-					
64.00*	22	1700	5.3	28900	2250	-	-	S SF SA SAF	87 87 87 87	AD3 AD3 AD3 AD3	87 110 85 100	593 593 593 593
57.00*	25	1600	4.9	29000	910	-	-	S SF SA SAF	87 87 87 87	AD2 AD2 AD2 AD2	83 105 80 97	593 593 593 593
47.91	29	1600	5.8	29000	1820	-	-					
44.03	32	1600	6.2	29000	1800	-	-	S	87	AD3	87	593
39.10	36	1600	7.0	28200	1760	-	-	SF	87	AD3	110	593
34.96*	40	1600	7.8	27100	1720	-	-	SA	87	AD3	85	593
31.43	45	1600	8.6	26000	1680	-	-	SAF	87	AD3	100	593
27.28	51	1600	9.9	24700	1620	-	-					
25.50*	55	1240	8.0	23400	3310	_	_					
24.43	57	1600	11.1	23700	3590	_	_					
21.43	65	1240	9.5	21800	3260	_	_					
20.27	69	1600	13.2	22100	3490	_	_					
19.70	71	1240	10.3	21100	3200	_	_	S	87	AD4	93	593
17.49	80	1240	11.5	20200	3150	_	_	SF	87	AD4	115	593
15.64*	90	1240	12.8	19300	3100	_	_	SA	87	AD4	91	593
14.06	100	1240	14.3	18500	3040	_	_	SAF	87	AD4	105	593
12.21	115	1240	16.4	17400	2950	_	M1-6	0,7,1	J.	707	100	000
10.93	128	1240	18.2	16400	2870	_	M1-6					
9.07	154	1140	20	15900	2860	_	M1-6					
7.88	178	1010	21	15700	2980	_	M1-6					
7.00	170	1010		10700	2000		1011 0					

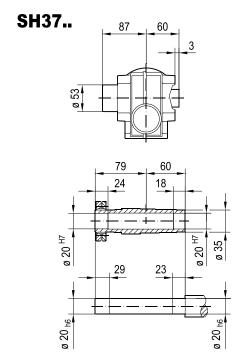
29154650/EN - 03/2020

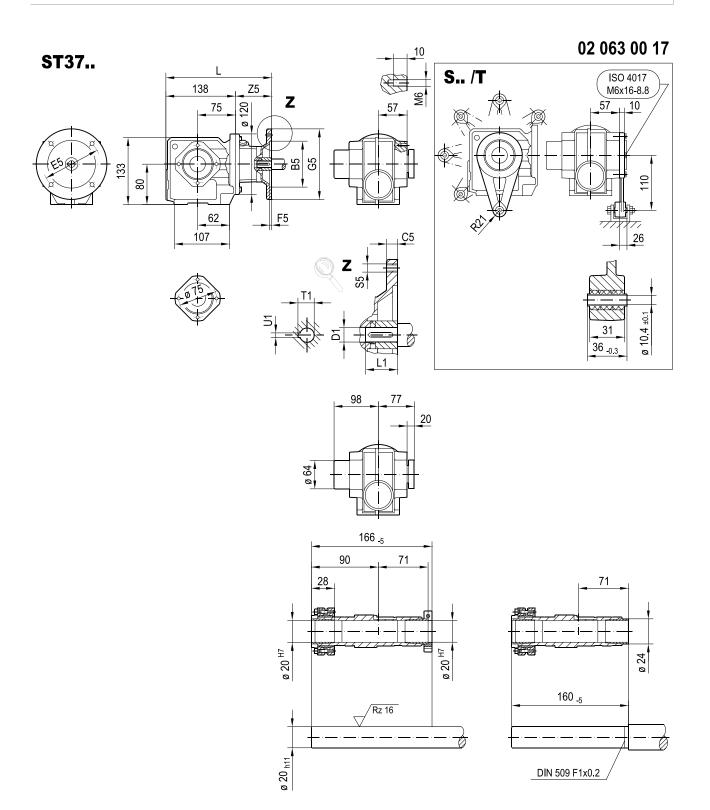

S97 AD	, n _e = 140	00 min ⁻¹										4000 Nm
i	n _a min ⁻¹	M _{amax} Nm	P _e kW	F _{Ra} ¹⁾ N	F _{Re} N	$\phi_{\text{(/R)}}$	\triangle			1	m kg	K ^{III}
286.40*	4.9	4000	3.0	33200	2100	-	-					
262.22	5.3	4000	3.2	33200	2100	-	-					
231.67	6.0	4000	3.6	33200	2080	-	-					
196.52	7.1	4000	4.2	33200	2060	-	-					
180.95	7.7	3920	4.5	33400	2060	-	-	S	97	AD3	145	593
161.74	8.7	3840	4.8	33500	2060	-	-	SF	97	AD3	180	593
145.60*	9.6	3730	5.2	33700	2060	-	-	SA	97	AD3	140	593
131.85	11	3650	5.6	33900	2060	-	-	SAF	97	AD3	165	593
116.92 105.71	12 13	3510 3440	6.0 6.5	34100 34300	2060 2060	-	-					
89.60*	16	3240	7.2	34600	2050	-	-					
80.85	17	3230	6.8	34600	1280	-	-					
78.26	18	3080	7.8	34800	2050	_	-					
								-				
71.43	20	3300	7.9	34500	3300	-	-	S	97	AD4	150	593
								SF	97	AD4	185	593
								SA	97	AD4	145	593
								SAF	97	AD4	170	593
65.45	21	2900	8.7	35100	2030	-	-	S	97	AD3	145	593
								SF	97	AD3	180	593
								SA	97	AD3	140	593
								SAF	97	AD3	165	593
60.59	23	3300	9.2	34500	3260	-	-					
55.79	25	3300	10.0	34500	3210	-	-	s	97	AD4	150	593
49.87	28	3300	11.1	34500	3180	-	-	SF	97	AD4 AD4	185	593
44.89	31	3300	12.3	34100	3130	-	-	SA	97	AD4 AD4	145	593
40.65	34	3300	13.6	32800	3090	-	-	SAF	97	AD4 AD4	170	593
36.05	39	3300	15.3	31300	3040	-	-	JAI	31	AD-1	170	393
32.60	43	3200	16.3	30400	3030	-	-					
27.63	51	3010	18.1	29000	6220	_	-	S	97	AD5	170	593
								SF	97	AD5	200	593
								SA	97	AD5	165	593
								SAF	97	AD5	190	593
26.39	53	2600	15.8	26100	2040	_	_	S	97	AD4	150	593
		_000		_0.00	_0.0			SF	97	AD4	185	593
								SA	97	AD4	145	593
								SAF	97	AD4	170	593
24.13	58	2870	19.7	28000	6220		_					
23.59	59	2600	17.7	24500	5470	-	-					
21.23	66	2600	19.6	22800	5410	_	_					
19.23	73	2600	22	21200	5350	_	_	s	97	AD5	170	593
17.05	82	2570	24	19700	5300	_	M1-6	SF	97	AD5	200	593
15.42	91	2470	26	19400	5320	_	M1-6	SA	97	AD5	165	593
13.07	107	2330	28	18800	5300	_	M1-6	SAF	97	AD5	190	593
11.41	123	2210	31	18400	5310	-	M1-6			-		
9.55	147	2040	34	18200	5310	-	M1-6					
8.26	169	1770	34	18800	5480	-	M1-6					

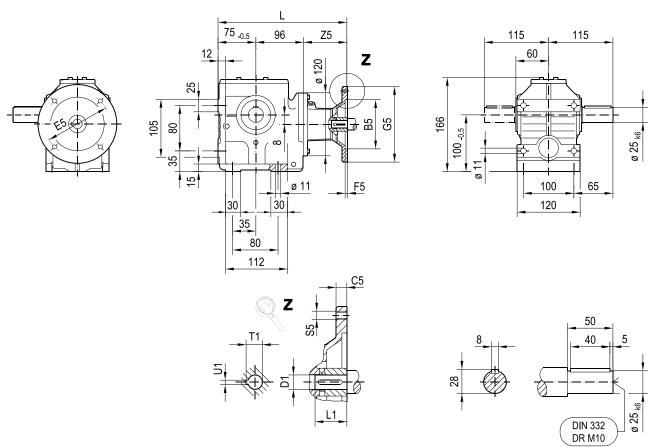
11.4 Dimension sheets for adapters for mounting IEC motors (AM..)


S37.. 02 060 00 17



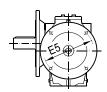

(→ [7.2.10)	B5	C5	E5	F5	G5	L	S5	Z5	D1	L1	T1	U1
AM63	95	10	115	3.5	140	210	M8	72	11	23	12.8	4
AM71	110	10	130	4	160	210	M8	72	14	30	16.3	5
AM80	130	12	165	4.5	200	244	M10	106	19	40	21.8	6
AM90	130	12	165	4.5	200	244	M10	106	24	50	27.3	8

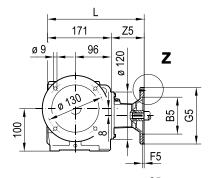

(→ []] 7.2.10)	B5	C5	E5	F5	G5	L	S5	Z5	D1	L1	T1	U1
AM63	95	10	115	3.5	140	210	M8	72	11	23	12.8	4
AM71	110	10	130	4	160	210	M8	72	14	30	16.3	5
AM80	130	12	165	4.5	200	244	M10	106	19	40	21.8	6
AM90	130	12	165	4.5	200	244	M10	106	24	50	27.3	8

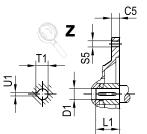

(→ [] 7.2.10)	B5	C5	E5	F5	G5	L	S5	Z 5	D1	L1	T1	U1
AM63	95	10	115	3.5	140	210	M8	72	11	23	12.8	4
AM71	110	10	130	4	160	210	M8	72	14	30	16.3	5
AM80	130	12	165	4.5	200	244	M10	106	19	40	21.8	6
AM90	130	12	165	4.5	200	244	M10	106	24	50	27.3	8

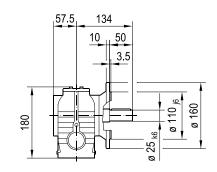
(→ [] 7.2.10)	B5	C5	E5	F5	G5	L	S5	Z5	D1	L1	T1	U1
AM63	95	10	115	3.5	140	210	M8	72	11	23	12.8	4
AM71	110	10	130	4	160	210	M8	72	14	30	16.3	5
AM80	130	12	165	4.5	200	244	M10	106	19	40	21.8	6
AM90	130	12	165	4.5	200	244	M10	106	24	50	27.3	8

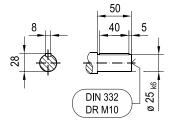
02 012 03 01

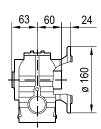

S47..

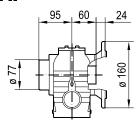


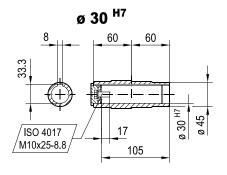

(→ [] 7.2.10)	B5	C5	E5	F5	G5	L	S5	Z5	D1	L1	T1	U1
AM63	95	10	115	3.5	140	243	M8	72	11	23	12.8	4
AM71	110	10	130	4	160	243	M8	72	14	30	16.3	5
AM80	130	12	165	4.5	200	277	M10	106	19	40	21.8	6
AM90	130	12	165	4.5	200	277	M10	106	24	50	27.3	8

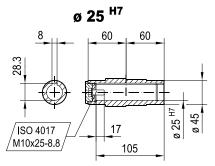

02 013 03 01

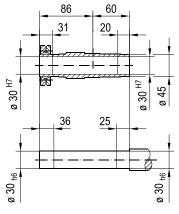

SF47..



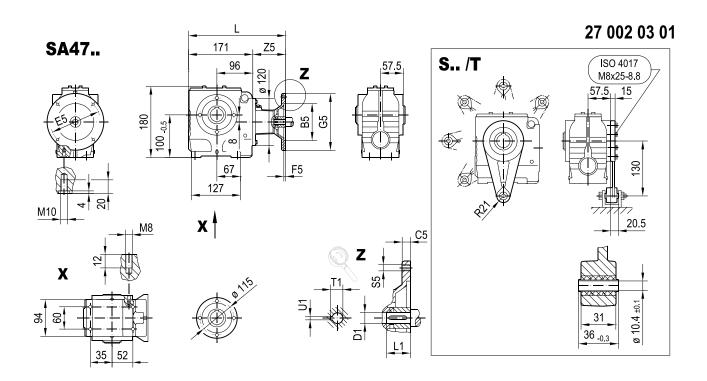


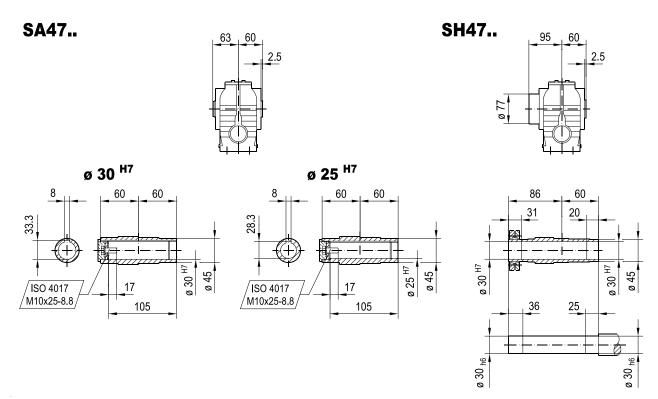



SAF47..

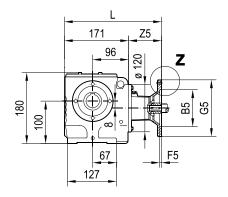


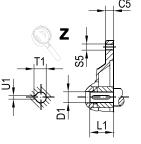
SHF47..

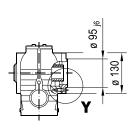


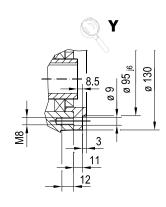


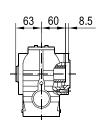
(→ [] 7.2.10)	B5	C5	E5	F5	G5	L	S5	Z5	D1	L1	T1	U1
AM63	95	10	115	3.5	140	243	M8	72	11	23	12.8	4
AM71	110	10	130	4	160	243	M8	72	14	30	16.3	5
AM80	130	12	165	4.5	200	277	M10	106	19	40	21.8	6
AM90	130	12	165	4.5	200	277	M10	106	24	50	27.3	8



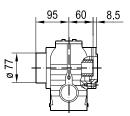


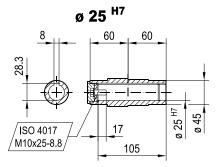

(→ []] 7.2.10)	B5	C5	E5	F5	G5	L	S5	Z 5	D1	L1	T1	U1
AM63	95	10	115	3.5	140	243	M8	72	11	23	12.8	4
AM71	110	10	130	4	160	243	M8	72	14	30	16.3	5
AM80	130	12	165	4.5	200	277	M10	106	19	40	21.8	6
AM90	130	12	165	4.5	200	277	M10	106	24	50	27.3	8

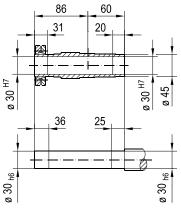


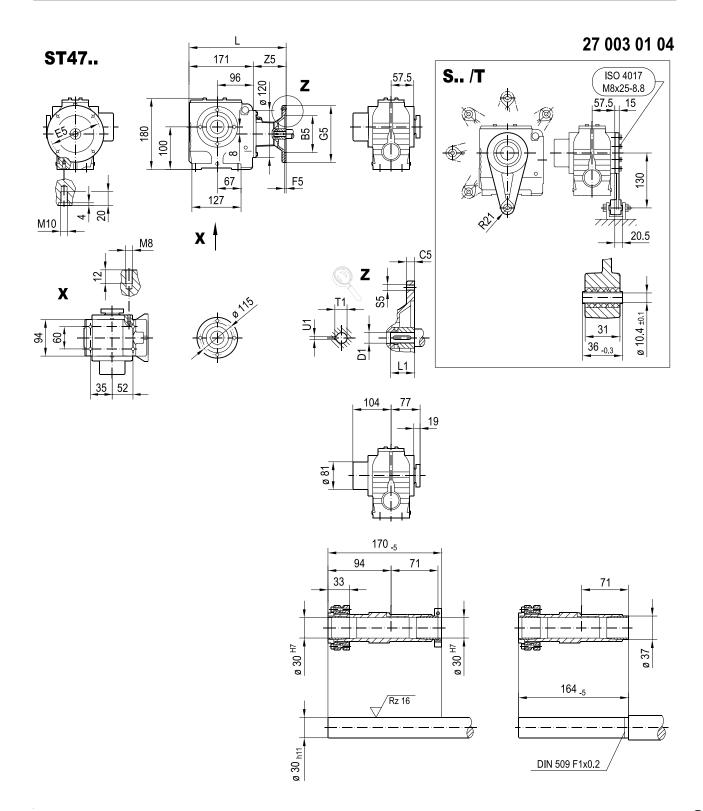


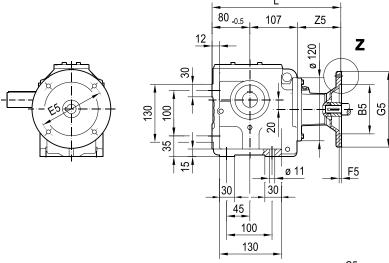
27 003 03 01

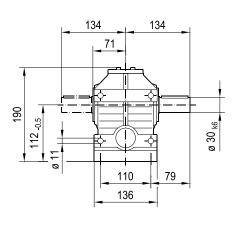


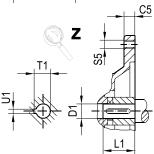

SAZ47...

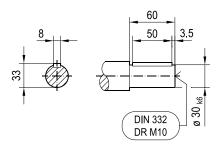




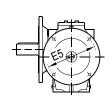

(→ [7.2.10)	B5	C5	E5	F5	G5	L	S5	Z 5	D1	L1	T1	U1
AM63	95	10	115	3.5	140	243	M8	72	11	23	12.8	4
AM71	110	10	130	4	160	243	M8	72	14	30	16.3	5
AM80	130	12	165	4.5	200	277	M10	106	19	40	21.8	6
AM90	130	12	165	4.5	200	277	M10	106	24	50	27.3	8

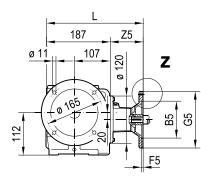


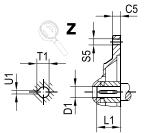

(→ [] 7.2.10)	B5	C5	E5	F5	G5	L	S5	Z5	D1	L1	T1	U1
AM63	95	10	115	3.5	140	243	M8	72	11	23	12.8	4
AM71	110	10	130	4	160	243	M8	72	14	30	16.3	5
AM80	130	12	165	4.5	200	277	M10	106	19	40	21.8	6
AM90	130	12	165	4.5	200	277	M10	106	24	50	27.3	8

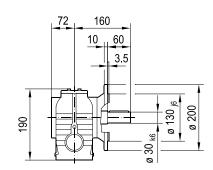

02 014 02 01

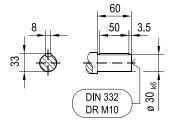
S57..

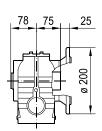


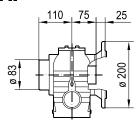


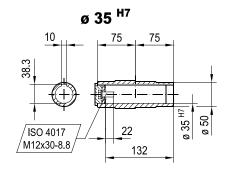

(→ [] 7.2.10)	B5	C5	E5	F5	G5	L	S5	Z 5	D1	L1	T1	U1
AM63	95	10	115	3.5	140	259	M8	72	11	23	12.8	4
AM71	110	10	130	4	160	259	M8	72	14	30	16.3	5
AM80	130	12	165	4.5	200	293	M10	106	19	40	21.8	6
AM90	130	12	165	4.5	200	293	M10	106	24	50	27.3	8

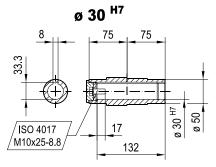

02 015 03 01

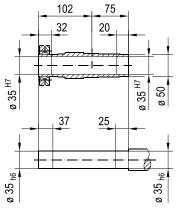

SF57..

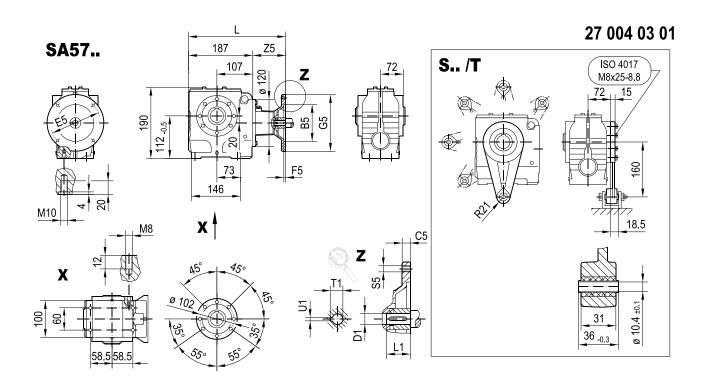


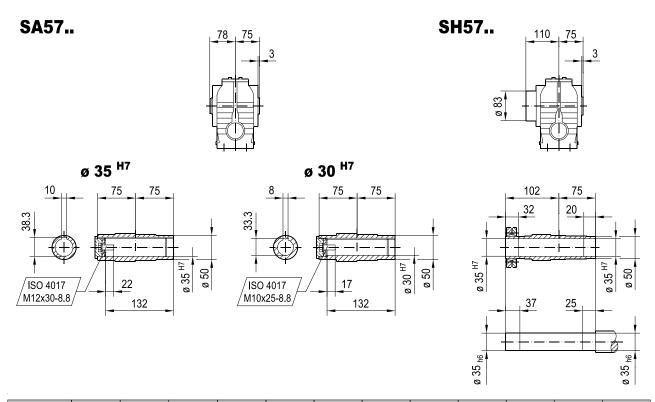




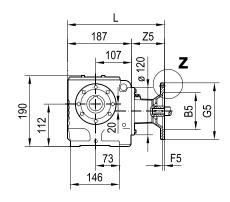

SAF57..

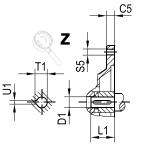


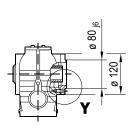




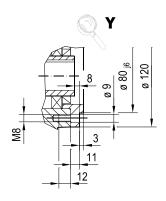
(→ []] 7.2.10)	B5	C5	E5	F5	G5	1	S5	Z 5	D1	11	T1	U1
AM63	95	10	115	3.5	140	259	M8	72	11	23	12.8	4
AM71	110	10	130	4	160	259	M8	72	14	30	16.3	5
AM80	130	12	165	4.5	200	293	M10	106	19	40	21.8	6
AM90	130	12	165	4.5	200	293	M10	106	24	50	27.3	8

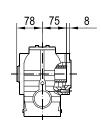




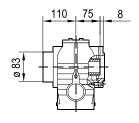

(→ [] 7.2.10)	B5	C5	E5	F5	G5	L	S5	Z5	D1	L1	T1	U1
AM63	95	10	115	3.5	140	259	M8	72	11	23	12.8	4
AM71	110	10	130	4	160	259	M8	72	14	30	16.3	5
AM80	130	12	165	4.5	200	293	M10	106	19	40	21.8	6
AM90	130	12	165	4.5	200	293	M10	106	24	50	27.3	8

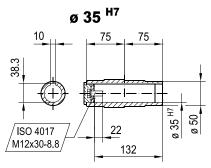
SAZ57..

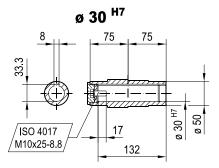


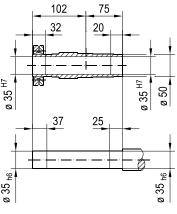


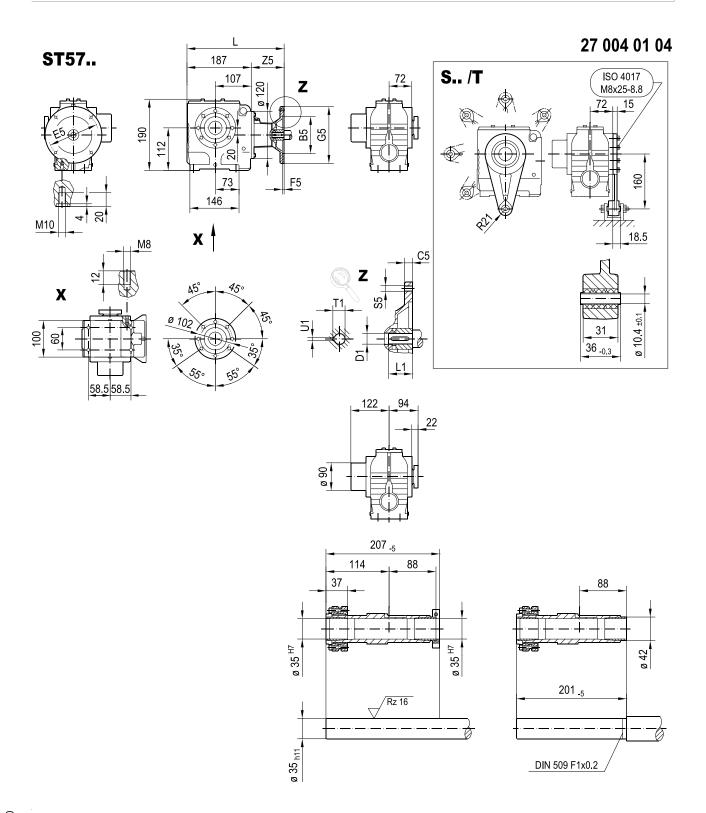
27 005 02 01

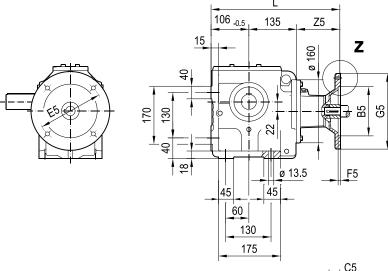


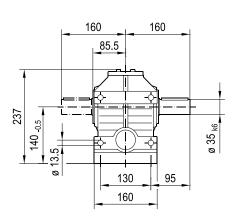


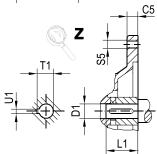

SAZ57..

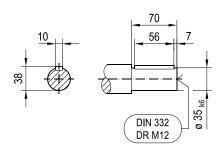




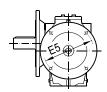

(→ [] 7.2.10)	B5	C5	E5	F5	G5	L	S5	Z 5	D1	L1	T1	U1
AM63	95	10	115	3.5	140	259	M8	72	11	23	12.8	4
AM71	110	10	130	4	160	259	M8	72	14	30	16.3	5
AM80	130	12	165	4.5	200	293	M10	106	19	40	21.8	6
AM90	130	12	165	4.5	200	293	M10	106	24	50	27.3	8

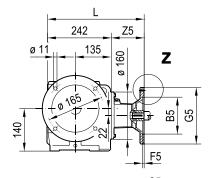



(→ [] 7.2.10)	B5	C5	E5	F5	G5	L	S5	Z5	D1	L1	T1	U1
AM63	95	10	115	3.5	140	259	M8	72	11	23	12.8	4
AM71	110	10	130	4	160	259	M8	72	14	30	16.3	5
AM80	130	12	165	4.5	200	293	M10	106	19	40	21.8	6
AM90	130	12	165	4.5	200	293	M10	106	24	50	27.3	8

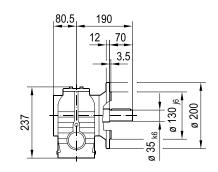

02 016 02 01

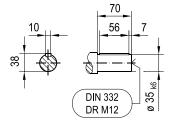
S67..

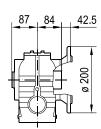


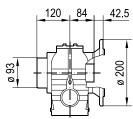


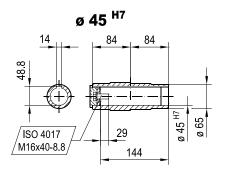
(→ [] 7.2.10)	B5	C5	E5	F5	G5	L	S5	Z 5	D1	L1	T1	U1
AM63	95	10	115	3.5	140	307	M8	66	11	23	12.8	4
AM71	110	10	130	4	160	307	M8	66	14	30	16.3	5
AM80	130	12	165	4.5	200	340	M10	99	19	40	21.8	6
AM90	130	12	165	4.5	200	340	M10	99	24	50	27.3	8
AM100	180	15	215	5	250	375	M12	134	28	60	31.3	8
AM112	180	15	215	5	250	375	M12	134	28	60	31.3	8
AM132S/M	230	16	265	5	300	432	M12	191	38	80	41.3	10

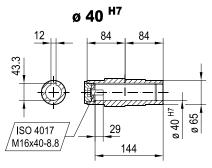

02 017 02 01

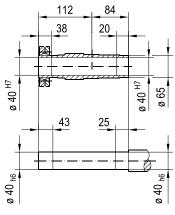

SF67...

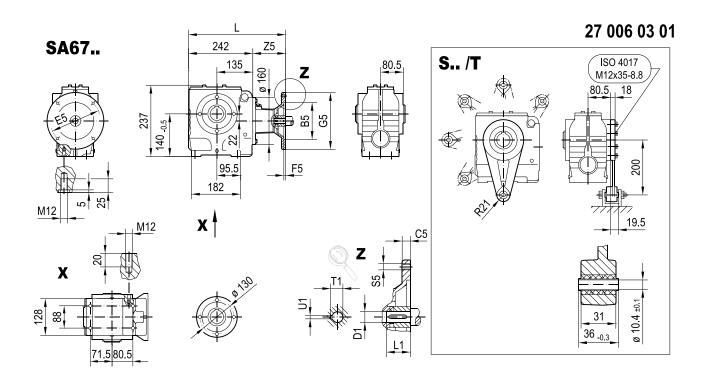


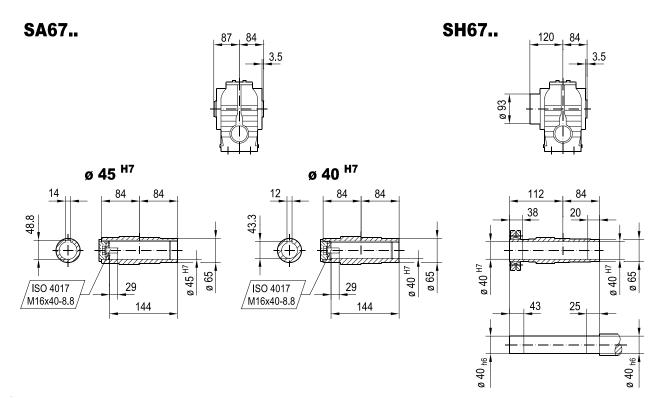




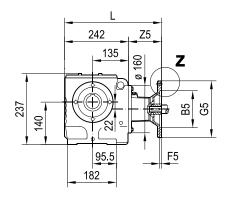

SAF67..

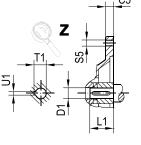


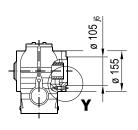


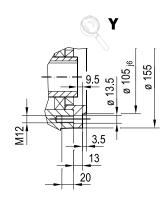


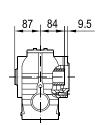
(→ [] 7.2.10)	B5	C5	E5	F5	G5	L	S5	Z 5	D1	L1	T1	U1
AM63	95	10	115	3.5	140	308	M8	66	11	23	12.8	4
AM71	110	10	130	4	160	308	M8	66	14	30	16.3	5
AM80	130	12	165	4.5	200	341	M10	99	19	40	21.8	6
AM90	130	12	165	4.5	200	341	M10	99	24	50	27.3	8
AM100	180	15	215	5	250	376	M12	134	28	60	31.3	8
AM112	180	15	215	5	250	376	M12	134	28	60	31.3	8
AM132S/M	230	16	265	5	300	433	M12	191	38	80	41.3	10



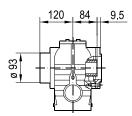


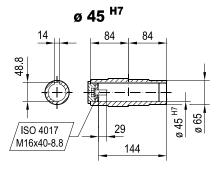

(→ [] 7.2.10)	B5	C5	E5	F5	G5	L	S5	Z5	D1	L1	T1	U1
AM63	95	10	115	3.5	140	308	M8	66	11	23	12.8	4
AM71	110	10	130	4	160	308	M8	66	14	30	16.3	5
AM80	130	12	165	4.5	200	341	M10	99	19	40	21.8	6
AM90	130	12	165	4.5	200	341	M10	99	24	50	27.3	8
AM100	180	15	215	5	250	376	M12	134	28	60	31.3	8
AM112	180	15	215	5	250	376	M12	134	28	60	31.3	8
AM132S/M	230	16	265	5	300	433	M12	191	38	80	41.3	10

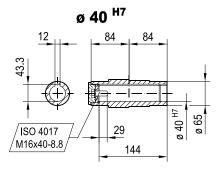


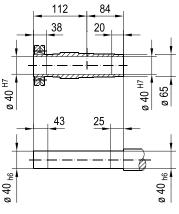


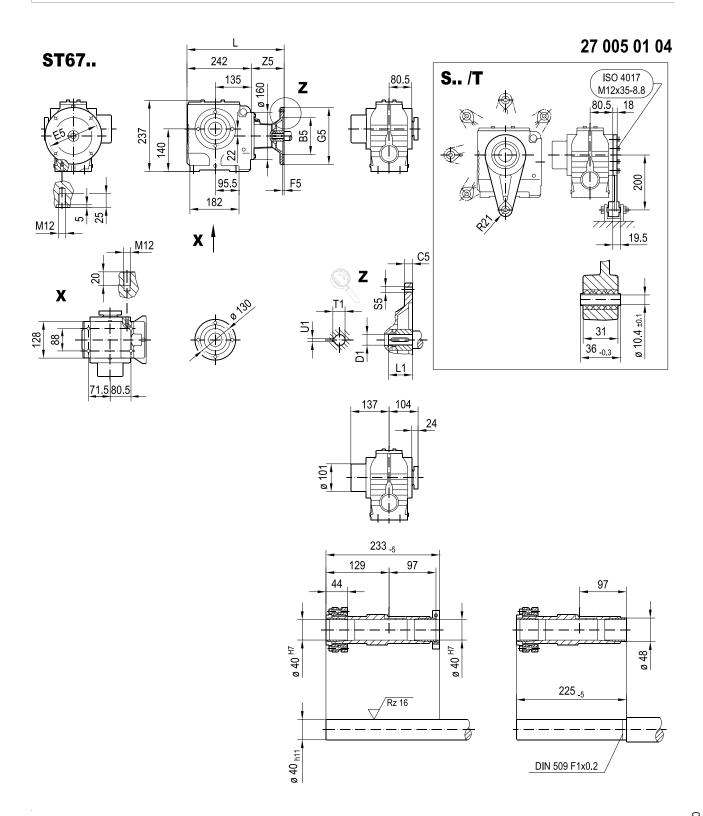
27 007 02 01

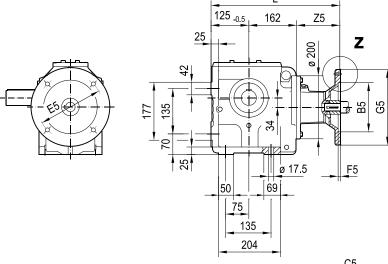


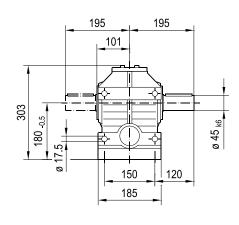


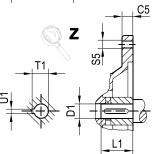

SAZ67...





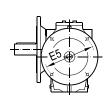

(→ [7.2.10)	B5	C5	E5	F5	G5	L	S5	Z 5	D1	L1	T1	U1
AM63	95	10	115	3.5	140	308	M8	66	11	23	12.8	4
AM71	110	10	130	4	160	308	M8	66	14	30	16.3	5
AM80	130	12	165	4.5	200	341	M10	99	19	40	21.8	6
AM90	130	12	165	4.5	200	341	M10	99	24	50	27.3	8
AM100	180	15	215	5	250	376	M12	134	28	60	31.3	8
AM112	180	15	215	5	250	376	M12	134	28	60	31.3	8
AM132S/M	230	16	265	5	300	433	M12	191	38	80	41.3	10

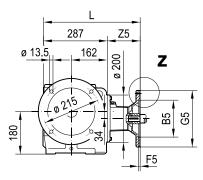


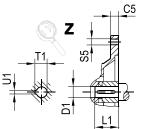

(→ [] 7.2.10)	B5	C5	E5	F5	G5	L	S5	Z 5	D1	L1	T1	U1
AM63	95	10	115	3.5	140	308	M8	66	11	23	12.8	4
AM71	110	10	130	4	160	308	M8	66	14	30	16.3	5
AM80	130	12	165	4.5	200	341	M10	99	19	40	21.8	6
AM90	130	12	165	4.5	200	341	M10	99	24	50	27.3	8
AM100	180	15	215	5	250	376	M12	134	28	60	31.3	8
AM112	180	15	215	5	250	376	M12	134	28	60	31.3	8
AM132S/M	230	16	265	5	300	433	M12	191	38	80	41.3	10

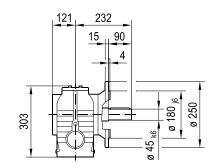
02 018 02 01

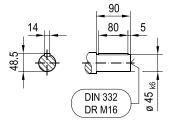
\$77..

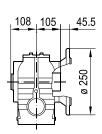


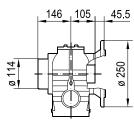


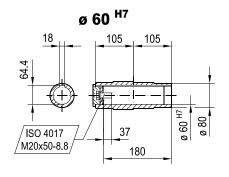

(→ []] 7.2.10)	B5	C5	E5	F5	G5	L	S5	Z5	D1	L1	T1	U1
AM63	95	10	115	3.5	140	347	M8	60	11	23	12.8	4
AM71	110	10	130	4	160	347	M8	60	14	30	16.3	5
AM80	130	12	165	4.5	200	379	M10	92	19	40	21.8	6
AM90	130	12	165	4.5	200	379	M10	92	24	50	27.3	8
AM100	180	15	215	5	250	413	M12	126	28	60	31.3	8
AM112	180	15	215	5	250	413	M12	126	28	60	31.3	8
AM132S/M	230	16	265	5	300	466	M12	179	38	80	41.3	10
AM132ML	230	16	265	5	300	466	M12	179	38	80	41.3	10

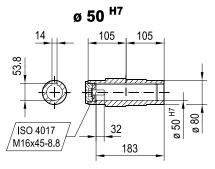

02 019 02 01

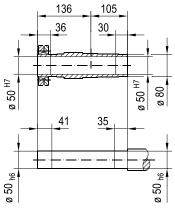

SF77..

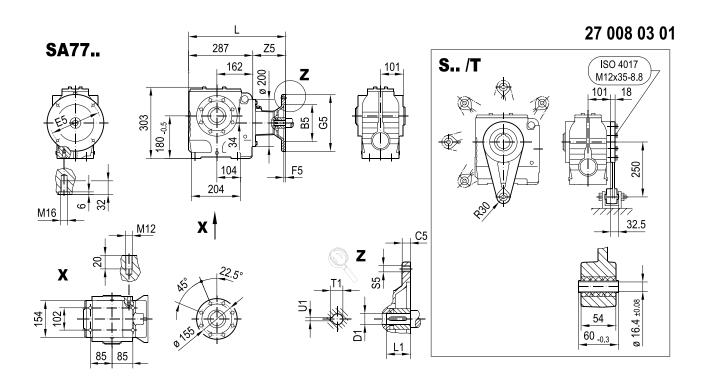


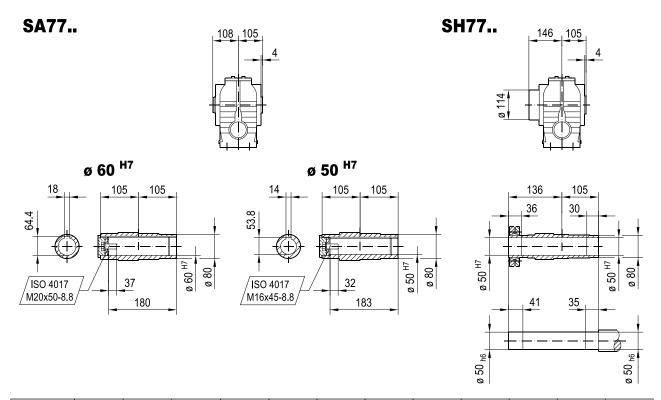





SAF77..

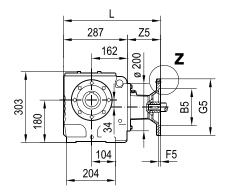


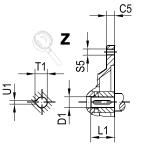


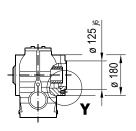


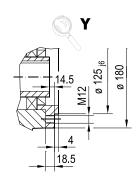
/ m 7 0 40V	Dr	0.5			0.5		0.5	75	D4	1.4	T4	114
(→ [] 7.2.10)	B5	C5	E5	F5	G5	L	S5	Z 5	D1	L1	11	U1
AM63	95	10	115	3.5	140	347	M8	60	11	23	12.8	4
AM71	110	10	130	4	160	347	M8	60	14	30	16.3	5
AM80	130	12	165	4.5	200	379	M10	92	19	40	21.8	6
AM90	130	12	165	4.5	200	379	M10	92	24	50	27.3	8
AM100	180	15	215	5	250	413	M12	126	28	60	31.3	8
AM112	180	15	215	5	250	413	M12	126	28	60	31.3	8
AM132S/M	230	16	265	5	300	466	M12	179	38	80	41.3	10
AM132ML	230	16	265	5	300	466	M12	179	38	80	41.3	10

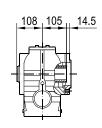
29154650/EN - 03/2020



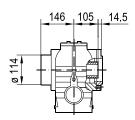


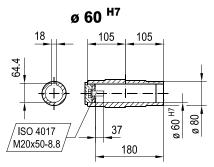

(→ []] 7.2.10)	B5	C5	E5	F5	G5	L	S5	Z 5	D1	L1	T1	U1
AM63	95	10	115	3.5	140	347	M8	60	11	23	12.8	4
AM71	110	10	130	4	160	347	M8	60	14	30	16.3	5
AM80	130	12	165	4.5	200	379	M10	92	19	40	21.8	6
AM90	130	12	165	4.5	200	379	M10	92	24	50	27.3	8
AM100	180	15	215	5	250	413	M12	126	28	60	31.3	8
AM112	180	15	215	5	250	413	M12	126	28	60	31.3	8
AM132S/M	230	16	265	5	300	466	M12	179	38	80	41.3	10
AM132ML	230	16	265	5	300	466	M12	179	38	80	41.3	10

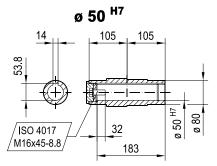


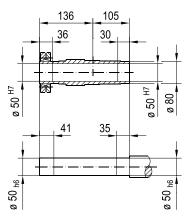


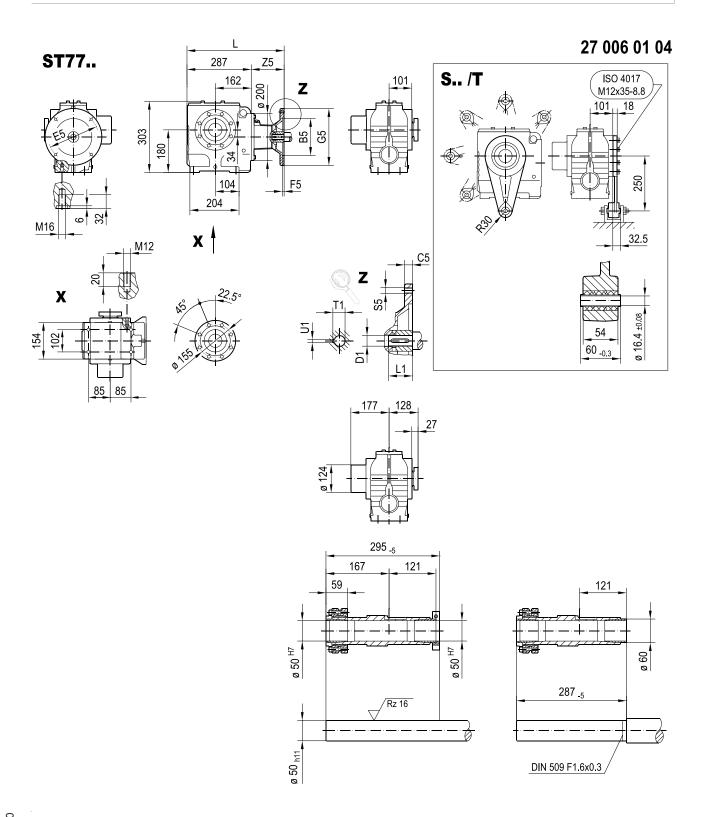
27 009 02 01

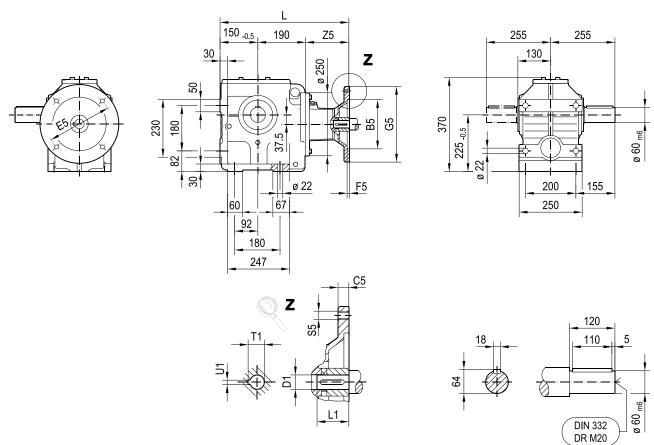





SAZ77..

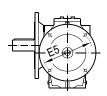


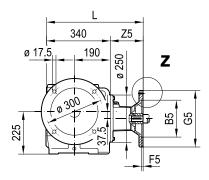


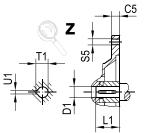

(→ [] 7.2.10)	B5	C5	E5	F5	G5	L	S5	Z5	D1	L1	T1	U1
AM63	95	10	115	3.5	140	347	M8	60	11	23	12.8	4
AM71	110	10	130	4	160	347	M8	60	14	30	16.3	5
AM80	130	12	165	4.5	200	379	M10	92	19	40	21.8	6
AM90	130	12	165	4.5	200	379	M10	92	24	50	27.3	8
AM100	180	15	215	5	250	413	M12	126	28	60	31.3	8
AM112	180	15	215	5	250	413	M12	126	28	60	31.3	8
AM132S/M	230	16	265	5	300	466	M12	179	38	80	41.3	10
AM132ML	230	16	265	5	300	466	M12	179	38	80	41.3	10

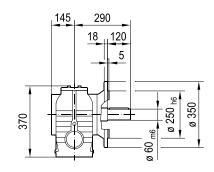
(→ [] 7.2.10)	B5	C5	E5	F5	G5	L	S5	Z 5	D1	L1	T1	U1
AM63	95	10	115	3.5	140	347	M8	60	11	23	12.8	4
AM71	110	10	130	4	160	347	M8	60	14	30	16.3	5
AM80	130	12	165	4.5	200	379	M10	92	19	40	21.8	6
AM90	130	12	165	4.5	200	379	M10	92	24	50	27.3	8
AM100	180	15	215	5	250	413	M12	126	28	60	31.3	8
AM112	180	15	215	5	250	413	M12	126	28	60	31.3	8
AM132S/M	230	16	265	5	300	466	M12	179	38	80	41.3	10
AM132ML	230	16	265	5	300	466	M12	179	38	80	41.3	10

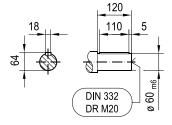
02 020 01 01

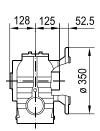

S87..

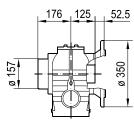


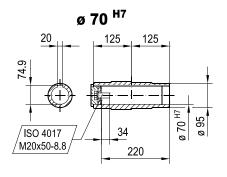

(→ [] 7.2.10)	B5	C5	E5	F5	G5	L	S5	Z 5	D1	L1	T1	U1
AM80	130	12	165	4.5	200	427	M10	87	19	40	21.8	6
AM90	130	12	165	4.5	200	427	M10	87	24	50	27.3	8
AM100	180	15	215	5	250	461	M12	121	28	60	31.3	8
AM112	180	15	215	5	250	461	M12	121	28	60	31.3	8
AM132S/M	230	16	265	5	300	514	M12	174	38	80	41.3	10
AM132ML	230	16	265	5	300	514	M12	174	38	80	41.3	10
AM160	250	18	300	6	350	572	M16	232	42	110	45.3	12

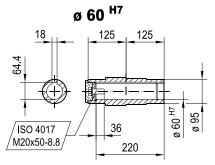

02 021 01 01

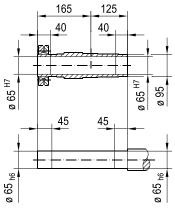

SF87...

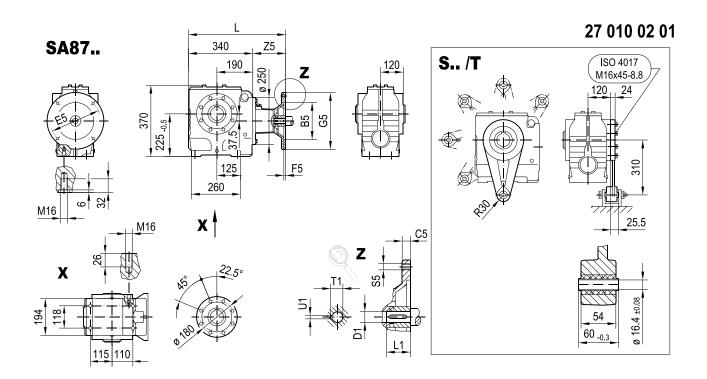


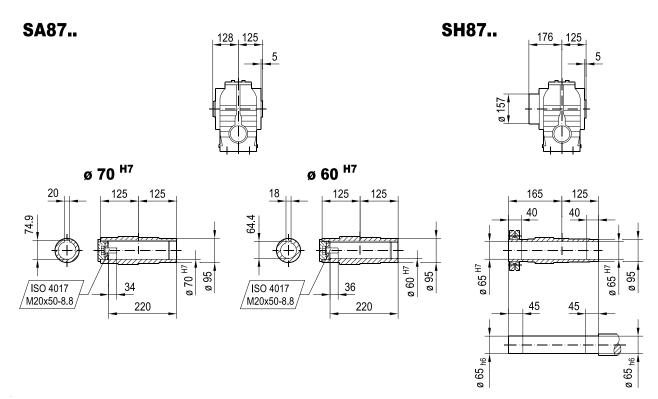




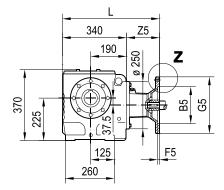

SAF87..

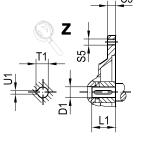


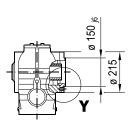


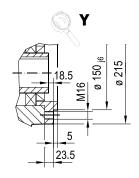


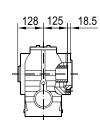
(→ [] 7.2.10)	B5	C5	E5	F5	G5	L	S5	Z5	D1	L1	T1	U1
AM80	130	12	165	4.5	200	427	M10	87	19	40	21.8	6
AM90	130	12	165	4.5	200	427	M10	87	24	50	27.3	8
AM100	180	15	215	5	250	461	M12	121	28	60	31.3	8
AM112	180	15	215	5	250	461	M12	121	28	60	31.3	8
AM132S/M	230	16	265	5	300	514	M12	174	38	80	41.3	10
AM132ML	230	16	265	5	300	514	M12	174	38	80	41.3	10
AM160	250	18	300	6	350	572	M16	232	42	110	45.3	12



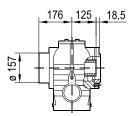


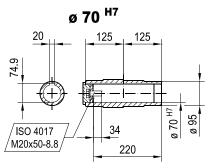

(→ [] 7.2.10)	B5	C5	E5	F5	G5	L	S5	Z5	D1	L1	T1	U1
AM80	130	12	165	4.5	200	427	M10	87	19	40	21.8	6
AM90	130	12	165	4.5	200	427	M10	87	24	50	27.3	8
AM100	180	15	215	5	250	461	M12	121	28	60	31.3	8
AM112	180	15	215	5	250	461	M12	121	28	60	31.3	8
AM132S/M	230	16	265	5	300	514	M12	174	38	80	41.3	10
AM132ML	230	16	265	5	300	514	M12	174	38	80	41.3	10
AM160	250	18	300	6	350	572	M16	232	42	110	45.3	12

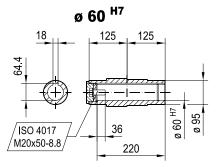


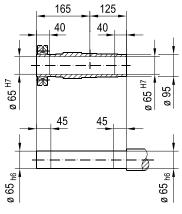


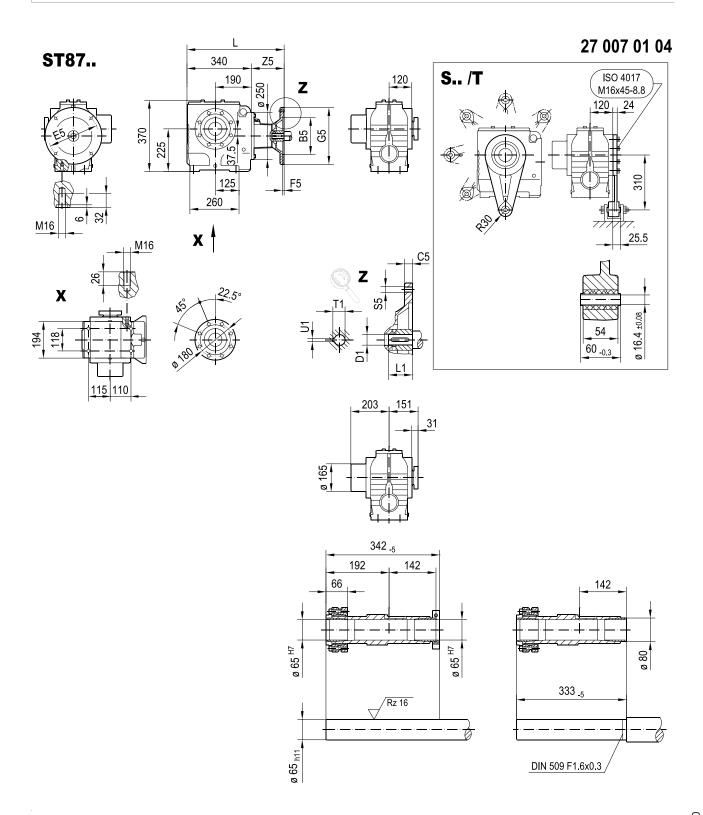
27 011 01 01

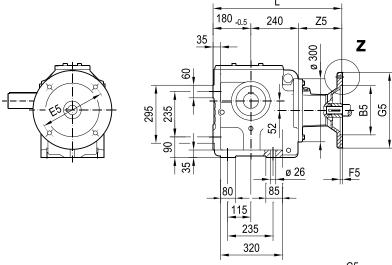


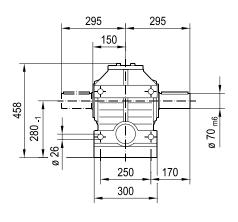


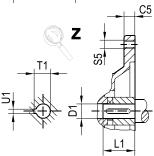

SAZ87...

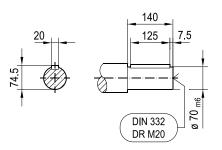




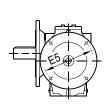

(→ []] 7.2.10)	B5	C5	E5	F5	G5	L	S5	Z5	D1	L1	T1	U1
AM80	130	12	165	4.5	200	427	M10	87	19	40	21.8	6
AM90	130	12	165	4.5	200	427	M10	87	24	50	27.3	8
AM100	180	15	215	5	250	461	M12	121	28	60	31.3	8
AM112	180	15	215	5	250	461	M12	121	28	60	31.3	8
AM132S/M	230	16	265	5	300	514	M12	174	38	80	41.3	10
AM132ML	230	16	265	5	300	514	M12	174	38	80	41.3	10
AM160	250	18	300	6	350	572	M16	232	42	110	45.3	12

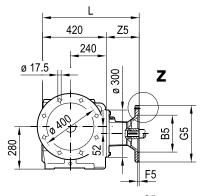


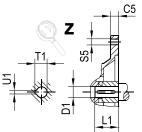

(→ []] 7.2.10)	B5	C5	E5	F5	G5	L	S5	Z5	D1	L1	T1	U1
AM80	130	12	165	4.5	200	427	M10	87	19	40	21.8	6
AM90	130	12	165	4.5	200	427	M10	87	24	50	27.3	8
AM100	180	15	215	5	250	461	M12	121	28	60	31.3	8
AM112	180	15	215	5	250	461	M12	121	28	60	31.3	8
AM132S/M	230	16	265	5	300	514	M12	174	38	80	41.3	10
AM132ML	230	16	265	5	300	514	M12	174	38	80	41.3	10
AM160	250	18	300	6	350	572	M16	232	42	110	45.3	12


02 022 01 01

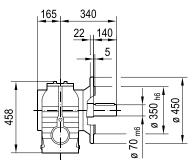
S97..

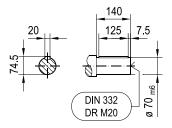


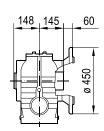




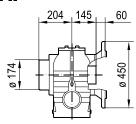
(→ [] 7.2.10)	B5	C5	E5	F5	G5	L	S5	Z 5	D1	L1	T1	U1
AM100	180	15	215	5	250	536	M12	116	28	60	31.3	8
AM112	180	15	215	5	250	536	M12	116	28	60	31.3	8
AM132S/M	230	16	265	5	300	589	M12	169	38	80	41.3	10
AM132ML	230	16	265	5	300	589	M12	169	38	80	41.3	10
AM160	250	18	300	6	350	647	M16	227	42	110	45.3	12
AM180	250	18	300	6	350	647	M16	227	48	110	51.8	14

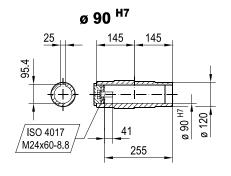

SF97..

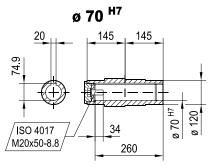


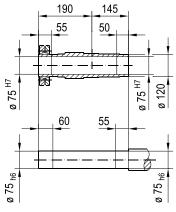


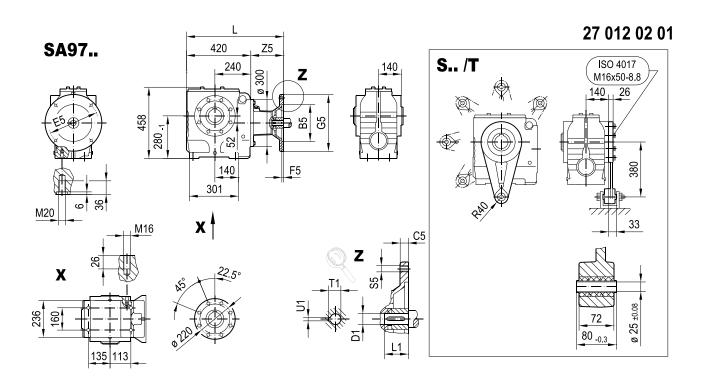
02 023 02 01

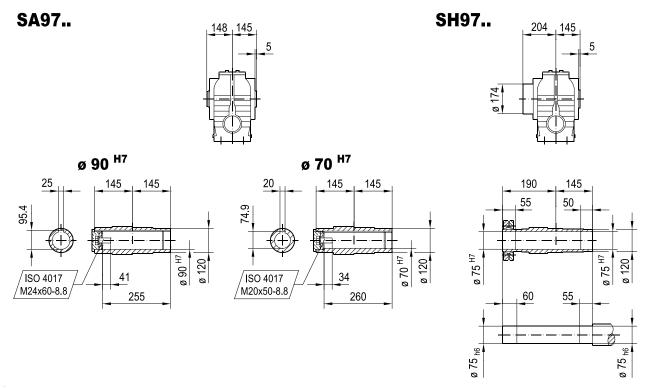




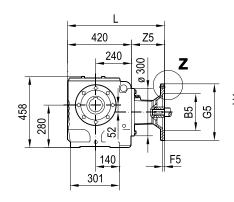

SAF97..



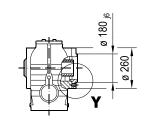




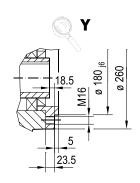
(→ [] 7.2.10)	B5	C5	E5	F5	G5	L	S5	Z5	D1	L1	T1	U1
AM100	180	15	215	5	250	536	M12	116	28	60	31.3	8
AM112	180	15	215	5	250	536	M12	116	28	60	31.3	8
AM132S/M	230	16	265	5	300	589	M12	169	38	80	41.3	10
AM132ML	230	16	265	5	300	589	M12	169	38	80	41.3	10
AM160	250	18	300	6	350	647	M16	227	42	110	45.3	12
AM180	250	18	300	6	350	647	M16	227	48	110	51.8	14

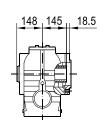


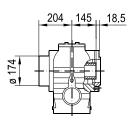


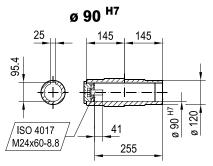

(→ [] 7.2.10)	B5	C5	E5	F5	G5	L	S5	Z 5	D1	L1	T1	U1
AM100	180	15	215	5	250	536	M12	116	28	60	31.3	8
AM112	180	15	215	5	250	536	M12	116	28	60	31.3	8
AM132S/M	230	16	265	5	300	589	M12	169	38	80	41.3	10
AM132ML	230	16	265	5	300	589	M12	169	38	80	41.3	10
AM160	250	18	300	6	350	647	M16	227	42	110	45.3	12
AM180	250	18	300	6	350	647	M16	227	48	110	51.8	14

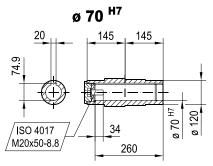
SAZ97..

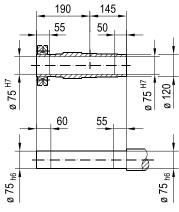


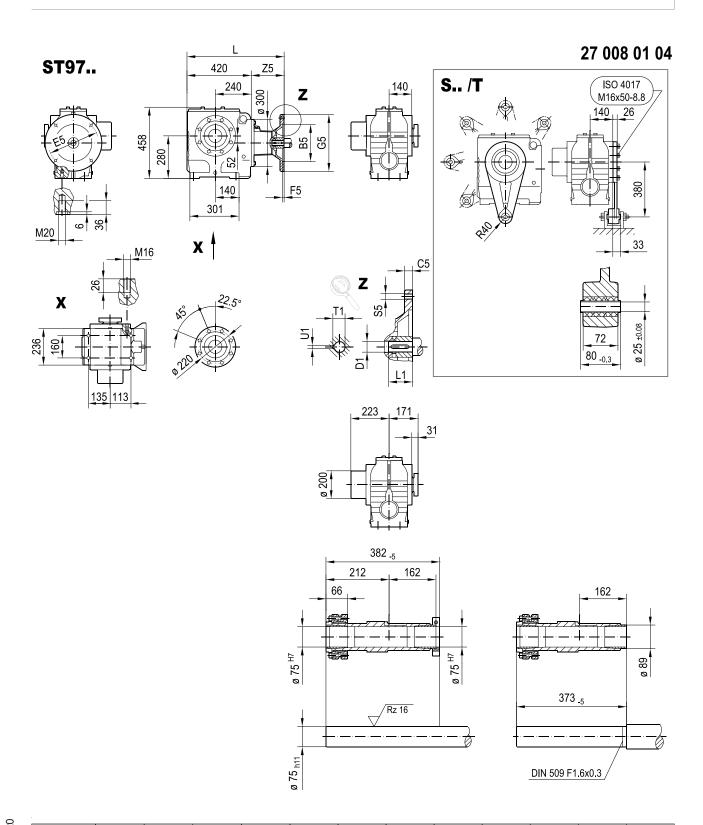


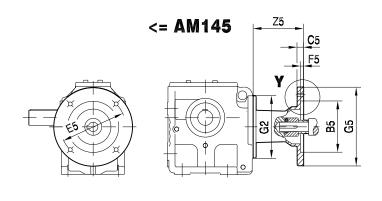


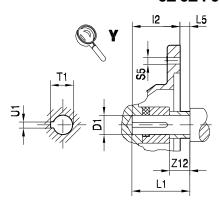


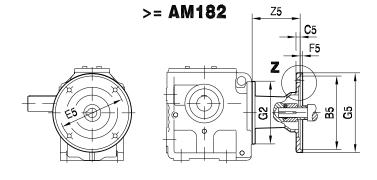

SAZ97..

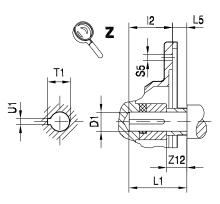




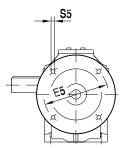

(→ [] 7.2.10)	B5	C5	E5	F5	G5	L	S5	Z5	D1	L1	T1	U1
AM100	180	15	215	5	250	536	M12	116	28	60	31.3	8
AM112	180	15	215	5	250	536	M12	116	28	60	31.3	8
AM132S/M	230	16	265	5	300	589	M12	169	38	80	41.3	10
AM132ML	230	16	265	5	300	589	M12	169	38	80	41.3	10
AM160	250	18	300	6	350	647	M16	227	42	110	45.3	12
AM180	250	18	300	6	350	647	M16	227	48	110	51.8	14

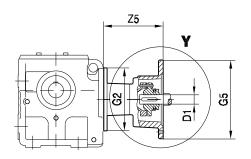


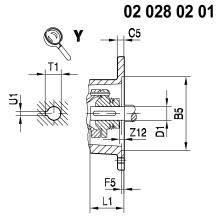

(→ [7.2.10)	B5	C5	E5	F5	G5	L	S 5	Z5	D1	L1	T1	U1
AM100	180	15	215	5	250	536	M12	116	28	60	31.3	8
AM112	180	15	215	5	250	536	M12	116	28	60	31.3	8
AM132S/M	230	16	265	5	300	589	M12	169	38	80	41.3	10
AM132ML	230	16	265	5	300	589	M12	169	38	80	41.3	10
AM160	250	18	300	6	350	647	M16	227	42	110	45.3	12
AM180	250	18	300	6	350	647	M16	227	48	110	51.8	14


11.5 Dimension sheets for adapters for mounting NEMA motors (AM..)

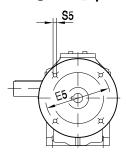
02 024 03 01

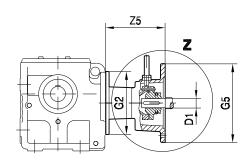


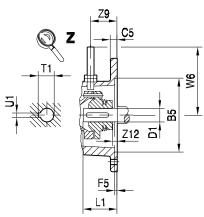

		B5	C5	E5	F5	G2	G5	12	L5	S5	Z 5	Z 12	D1	L1	T1	U1
S37	AM56	114.3	11	149.2	4.5	120	170	52.55	-4.8	10.5	93.5	16.5	15.875	47.75	18.1	4.76
S47	AM143	114.3	12	149.2	4.5	120	170	54.1	3.05	10.5	117	14.5	22.225	57.15	24.7	4.76
S57	AM145	114.3		149.2	4.5	120	170	54.1	3.05	10.5	117	14.5	22.225	57.15	24.7	4.76
	AM56	114.3	11	149.2	4.5	160	170	52.55	-4.8	10.5	87	16.5	15.875	47.75	18.1	4.76
	AM143	114.3	12	149.2	4.5	160	170	54.1	3.05	10.5	110.5	14.5	22.225	57.15	24.7	4.76
0.07	AM145	114.3	12	149.2	4.5	160	170	54.1	3.05	10.5	110.5	14.5	22.225	57.15	24.7	4.76
S67	AM182	215.9	10	184	5	160	228	66.675	3	15	147.5	16.5	28.575	69.85	31.7	6.35
	AM184	215.9	10	184	5	160	228	66.675	3	15	147.5	16.5	28.575	69.85	31.7	6.35
	AM213/215	215.9	11	184	5	160	228	79.55	6.3	15	200.5	15.8	34.925	85.85	38.7	7.94
	AM56	114.3	11	149.2	4.5	200	170	52.55	-4.8	10.5	81	16.5	15.875	47.75	18.1	4.76
	AM143	114.3	12	149.2	4.5	200	170	54.1	3.05	10.5	103.5	14.5	22.225	57.15	24.7	4.76
S77	AM145	114.3	12	149.2	4.5	200	170	54.1	3.05	10.5	103.5	14.5	22.225	57.15	24.7	4.76
377	AM182	215.9	10	184	5	200	228	66.675	3	15	139.5	16.5	28.575	69.85	31.7	6.35
	AM184	215.9	10	184	5	200	228	66.675	3	15	139.5	16.5	28.575	69.85	31.7	6.35
	AM213/215	215.9	11	184	5	200	228	79.55	6.3	15	188.5	15.8	34.925	85.85	38.7	7.94
	AM143	114.3	12	149.2	4.5	250	170	54.1	3.05	10.5	98.5	14.5	22.225	57.15	24.7	4.76
	AM145	114.3	12	149.2	4.5	250	170	54.1	3.05	10.5	98.5	14.5	22.225	57.15	24.7	4.76
	AM182	215.9	10	184	5	250	228	66.675	3	15	134.5	16.5	28.575	69.85	31.7	6.35
S87	AM184	215.9	10	184	5	250	228	66.675	3	15	134.5	16.5	28.575	69.85	31.7	6.35
	AM213/215	215.9	11	184	5	250	228	79.55	6.3	15	183.5	15.8	34.925	85.85	38.7	7.94
	AM254/256	215.9	12	184	5	250	228	95.3	6.3	15	234	9	41.275	101.6	45.8	9.53
	AM284/286	266.7	15	228.6	5	250	286	111.05	6.3	15	241	15.8	47.625	117.35	53.4	12.7


			B5	C5	E5	F5	G2	G5	12	L5	S5	Z 5	Z12	D1	L1	T1	U1
		AM182	215.9	10	184	5	300	228	66.675	3	15	129.5	16.5	28.575	69.85	31.7	6.35
		AM184	215.9	10	184	5	300	228	66.675	3	15	129.5	16.5	28.575	69.85	31.7	6.35
		AM213/215	215.9	11	184	5	300	228	79.55	6.3	15	178.5	15.8	34.925	85.85	38.7	7.94
,	597	AM254/256	215.9	12	184	5	300	228	95.3	6.3	15	229	9	41.275	101.6	45.8	9.53
		AM284/286	266.7	15	228.6	5	300	286	111.05	6.3	15	236	15.8	47.625	117.35	53.4	12.7
		AM324/326	317.5	17	279.4	5	300	356	127.05	6.3	17.5	296	34.8	53.975	133.35	60	12.7
		AM364/365	317.5	17	279.4	5	300	356	143.05	6.3	17.5	296	34.8	60.325	149.35	67.6	15.875

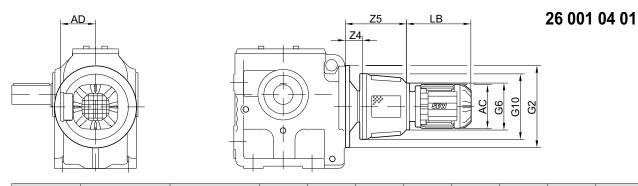
11.6 Dimension sheets for adapters with slip clutch (AR..)

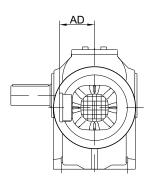

\$.. AR..

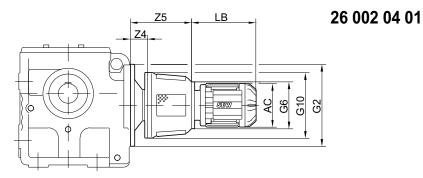




S.. AR../W

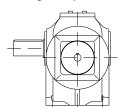


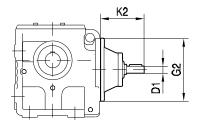

		B5	C5	E5	F5	G2	G5	S5	W6	Z 5	Z 9	Z12	D1	L1	T1	U1
S37	AR71	110	10	130	3.5		160	M8		104			14	30	16.3	5
S47	AR80	120	10	105	4.5	120	200	M10	120	140 E	37	0	19	40	21.8	6
S57	AR90	130	12	165	4.5		200	IVITO		140.5			24	50	27.3	8
	AR71	110	10	130	3.5		160	M8		97.5			14	30	16.3	5
	AR80	130	12	165	4.5		200	M10	120	134	37	0	19	40	21.8	6
S67	AR90	130	12	105	4.5	160	200	IVITO		134			24	50	27.3	8
	AR100	180	15	215	5		250	M12	130	174.5	52	5.5	28	60	31.3	8
	AR112	100	13	213	5		250	IVIIZ	130	174.5	52	5.5	20	00	31.3	0
	AR71	110	10	130	3.5		160	M8		91.5			14	30	16.3	5
	AR80	130	12	165	4.5		200	M10	120	127	37	0	19	40	21.8	6
	AR90	130	12	100	4.5		200	IVITO		121			24	50	27.3	8
S77	AR100	180	15	215	5	200	250	M12	130	166.5	52	5.5	28	60	31.3	8
	AR112	100	13	213	5		250	IVIIZ	130	100.5	52	5.5	20	00	31.3	0
	AR132S/M	230	16	265	5		300	M12	145	234	72	5	38	80	41.3	10
	AR132ML	230	10	203	3		300	IVIIZ	143	234	12			00	41.3	10
	AR80	130	12	165	4.5		200	M10	120	122	37	0	19	40	21.8	6
	AR90	130	12	103	4.5		200	IVITO	120	122	31	U	24	50	27.3	8
	AR100	180	15	215	5		250	M12	130	161.5	52	5.5	28	60	31.3	8
S87	AR112	100	13	213	3	250	230	IVIIZ	130	101.5	52	5.5	20	00	31.3	
301	AR132S/M	230	16	265	5	230	300	M12	145	229	72	5	38	80	41.3	10
	AR132ML	230	10	200	3		300	IVITZ	140	229	12		30	00	41.3	10
	AR160	250	18	300	6		350	M16	165	306.5	105	35	42	110	45.3	12
	AR180	250	10	300	0		330	IVITO	100	300.5	105	33	48	110	51.8	14

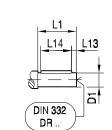

		B5	C5	E5	F5	G2	G5	S5	W6	Z 5	Z 9	Z12	D1	L1	T1	U1
	AR100	100	15	215	5		250	1410	120	1EG E	52		20	60	31.3	
	AR112	180	15	215	5		250	M12	130	156.5	52	5.5	28	60	31.3	8
S97	AR132S/M	230	16	265	5	300	300	M12	145	224	72	5	38	80	41.3	10
397	AR132S/M AR132ML	230	10	200	5	300	300	IVIIZ	143	224	12	5	30	80	41.3	
	AR132ML AR160	250	10	200	6		250	M16	165	204 5	105	25	42	110	45.3	12
	AR180	250	18	300	6		350	IVI IO	165	301.5	105	35	48	110	51.8	14

11.7 Dimension sheets for adapters with hydraulic start-up coupling (S..AT..)

			AC	AD	G6	G10	LB	Z4	Z5	G2
		DRN71M	139	118			222			
		DRN80MK					241			
		DRN80MS	156	128			259			
	AT311	DRN80M			200	200	287	0.7	206	
	AT312	DRN90S	179	140	200	280	281	97	286	
S67		DRN90L					313			160
		DRN100LM	197	157			359			
		DRN112M	221	170			387			
		DRN90L	179	140			313			
	AT321 AT322	DRN100LS	107	457	250	350	309	97	333	
	A1322	DRN100L	197	157			359			
		DRN71M	139	118			222			
		DRN80MK					241			
		DRN80MS	156	128			259			
	AT311	DRN80M			000	000	287	00	070	
	AT312	DRN90S	470	4.40	200	280	281	89	278	
		DRM90L	179	140			313			
077		DRN100LM	197	157			359			000
S77		DRN112M	221	170			387			200
	AT321	DRN132S	221	170	250	350	437	93	328	
		DRN90L	179	140			313			
		DRN100LS	407	457			309			
	AT421 AT422	DRN100L	197	157	250	350	359	133	368	
	A1422	DRN112M	004	470			387			
		DRN132S	221	170			437			
		DRN90S	470	440			281			
	AT311	DRM90L	179	140	000	000	313	0.4	070	
	AT312	DRN100LM	197	157	200	280	359	84	273	
		DRN112M	221	170			387			
	AT321	DRN132S	221	170	250	350	437	84	320	
		DRN90L	179	140			313			
		DRN100LS	407	457			309			
S87	AT421 AT422	DRN100L	197	157	250	350	359	128	363	250
	A1422	DRN112M	004	470			387			
		DRN132S	221	170			437			
		DRN132S	221	170			437			
		DRN132M	004	000			439			
	AT541 AT542	DRN132L	261	228	350	470	464	159	478	
	A 1 342	DRN160M	040	050			532			
		DRN160L	316	253			532			

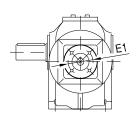


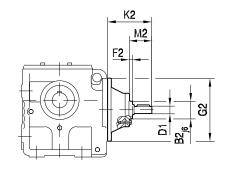


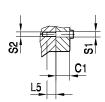

			AC	AD	G6	G10	LB	Z4	Z 5	G2
		DRN90S	470	440			281			
	AT311	DRM90L	179	140	200	200	313	70	000	
	AT312	DRN100LM	197	157	200	280	359	79	268	
		DRN112M	221	170			387			
	AT321	DRN132S	221	170	250	350	437	79	315	
		DRN90L	179	140			313			
		DRN100LS	107	157			309			
	AT421 AT422	DRN100L	197	157	250	350	359	123	358	
S97	A1722	DRN112M	224	470			387			300
		DRN132S	221	170			437			
		DRN132S	221	170			437			
		DRN132M	261	220			439			
		DRN132L	261	228			464			
	AT541 AT542	DRN160M	240	252	350	470	532	154	473	
	A1042	DRN160L	316	253			532			
		DRN180M	257	260			557			
		DRN180L	357	268			557			

11.8 Dimension sheets for input shaft assembly (AD..)

S.. AD..

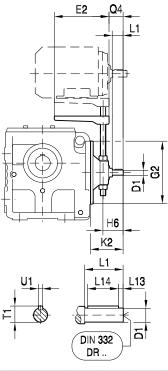


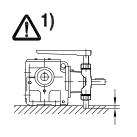




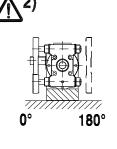
02 029 02 01

S.. AD../ZR





		B2	C1	E1	F2	G2	K2	L5	M2	S1	S2	D1	L1	L13	L14	T1	U1
S37	AD1	-	-	-	-		102	-	-	-	-	16	40	4	32	18	5
S47 S57	AD2, AD2/ZR	55	13.5	80	8	120	130	12	50	9	M8	19	40	4	32	21.5	6
C 67	AD2, AD2/ZR	55	13.5	80	8	160	123	12	50	9	M8	19	40	4	32	21.5	6
S67	AD3, AD3/ZR	70	15.5	105	8	160	159	16	60	11	M10	24	50	5	40	27	8
	AD2, AD2/ZR	55	13.5	80	8		116	12	50	9	M8	19	40	4	32	21.5	6
S77	AD3, AD3/ZR	70	15.5	105	8	200	151	16	60	11	M10	24	50	5	40	27	8
	AD4, AD4/ZR	100	16	130	13		224	20	95.5	13.5	M12	38	80	5	70	41	10
	AD2, AD2/ZR	55	13.5	80	8		111	12	50	9	M8	19	40	4	32	21.5	6
0.07	AD3, AD3/ZR	70	15.5	105	8	250	156	16	70	11	M10	28	60	5	50	31	8
S87	AD4, AD4/ZR	100	16	130	13	250	219	20	95.5	13.5	M12	38	80	5	70	41	10
	AD5, AD5/ZR	120	24	180	11		292	20	126	13.5	M12	42	110	10	70	45	12
	AD3, AD3/ZR	70	15.5	105	8		151	16	70	11	M10	28	60	5	50	31	8
0.07	AD4, AD4/ZR	100	16	130	13	200	214	20	95.5	13.5	M12	38	80	5	70	41	10
S97	AD5, AD5/ZR	120	24	180	11	300	287	20	126	13.5	M12	42	110	10	70	45	12
	AD6, AD6/ZR	130	22.5	200	11		327	26	130.5	17.5	M16	48	110	10	80	51.5	14


11.9 Dimension sheets for input shaft assembly with motor platform (AD../P)

02 030 02 01

		E2	F2	G2	Н6	H7 min	H7 max	H11 min	H11 max	K2	Q4	D1	L1	L13	L14	T1	U1	<u>^</u> (→ <u>1</u> 71)
S37 S47	AD2/P	195	180	120	65	110	165	95	165	130	43	19	40	4	32	21.5	6	1), 2)
S57	AD2/P	195	180	120	65	140	200	110	165	130	43	19	40	4	32	21.5	6	1)
0.07	AD2/P	195	180	100	65	140	200	125	165	123	43	19	40	4	32	21.5	6	1)
S67	AD3/P	230	240	160	80	145	175	130	175	159	54	24	50	5	40	27	8	2)
	AD2/P	195	180		65	175	260	145	200	116	43	19	40	4	32	21.5	6	
S77	AD3/P	230	240	200	80	180	230	150	230	151	54	24	50	5	40	27	8	
	AD4/P	345	291		118	190	280	150	210	224	83	38	80	5	70	41	10	1)
	AD2/P	195	180		65	215	260	165	200	111	43	19	40	4	32	21.5	6	
0.07	AD3/P	230	240	250	90	230	320	170	230	156	64	28	60	5	50	31	8	
S87	AD4/P	345	291	250	118	250	360	170	210	219	83	38	80	5	70	41	10	1)
	AD5/P	430	355		153	260	325	185	250	292	113	42	110	10	70	45	12	1), 2)
	AD3/P	230	240		90	275	320	190	230	151	64	28	60	5	50	31	8	
S97	AD4/P	345	291	300	118	305	360	190	280	214	83	38	80	5	70	41	10	
	AD5/P	430	355		153	315	405	200	250	287	113	42	110	10	70	45	12	

11.10 Technical data of S.., SF.., SA.., SAF 37

i _{tot}	İs		n _e = 3400	min ⁻¹			n _e = 3200	min ⁻¹			n _e = 2800	min ⁻¹	
		n _a min ⁻¹	M _{a_max} Nm	P _{Mot} kW	η %	n _a min ⁻¹	M _{a_max} Nm	P _{Mot} kW	η %	n _a min ⁻¹	M _{a_max} Nm	P _{Mot} kW	η %
157.43	38/1	21	78	0.31	56	20	80	0.30	56	17	82	0.28	56
144.40		23	76	0.33	57	22	78	0.32	56	19	80	0.29	56
122.94		27	74	0.37	57	26	75	0.36	57	22	78	0.33	57
106.00		32	71	0.41	58	30	72	0.39	58	26	76	0.36	58
98.80		34	70	0.43	58	32	72	0.42	58	28	75	0.38	58
86.36		39	68	0.48	59	37	69	0.45	59	32	72	0.42	59
80.96		41	66	0.49	59	39	68	0.48	59	34	72	0.44	59
71.44		47	55	0.47	59	44	64	0.50	60	39	70	0.48	60
63.33		53	37	0.37	56	50	51	0.46	59	44	67	0.52	60
53.83		63	29	0.35	54	59	32	0.36	55	52	53	0.49	60
55.93	27/2	60	70	0.59	76	57	71	0.56	76	50	72	0.50	75
51.30		66	68	0.62	76	62	70	0.60	76	54	72	0.55	76
43.68		77	66	0.70	77	73	67	0.67	76	64	70	0.62	76
37.66		90	64	0.78	77	84	65	0.75	77	74	68	0.69	77
35.10		96	62	0.81	77	91	64	0.79	77	79	66	0.72	77
30.68		110	61	0.91	78	104	62	0.87	78	91	64	0.79	77
28.76		118	58	0.92	78	111	61	0.91	78	97	64	0.84	78
25.38		133	47	0.85	77	126	53	0.90	78	110	62	0.92	78
22.50		151	31	0.65	75	142	43	0.83	77	124	57	0.95	78
19.13		177	24	0.61	74	167	27	0.63	75	146	44	0.87	78
19.89	24/5	170	42	0.88	85	160	43	0.85	85	140	44	0.76	85
18.24		186	41	0.93	86	175	42	0.90	86	153	44	0.83	85
15.53		218	39	1.0	86	206	40	1.0	86	180	42	0.93	86
13.39		253	37	1.1	86	238	39	1.1	86	209	41	1.0	86
12.48		272	37	1.2*	86	256	38	1.2*	86	224	40	1.1	86
10.91		311	35	1.3*	86	293	36	1.3*	86	256	39	1.2*	86
10.23		332	35	1.4*	86	312	36	1.4*	86	273	38	1.3*	86
9.02		376	31	1.4*	85	354	34	1.5*	86	310	36	1.4*	86
8.00		425	20	1.0	85	400	29	1.4*	85	350	35	1.5*	86
6.80		500	16	1.0	84	470	18	1.0	85	411	29	1.5*	85
6.33	19/5	537	24	1.5*	87	505	27	1.6*	88	442	32	1.7*	88
5.38		631	20	1.5*	87	594	22	1.6*	87	520	26	1.6*	88
4.86		699	18	1.5*	87	658	19	1.5*	87	576	24	1.6*	88
3.97		856	14	1.5*	86	806	15	1.5*	87	705	19	1.6*	88

^{*} P_{Mot_max} = 1.1 kW

i _{tot}	İs		n _e = 2200	min ⁻¹			n _e = 1700	min ⁻¹			n _e = 1400	min ⁻¹	
		n _a min ⁻¹	M _{a_max} Nm	P _{Mot} kW	η %	n _a min ⁻¹	M _{a_max} Nm	P _{Mot} kW	η %	n _a min ⁻¹	M _{a_max} Nm	P _{Mot} kW	η %
157.43	38/1	13	87	0.23	54	10	91	0.19	53	8.8	92	0.16	52
144.40		15	86	0.25	55	11	90	0.21	54	9.6	92	0.18	53
122.94		17	83	0.28	56	13	87	0.23	55	11	91	0.20	54
106.00		20	81	0.31	57	16	86	0.26	56	13	88	0.22	55
98.80		22	80	0.33	57	17	85	0.27	56	14	87	0.23	55
86.36		25	78	0.36	58	19	82	0.30	57	16	86	0.26	56
80.96		27	77	0.38	58	20	82	0.31	57	17	85	0.27	56
71.44		30	75	0.41	59	23	80	0.34	58	19	84	0.30	57
63.33		34	73	0.44	60	26	79	0.38	59	22	82	0.33	58
53.83		40	69	0.49	60	31	76	0.42	60	26	80	0.37	59
55.93	27/2	39	77	0.43	74	30	81	0.35	73	25	81	0.29	73
51.30		42	76	0.46	75	33	80	0.38	74	27	81	0.32	73
43.68		50	74	0.52	76	38	78	0.43	75	32	81	0.37	74
37.66		58	72	0.58	76	45	76	0.48	75	37	79	0.41	75
35.10		62	71	0.61	76	48	75	0.50	76	39	78	0.43	75
30.68		71	70	0.68	77	55	73	0.56	76	45	76	0.48	76
28.76		76	68	0.71	77	59	73	0.59	77	48	75	0.50	76
25.38		86	67	0.78	78	66	71	0.65	77	55	74	0.56	76
22.50		97	66	0.86	78	75	70	0.71	78	62	73	0.62	77
19.13		115	63	0.96	79	88	68	0.81	78	73	71	0.70	78
19.89	24/5	110	48	0.66	85	85	50	0.53	84	70	52	0.46	84
18.24		120	47	0.70	85	93	49	0.57	84	76	52	0.50	84
15.53		141	45	0.78	85	109	48	0.65	85	90	50	0.56	84
13.39		164	44	0.88	86	126	47	0.73	85	104	49	0.63	85
12.48		176	43	0.92	86	136	46	0.77	86	112	48	0.66	85
10.91		201	42	1.0	86	155	45	0.85	86	128	48	0.75	86
10.23		215	41	1.1	86	166	45	0.91	86	136	47	0.79	86
9.02		243	40	1.2*	87	188	43	0.98	86	155	46	0.87	86
8.00		275	39	1.3*	86	212	43	1.1	87	175	45	0.95	86
6.80		323	37	1.5*	86	250	41	1.2*	87	205	43	1.1	87
6.33	19/5	347	35	1.4*	88	268	35	1.1	88	221	35	0.93	87
5.38		408	34	1.6*	88	315	34	1.3*	88	260	34	1.1	88
4.86		452	32	1.7*	89	349	33	1.4*	88	288	33	1.1	88
3.97		554	26	1.7*	88	428	32	1.6*	89	352	32	1.3*	88

^{*} $P_{Mot_max} = 1.1 \text{ kW}$

1100 - 700 min⁻¹

i _{tot}	İs		n _e = 1100	min ⁻¹			n _e = 900	min ⁻¹			n _e = 700	min ⁻¹	
		n _a min ⁻¹	M _{a_max} Nm	P _{Mot} kW	η %	n _a min ⁻¹	M _{a_max} Nm	P _{Mot} kW	η %	n _a min ⁻¹	M _{a_max} Nm	P _{Mot} kW	η %
157.43	38/1	6.9	92	0.13	51	5.7	92	0.11	50	4.4	92	0.09	48
144.40		7.6	92	0.14	51	6.2	92	0.12	50	4.8	92	0.10	49
122.94		8.9	92	0.17	52	7.3	92	0.14	51	5.6	92	0.11	50
106.00		10	92	0.19	53	8.4	92	0.16	52	6.6	92	0.13	51
98.80		11	92	0.20	54	9.1	92	0.17	53	7	92	0.13	51
86.36		12	90	0.22	55	10	92	0.19	54	8.1	92	0.15	52
80.96		13	89	0.23	55	11	92	0.20	54	8.6	92	0.16	53
71.44		15	87	0.25	56	12	91	0.22	55	9.7	92	0.18	53
63.33		17	86	0.28	57	14	89	0.24	56	11	92	0.20	54
53.83		20	84	0.31	58	16	87	0.27	57	13	91	0.22	56
55.93	27/2	19	87	0.25	72	16	91	0.22	71	12	92	0.17	69
51.30		21	87	0.27	72	17	90	0.23	71	13	92	0.19	70
43.68		25	84	0.30	73	20	87	0.26	72	16	92	0.22	71
37.66		29	82	0.34	74	23	86	0.30	73	18	89	0.24	72
35.10		31	82	0.36	74	25	84	0.31	73	19	88	0.26	72
30.68		35	80	0.40	75	29	82	0.34	74	22	87	0.29	73
28.76		38	79	0.42	75	31	82	0.36	74	24	86	0.30	73
25.38		43	78	0.47	76	35	81	0.40	75	27	84	0.33	74
22.50		48	77	0.52	76	40	79	0.44	75	31	82	0.36	74
19.13		57	75	0.59	77	47	78	0.50	76	36	81	0.41	75
19.89	24/5	55	55	0.38	83	45	58	0.33	82	35	60	0.27	81
18.24		60	54	0.41	83	49	56	0.35	83	38	60	0.30	82
15.53		70	53	0.47	84	57	55	0.40	83	45	58	0.33	82
13.39		82	52	0.53	84	67	54	0.45	84	52	56	0.37	83
12.48		88	51	0.56	85	72	53	0.48	84	56	55	0.39	83
10.91		100	50	0.62	85	82	52	0.53	84	64	54	0.43	84
10.23		107	49	0.65	85	87	51	0.56	85	68	54	0.46	84
9.02		121	48	0.72	86	99	50	0.61	85	77	53	0.51	84
8.00		137	47	0.79	86	112	49	0.68	85	87	52	0.56	85
6.80	· 	161	46	0.90	86	132	48	0.77	86	102	51	0.64	85
6.33	19/5	173	45	0.94	87	142	45	0.77	87	110	45	0.61	86
5.38		204	43	1.1	88	167	43	0.86	87	130	43	0.68	87
4.86		226	42	1.1	88	185	42	0.93	88	144	42	0.73	87
3.97		277	40	1.3*	88	226	40	1.1	88	176	40	0.84	88

^{*} P_{Mot_max} = 1.1 kW

500 - 10 min⁻¹

i _{tot}	İs		n _e = 500	min ⁻¹			n _e = 250	min ⁻¹			n _e = 10	min ⁻¹	
		n _a min ⁻¹	M _{a_max} Nm	P _{Mot} kW	η %	n _a min ⁻¹	M _{a_max} Nm	P _{Mot} kW	η %	n _a min ⁻¹	M _{a_max} Nm	P _{Mot} kW	η %
157.43	38/1	3.1	92	0.07	47	1.5	92	<0.05	46	0.06	92	<0.05	46
144.40		3.4	92	0.07	47	1.7	92	<0.05	46	0.06	92	<0.05	46
122.94		4	92	0.08	48	2	92	<0.05	46	0.08	92	<0.05	46
106.00		4.7	92	0.09	49	2.3	92	<0.05	46	0.09	92	<0.05	47
98.80		5	92	0.10	49	2.5	92	0.05	46	0.1	92	<0.05	47
86.36		5.7	92	0.11	50	2.8	92	0.06	47	0.11	92	<0.05	47
80.96		6.1	92	0.12	50	3	92	0.06	47	0.12	92	<0.05	47
71.44		6.9	92	0.13	51	3.4	92	0.07	48	0.13	92	<0.05	47
63.33		7.8	92	0.15	52	3.9	92	0.08	48	0.15	92	<0.05	47
53.83		9.2	92	0.17	53	4.6	92	0.09	49	0.18	92	<0.05	47
55.93	27/2	8.9	92	0.13	68	4.4	92	0.06	67	0.17	92	<0.05	67
51.30		9.7	92	0.14	68	4.8	92	0.07	67	0.19	92	<0.05	67
43.68		11	92	0.16	69	5.7	92	0.08	67	0.22	92	<0.05	67
37.66		13	92	0.18	70	6.6	92	0.10	67	0.26	92	<0.05	67
35.10		14	92	0.20	70	7.1	92	0.10	67	0.28	92	<0.05	67
30.68		16	92	0.22	71	8.1	92	0.12	68	0.32	92	<0.05	67
28.76	_	17	91	0.23	71	8.6	92	0.12	68	0.34	92	<0.05	67
25.38		19	89	0.25	72	9.8	92	0.14	69	0.39	92	<0.05	67
22.50		22	87	0.28	73	11	92	0.15	69	0.44	92	<0.05	67
19.13	_	26	85	0.32	74	13	92	0.18	70	0.52	92	<0.05	67
19.89	24/5	25	68	0.22	80	12	72	0.12	79	0.5	72	<0.05	79
18.24	_	27	66	0.23	81	13	72	0.13	79	0.54	72	<0.05	79
15.53		32	63	0.26	81	16	72	0.15	79	0.64	72	<0.05	79
13.39		37	61	0.29	82	18	72	0.18	80	0.74	72	<0.05	79
12.48	_	40	59	0.30	82	20	72	0.19	80	0.8	72	<0.05	79
10.91	_	45	58	0.34	83	22	71	0.21	80	0.91	71	<0.05	79
10.23	_	48	57	0.35	83	24	70	0.22	81	0.97	70	<0.05	79
9.02		55	56	0.39	83	27	66	0.24	81	1.1	66	<0.05	79
8.00	_	62	55	0.43	84	31	63	0.25	81	1.2	63	<0.05	79
6.80		73	54	0.49	84	36	61	0.29	82	1.4	61	<0.05	79
6.33	19/5	78	45	0.44	85	39	45	0.23	83	1.5	45	<0.05	80
5.38		92	43	0.49	86	46	43	0.25	83	1.8	43	<0.05	80
4.86		102	42	0.53	86	51	42	0.27	84	2	42	<0.05	80
3.97	_	125	40	0.61	87	62	40	0.31	84	0.06	92	<0.05	46

11.11 Technical data of S.., SF.., SA.., SAF 47

i _{tot}	İs		n _e = 3400	min ⁻¹			n _e = 3200	min ⁻¹				n _e = 2800	min ⁻¹	
		n _a min ⁻¹	M _{a_max} Nm	P _{Mot} kW	η %	n _a min ⁻¹	M _{a_max} Nm	P _{Mot} kW	η %		n _a min ⁻¹	M _{a_max} Nm	P _{Mot} kW	η %
201.00	42/1	16	150	0.46	57	15	150	0.44	57		13	150	0.39	56
184.80		18	150	0.50	58	17	150	0.47	58		15	150	0.42	57
158.12		21	150	0.58	59	20	150	0.54	58		17	150	0.48	58
137.05		24	150	0.65	60	23	150	0.62	59		20	150	0.55	59
128.10		26	150	0.69	60	24	150	0.66	60		21	150	0.58	59
110.73		30	138	0.73	60	28	148	0.74	61		25	150	0.66	60
94.08		36	113	0.71	60	34	123	0.73	60		29	146	0.75	61
84.00		40	95	0.68	59	38	107	0.71	60	-	33	130	0.75	61
71.75		47	58	0.52	56	44	82	0.65	59		39	107	0.72	61
67.20		50	53	0.51	55	47	68	0.59	58		41	99	0.72	60
56.61		60	40	0.48	53	56	46	0.50	54		49	75	0.66	59
69.39	29/2	48	140	0.94	77	46	140	0.88	77		40	140	0.78	76
63.80		53	140	1.0	77	50	140	0.96	77		43	140	0.84	76
54.59		62	140	1.2	78	58	140	1.1	78		51	140	0.98	77
47.32		71	139	1.3	78	67	140	1.3	78		59	140	1.1	78
44.22		76	129	1.3	78	72	139	1.3	78		63	140	1.2	78
38.23		88	112	1.3	78	83	120	1.3	79		73	139	1.4	79
32.48		104	91	1.3	78	98	100	1.3	78		86	117	1.3	79
29.00		117	76	1.2	77	110	86	1.3	78		96	104	1.3	79
24.77		137	47	0.91	75	129	66	1.2	77		113	87	1.3	78
23.20		146	42	0.87	74	137	54	1.0	76		120	79	1.3	78
19.54		174	32	0.81	72	163	37	0.86	74		143	59	1.1	77
20.33	27/5	167	100	2.0*	86	157	100	1.9*	86		137	100	1.7*	86
17.62		192	97	2.3*	86	181	100	2.2*	86		158	100	1.9*	86
16.47		206	90	2.3*	86	194	97	2.3*	86		170	100	2.1*	86
14.24		238	78	2.3*	86	224	83	2.3*	86		196	97	2.3*	86
12.10		280	63	2.2*	86	264	69	2.2*	86		231	82	2.3*	86
10.80		314	53	2.1*	85	296	60	2.2*	85		259	72	2.3*	86
9.23		368	32	1.5	85	346	45	1.9*	85		303	60	2.2*	86
8.64		393	29	1.4	84	370	37	1.7*	85		324	55	2.2*	86
7.28		467	22	1.3	83	439	25	1.4	84		384	41	1.9*	85
6.83	20/5	497	34	2.0*	87	468	37	2.1*	88		409	45	2.2*	88
6.4		531	31	2.0*	87	500	34	2.0*	87		437	42	2.2*	88
5.39		630	24	1.8*	86	593	27	1.9*	87		519	34	2.1*	88
4.76		714	20	1.8*	85	672	23	1.9*	86		588	29	2.0*	87
4		850	16	1.7*	85	800	18	1.8*	85		700	23	1.9*	87

^{*} P_{Mot_max} = 1.5 kW

i _{tot}	İs		n _e = 2200	min ⁻¹			n _e = 1700	min ⁻¹			n _e = 1400	min ⁻¹	
		n _a min ⁻¹	M _{a_max} Nm	P _{Mot} kW	η %	n _a min ⁻¹	M _{a_max} Nm	P _{Mot} kW	η %	n _a min ⁻¹	M _{a_max} Nm	P _{Mot} kW	η %
201.00	42/1	10	167	0.35	55	8.4	170	0.28	54	6.9	170	0.23	53
184.80		11	167	0.37	56	9.1	168	0.30	55	7.5	170	0.25	53
158.12		13	167	0.43	57	10	168	0.34	56	8.8	170	0.29	54
137.05		16	165	0.48	58	12	167	0.38	57	10	168	0.32	55
128.10		17	165	0.51	58	13	167	0.41	57	10	168	0.34	56
110.73		19	165	0.58	59	15	167	0.46	58	12	168	0.39	57
94.08		23	165	0.67	60	18	167	0.53	59	14	168	0.45	58
84.00		26	162	0.73	61	20	167	0.59	60	16	167	0.50	59
71.75		30	145	0.76	62	23	167	0.68	61	19	167	0.57	60
67.20		32	137	0.76	62	25	164	0.71	61	20	167	0.60	60
56.61		38	115	0.76	62	30	152	0.77	62	24	165	0.69	62
69.39	29/2	31	155	0.68	75	24	155	0.54	74	20	155	0.45	73
63.80		34	155	0.74	76	26	155	0.58	75	21	155	0.48	74
54.59		40	155	0.86	77	31	155	0.67	75	25	155	0.56	75
47.32		46	155	0.98	77	35	155	0.77	76	29	155	0.64	75
44.22		49	155	1.0	78	38	155	0.82	77	31	155	0.68	76
38.23		57	154	1.2	78	44	155	0.93	77	36	155	0.78	77
32.48		67	146	1.3	79	52	155	1.1	78	43	155	0.91	77
29.00		75	137	1.4	79	58	154	1.2	79	48	155	1.0	78
24.77		88	117	1.4	79	68	145	1.3	79	56	155	1.2	79
23.20		94	111	1.4	79	73	142	1.4	79	60	152	1.2	79
19.54		112	92	1.4	79	87	123	1.4	80	71	144	1.4	79
20.33	27/5	108	109	1.4	86	83	110	1.1	86	68	110	0.93	85
17.62		124	108	1.6*	87	96	109	1.3	86	79	110	1.1	86
16.47		133	108	1.7*	87	103	109	1.4	86	85	110	1.1	86
14.24		154	108	2.0*	87	119	109	1.6*	87	98	110	1.3	86
12.10		181	105	2.3*	87	140	109	1.8*	87	115	109	1.5	87
10.80		203	95	2.3*	87	157	108	2.1*	87	129	109	1.7*	87
9.23		238	82	2.4*	87	184	105	2.3*	87	151	109	2.0*	87
8.64		254	77	2.4*	86	196	100	2.4*	87	162	109	2.1*	87
7.28		302	64	2.3*	86	233	86	2.4*	87	192	103	2.4*	87
6.83	20/5	322	62	2.4*	89	248	78	2.3*	89	204	78	1.9*	89
6.4		343	58	2.3*	89	265	76	2.4*	89	218	76	2.0*	89
5.39		408	48	2.3*	89	315	65	2.4*	89	259	74	2.3*	89
4.76		462	42	2.3*	89	357	58	2.4*	89	294	72	2.5*	90
4		550	34	2.2*	88	425	48	2.4*	89	350	61	2.5*	90

^{*} P_{Mot_max} = 1.5 kW

1100 - 700 min⁻¹

i _{tot}	İs		n _e = 1100	min ⁻¹			n _e = 900	min ⁻¹			n _e = 700	min ⁻¹	
		n _a min ⁻¹	M _{a_max} Nm	P _{Mot} kW	η %	n _a min ⁻¹	M _{a_max} Nm	P _{Mot} kW	η %	n _a min ⁻¹	M _{a_max} Nm	P _{Mot} kW	η %
201.00	42/1	5.4	176	0.20	52	4.4	180	0.17	50	3.4	185	0.14	49
184.80		5.9	174	0.21	52	4.8	178	0.18	51	3.7	183	0.15	50
158.12		6.9	172	0.24	53	5.6	176	0.20	52	4.4	180	0.17	51
137.05		8	171	0.27	54	6.5	172	0.22	53	5.1	178	0.19	51
128.10		8.5	171	0.28	55	7	172	0.24	53	5.4	176	0.19	52
110.73		9.9	169	0.32	56	8.1	171	0.27	54	6.3	174	0.22	53
94.08		11	169	0.37	57	9.5	171	0.31	55	7.4	172	0.25	54
84.00		13	169	0.40	58	10	169	0.34	56	8.3	171	0.27	55
71.75		15	169	0.46	59	12	169	0.39	57	9.7	171	0.31	56
67.20		16	169	0.49	59	13	169	0.41	58	10	171	0.33	56
56.61		19	169	0.57	60	15	169	0.48	59	12	171	0.38	58
69.39	29/2	15	173	0.40	72	12	176	0.33	71	10	180	0.27	70
63.80		17	173	0.43	73	14	175	0.36	72	10	180	0.29	71
54.59		20	171	0.49	74	16	173	0.41	73	12	176	0.33	72
47.32		23	171	0.56	74	19	173	0.47	74	14	175	0.38	72
44.22		24	171	0.60	75	20	171	0.49	74	15	175	0.40	73
38.23		28	169	0.67	76	23	171	0.56	75	18	173	0.45	73
32.48		33	169	0.78	76	27	171	0.66	76	21	171	0.52	74
29.00		37	170	0.88	77	31	171	0.73	76	24	171	0.58	75
24.77		44	169	1.0	78	36	170	0.84	77	28	171	0.67	76
23.20		47	164	1.0	78	38	170	0.89	77	30	171	0.71	76
19.54		56	154	1.2	79	46	165	1.0	78	35	170	0.83	77
20.33	27/5	54	112	0.75	84	44	114	0.63	84	34	116	0.51	83
17.62		62	112	0.86	85	51	113	0.72	84	39	115	0.57	83
16.47		66	112	0.92	85	54	113	0.77	84	42	114	0.61	84
14.24		77	111	1.1	86	63	112	0.87	85	49	113	0.69	84
12.10		90	111	1.2	86	74	111	1.0	86	57	113	0.81	85
10.80		101	111	1.4	86	83	111	1.1	86	64	112	0.89	85
9.23		119	110	1.6*	87	97	111	1.3	86	75	112	1.0	86
8.64		127	109	1.7*	87	104	111	1.4	87	81	112	1.1	86
7.28		151	109	2.0*	87	123	111	1.6*	87	96	111	1.3	87
6.83	20/5	161	95	1.8*	89	131	95	1.5*	88	102	95	1.2	88
6.4		171	93	1.9*	89	140	93	1.6*	88	109	93	1.2	88
5.39		204	89	2.1*	89	166	89	1.8*	89	129	89	1.4	88
4.76		231	87	2.4*	89	189	87	1.9*	89	147	87	1.5	89
4		275	78	2.5*	90	225	84	2.2*	89	175	84	1.7*	89

^{*} P_{Mot_max} = 1.5 kW

500 - 10 min⁻¹

i _{tot}	İs		n _e = 500 i	min ⁻¹			n _e = 250	min ⁻¹			n _e = 10 i	min ⁻¹	
		n _a min ⁻¹	M _{a_max} Nm	P _{Mot} kW	η %	n _a min ⁻¹	M _{a_max} Nm	P _{Mot} kW	η %	n _a min ⁻¹	M _{a_max} Nm	P _{Mot} kW	η %
201.00	42/1	2.4	185	0.10	47	1.2	185	0.05	47	0.04	185	<0.05	47
184.80	_	2.7	185	0.11	48	1.3	185	0.06	47	0.05	185	<0.05	47
158.12	-	3.1	185	0.13	49	1.5	185	0.07	47	0.06	185	<0.05	47
137.05	_	3.6	185	0.14	50	1.8	185	0.08	47	0.07	185	<0.05	47
128.10		3.9	183	0.15	50	1.9	185	0.08	47	0.07	185	<0.05	47
110.73	_	4.5	181	0.17	51	2.2	185	0.09	47	0.09	185	<0.05	48
94.08	_	5.3	178	0.19	52	2.6	185	0.11	48	0.1	185	<0.05	48
84.00	_	5.9	176	0.21	53	2.9	185	0.12	49	0.11	185	<0.05	48
71.75	_	6.9	174	0.24	54	3.4	185	0.14	50	0.13	185	<0.05	48
67.20	_	7.4	172	0.25	54	3.7	185	0.14	50	0.14	185	<0.05	48
56.61		8.8	172	0.29	56	4.4	181	0.16	51	0.17	181	<0.05	48
69.39	29/2	7.2	185	0.20	69	3.6	185	0.10	67	0.14	185	<0.05	67
63.80	_	7.8	185	0.22	69	3.9	185	0.11	67	0.15	185	<0.05	67
54.59	_	9.1	185	0.25	70	4.5	185	0.13	67	0.18	185	<0.05	67
47.32	_	10	181	0.28	71	5.2	185	0.15	68	0.21	185	<0.05	68
44.22		11	180	0.30	71	5.6	185	0.16	68	0.22	185	<0.05	68
38.23	_	13	178	0.34	72	6.5	185	0.18	69	0.26	185	<0.05	68
32.48	_	15	174	0.39	73	7.6	185	0.22	69	0.3	185	<0.05	68
29.00	_	17	174	0.43	73	8.6	185	0.24	70	0.34	185	<0.05	68
24.77		20	172	0.49	74	10	183	0.27	71	0.4	183	<0.05	68
23.20	_	21	172	0.52	75	10	181	0.29	71	0.43	181	<0.05	68
19.54		25	172	0.61	76	12	178	0.33	72	0.51	178	<0.05	68
20.33	27/5	24	124	0.39	82	12	157	0.25	80	0.49	157	<0.05	79
17.62	_	28	120	0.43	82	14	149	0.28	80	0.56	149	<0.05	80
16.47	_	30	118	0.46	82	15	145	0.29	80	0.6	145	<0.05	80
14.24	_	35	116	0.51	83	17	138	0.31	81	0.7	138	<0.05	80
12.10	_	41	115	0.60	84	20	131	0.35	81	0.82	131	<0.05	80
10.80	_	46	114	0.66	84	23	127	0.38	82	0.92	127	<0.05	80
9.23	=	54	113	0.76	85	27	121	0.42	82	1	121	<0.05	80
8.64	_	57	113	0.81	85	28	120	0.44	83	1.1	120	<0.05	80
7.28		68	112	0.94	86	34	117	0.51	83	1.3	117	<0.05	80
6.83	20/5	73	95	0.84	87	36	95	0.43	84	1.4	95	<0.05	81
6.4	_	78	93	0.88	87	39	93	0.45	85	1.5	93	<0.05	81
5.39	_	92	89	0.99	87	46	89	0.51	85	1.8	89	<0.05	81
4.76	=	105	87	1.1	88	52	87	0.56	86	2.1	87	<0.05	81
4		125	84	1.2	88	62	84	0.64	86	2.5	84	<0.05	81

11.12 Technical data of S.., SF.., SA.., SAF 57

3400 - 2800 min⁻¹

i _{tot}	İs		n _e = 3400	min ⁻¹			n _e = 3200	min ⁻¹			n _e = 2800	min ⁻¹	
		n _a min ⁻¹	M _{a_max} Nm	P _{Mot} kW	η %	n _a min ⁻¹	M _{a_max} Nm	P _{Mot} kW	η %	n _a min ⁻¹	M _{a_max} Nm	P _{Mot} kW	η %
201.00	42/1	16	270	0.78	61	15	270	0.74	61	13	270	0.66	60
184.80		18	270	0.84	62	17	270	0.79	62	15	270	0.70	61
158.12		21	270	0.97	63	20	270	0.92	63	17	270	0.81	62
137.05		24	255	1.0	64	23	270	1.0	63	20	270	0.92	63
128.10		26	245	1.1	64	24	255	1.0	64	21	270	0.98	63
110.73		30	215	1.1	64	28	230	1.1	64	25	255	1.1	64
94.08		36	184	1.1	64	34	196	1.1	64	29	225	1.1	64
84.00		40	165	1.1	64	38	175	1.1	64	33	200	1.1	64
71.75		47	139	1.1	64	44	149	1.1	64	39	174	1.1	65
67.20		50	128	1.1	64	47	139	1.1	64	41	164	1.1	65
56.61		60	103	1.0	63	56	114	1.1	64	49	138	1.1	65
69.39	29/2	48	220	1.4	79	46	220	1.4	79	40	220	1.2	78
63.80		53	220	1.5	79	50	220	1.5	79	43	220	1.3	79
54.59		62	220	1.8	80	58	220	1.7	80	51	220	1.5	79
47.32		71	210	2.0	80	67	220	1.9	80	59	220	1.7	80
44.22		76	197	2.0	80	72	205	1.9	80	63	220	1.8	80
38.23		88	174	2.0	81	83	184	2.0	81	73	205	2.0	81
32.48		104	148	2.0	81	98	157	2.0	81	86	180	2.0	81
29.00		117	131	2.0	81	110	141	2.0	81	96	162	2.0	81
24.77		137	111	2.0	80	129	120	2.0	81	113	139	2.0	81
23.20		146	102	2.0	80	137	111	2.0	81	120	131	2.0	81
19.54		174	81	1.9	80	163	90	1.9	80	143	109	2.0	81
20.33	27/5	167	160	3.2*	88	157	160	3.0	88	137	160	2.6	88
17.62		192	140	3.2*	88	181	149	3.2*	88	158	160	3.0	88
16.47		206	132	3.2*	88	194	140	3.2*	88	170	158	3.2*	88
14.24		238	116	3.3*	88	224	123	3.3*	88	196	139	3.2*	88
12.10		280	99	3.3*	88	264	105	3.3*	88	231	121	3.3*	88
10.80		314	88	3.3*	88	296	94	3.3*	88	259	108	3.3*	88
9.23		368	73	3.2*	88	346	79	3.3*	88	303	93	3.3*	88
8.64		393	68	3.2*	88	370	74	3.3*	88	324	87	3.3*	88
7.28		467	54	3.0	88	439	60	3.1*	88	384	72	3.3*	88
6.8	20/5	497	54	3.2*	89	468	58	3.2*	89	409	69	3.3*	90
6.4		531	50	3.1*	89	500	54	3.2*	89	437	64	3.3*	89
5.4		630	41	3.1*	89	593	44	3.1*	89	519	53	3.2*	89
4.8		714	35	3.0	88	672	38	3.0	89	588	46	3.2*	89
4		850	28	2.8	88	800	31	2.9	88	700	38	3.1*	89

^{*} P_{Mot_max} = 3.0 kW

i _{tot}	İs		n _e = 2200	min ⁻¹			n _e = 1700	min ⁻¹			n _e = 1400	min ⁻¹	
		n _a min ⁻¹	M _{a_max} Nm	P _{Mot} kW	η %	n _a min ⁻¹	M _{a_max} Nm	P _{Mot} kW	η %	n _a min ⁻¹	M _{a_max} Nm	P _{Mot} kW	η %
201.00	42/1	10	295	0.58	59	8.4	295	0.46	57	6.9	295	0.39	56
184.80		11	295	0.62	60	9.1	295	0.49	58	7.5	295	0.41	56
158.12		13	295	0.71	61	10	295	0.56	59	8.8	295	0.47	58
137.05		16	295	0.80	62	12	295	0.64	60	10	295	0.54	59
128.10		17	295	0.85	62	13	295	0.68	61	10	295	0.57	59
110.73		19	290	0.96	63	15	295	0.77	62	12	295	0.65	60
94.08		23	275	1.1	64	18	300	0.91	63	14	295	0.75	62
84.00		26	250	1.1	64	20	285	0.95	63	16	295	0.83	62
71.75		30	220	1.1	65	23	275	1.1	64	19	290	0.94	63
67.20		32	210	1.1	65	25	260	1.1	64	20	285	0.98	64
56.61		38	179	1.1	65	30	225	1.1	65	24	265	1.1	65
69.39	29/2	31	245	1.1	77	24	245	0.83	76	20	245	0.69	75
63.80		34	245	1.1	78	26	245	0.89	77	21	245	0.74	76
54.59		40	245	1.3	79	31	245	1.0	78	25	245	0.86	77
47.32		46	245	1.5	79	35	245	1.2	78	29	245	0.98	77
44.22		49	245	1.6	80	38	245	1.3	79	31	245	1.0	78
38.23		57	245	1.8	80	44	245	1.4	79	36	245	1.2	78
32.48		67	225	2.0	81	52	245	1.7	80	43	245	1.4	79
29.00		75	200	2.0	81	58	245	1.9	80	48	245	1.6	80
24.77		88	177	2.0	81	68	220	2.0	81	56	245	1.8	80
23.20		94	167	2.0	81	73	210	2.0	81	60	245	1.9	81
19.54		112	143	2.1	81	87	183	2.1	81	71	215	2.0	81
20.33	27/5	108	168	2.2	87	83	168	1.7	87	68	168	1.4	86
17.62		124	168	2.5	88	96	168	2.0	87	79	168	1.6	86
16.47		133	169	2.7	88	103	168	2.1	87	85	168	1.7	87
14.24		154	169	3.1*	88	119	169	2.4	88	98	169	2.0	87
12.10		181	150	3.2*	88	140	169	2.8	88	115	169	2.3	88
10.80		203	136	3.3*	88	157	169	3.2*	88	129	169	2.6	88
9.23		238	119	3.4*	88	184	149	3.3*	88	151	169	3.0	88
8.64		254	112	3.4*	89	196	141	3.3*	89	162	166	3.2*	88
7.28		302	96	3.4*	89	233	122	3.4*	89	192	146	3.3*	89
6.8	20/5	322	91	3.4*	90	248	100	2.9	90	204	100	2.4	89
6.4		343	85	3.4*	90	265	98	3.0	90	218	98	2.5	89
5.4		408	72	3.4*	90	315	95	3.5*	90	259	95	2.9	90
4.8		462	63	3.4*	90	357	84	3.5*	90	294	93	3.2*	90
4		550	53	3.4*	90	425	71	3.5*	90	350	88	3.6*	90

^{*} P_{Mot_max} = 3.0 kW

1100 - 700 1/min⁻¹

i _{tot}	İs		n _e = 1100	min ⁻¹			n _e = 900	min ⁻¹			n _e = 700	min ⁻¹	
		n _a min ⁻¹	M _{a_max} Nm	P _{Mot} kW	η %	n _a min ⁻¹	M _{a_max} Nm	P _{Mot} kW	η %	n _a min ⁻¹	M _{a_max} Nm	P _{Mot} kW	η %
201.00	42/1	5.4	295	0.31	54	4.4	300	0.27	53	3.4	310	0.22	51
184.80		5.9	295	0.34	55	4.8	300	0.29	54	3.7	305	0.23	52
158.12		6.9	295	0.38	56	5.6	295	0.32	55	4.4	300	0.26	53
137.05		8	295	0.43	57	6.5	295	0.36	56	5.1	300	0.29	54
128.10		8.5	295	0.46	58	7	295	0.38	57	5.4	295	0.31	55
110.73		9.9	295	0.52	59	8.1	295	0.44	58	6.3	295	0.35	56
94.08		11	295	0.60	60	9.5	295	0.50	59	7.4	295	0.40	57
84.00		13	295	0.67	61	10	295	0.56	60	8.3	295	0.44	58
71.75		15	295	0.77	62	12	295	0.64	61	9.7	295	0.51	59
67.20		16	300	0.82	62	13	295	0.68	61	10	295	0.54	60
56.61		19	290	0.93	64	15	300	0.80	62	12	295	0.63	61
69.39	29/2	15	270	0.61	74	12	270	0.50	73	10	270	0.40	72
63.80		17	270	0.65	75	14	270	0.54	74	10	270	0.43	72
54.59		20	270	0.75	76	16	270	0.62	75	12	270	0.50	73
47.32		23	270	0.86	76	19	270	0.71	75	14	270	0.56	74
44.22		24	270	0.92	77	20	270	0.76	76	15	270	0.60	75
38.23		28	270	1.0	78	23	270	0.87	77	18	270	0.69	75
32.48		33	270	1.2	78	27	270	1.0	77	21	270	0.80	76
29.00		37	270	1.4	79	31	270	1.1	78	24	270	0.89	77
24.77		44	270	1.6	80	36	270	1.3	79	28	270	1.0	78
23.20		47	270	1.7	80	38	270	1.4	79	30	270	1.1	78
19.54		56	250	1.8	81	46	270	1.6	80	35	270	1.3	79
20.33	27/5	54	168	1.1	85	44	170	0.93	84	34	172	0.74	84
17.62		62	169	1.3	86	51	169	1.1	85	39	170	0.84	84
16.47		66	168	1.4	86	54	168	1.1	85	42	170	0.90	84
14.24		77	168	1.6	86	63	168	1.3	86	49	170	1.0	85
12.10		90	169	1.9	87	74	169	1.5	86	57	169	1.2	86
10.80		101	169	2.1	87	83	169	1.7	87	64	169	1.3	86
9.23		119	170	2.4	88	97	168	2.0	87	75	168	1.5	87
8.64		127	170	2.6	88	104	169	2.1	87	81	168	1.6	87
7.28		151	170	3.0	88	123	170	2.5	88	96	170	2.0	87
6.8	20/5	161	120	2.3	89	131	120	1.9	89	102	120	1.5	88
6.4		171	117	2.4	89	140	117	1.9	89	109	117	1.5	88
5.4		204	111	2.6	90	166	111	2.2	89	129	111	1.7	89
4.8		231	108	2.9	90	189	108	2.4	90	147	108	1.9	89
4		275	103	3.3*	90	225	103	2.7	90	175	103	2.1	89

^{*} P_{Mot_max} = 3.0 kW

500 - 10 min⁻¹

i _{tot}	İs		n _e = 500	min ⁻¹			n _e = 250	min ⁻¹		,	n _e = 10	min ⁻¹	
		n _a min ⁻¹	M _{a_max} Nm	P _{Mot} kW	η %	n _a min ⁻¹	M _{a_max} Nm	P _{Mot} kW	η %	n _a min ⁻¹	M _{a_max} Nm	P _{Mot} kW	η %
201.00	42/1	2.4	330	0.17	50	1.2	330	0.09	48	0.04	330	<0.05	48
184.80	-	2.7	330	0.19	50	1.3	330	0.10	48	0.05	330	<0.05	48
158.12	-	3.1	315	0.20	51	1.5	330	0.11	48	0.06	330	<0.05	48
137.05	-	3.6	310	0.23	52	1.8	330	0.13	49	0.07	330	<0.05	48
128.10	-	3.9	305	0.24	53	1.9	330	0.14	49	0.07	330	<0.05	49
110.73	-	4.5	300	0.26	54	2.2	330	0.16	50	0.09	330	<0.05	49
94.08		5.3	300	0.30	55	2.6	330	0.18	51	0.1	330	<0.05	49
84.00	-	5.9	295	0.33	56	2.9	325	0.20	51	0.11	325	<0.05	49
71.75	-	6.9	295	0.38	57	3.4	310	0.22	52	0.13	310	<0.05	49
67.20	-	7.4	295	0.40	57	3.7	310	0.23	53	0.14	310	<0.05	49
56.61	-	8.8	295	0.47	59	4.4	300	0.26	54	0.17	300	<0.05	49
69.39	29/2	7.2	300	0.32	70	3.6	300	0.17	68	0.14	300	<0.05	68
63.80	-	7.8	300	0.35	71	3.9	300	0.18	68	0.15	300	<0.05	68
54.59	-	9.1	300	0.40	72	4.5	300	0.21	68	0.18	300	<0.05	68
47.32		10	300	0.46	73	5.2	300	0.24	69	0.21	300	<0.05	68
44.22	-	11	300	0.49	73	5.6	300	0.26	69	0.22	300	<0.05	68
38.23		13	295	0.55	74	6.5	300	0.29	70	0.26	300	<0.05	68
32.48	_	15	295	0.64	75	7.6	300	0.34	71	0.3	300	<0.05	68
29.00	_	17	295	0.71	75	8.6	300	0.38	72	0.34	300	<0.05	68
24.77	_	20	295	0.82	76	10	300	0.44	73	0.4	300	<0.05	68
23.20		21	295	0.87	76	10	300	0.46	73	0.43	300	<0.05	68
19.54		25	295	1.0	77	12	295	0.54	74	0.51	295	<0.05	68
20.33	27/5	24	181	0.57	82	12	215	0.35	80	0.49	215	<0.05	79
17.62	_	28	175	0.63	83	14	210	0.39	80	0.56	210	<0.05	79
16.47	_	30	174	0.66	83	15	205	0.40	81	0.6	205	<0.05	79
14.24	_	35	172	0.75	84	17	198	0.45	81	0.7	198	<0.05	79
12.10		41	170	0.87	84	20	188	0.50	82	0.82	188	<0.05	79
10.80		46	170	0.97	85	23	184	0.54	82	0.92	184	<0.05	79
9.23	_	54	170	1.1	85	27	177	0.61	83	1	177	<0.05	79
8.64	_	57	170	1.2	86	28	175	0.64	83	1.1	175	<0.05	79
7.28		68	170	1.4	86	34	172	0.74	84	1.3	172	<0.05	79
6.8	20/5	73	120	1.1	87	36	120	0.54	85	1.4	120	<0.05	81
6.4		78	117	1.1	87	39	117	0.56	85	1.5	117	<0.05	81
5.4	_	92	111	1.2	88	46	111	0.63	86	1.8	111	<0.05	81
4.8	=	105	108	1.3	88	52	108	0.69	86	2.1	108	<0.05	81
4		125	103	1.5	89	62	103	0.78	87	2.5	103	<0.05	81

11.13 Technical data of S.., SF.., SA.., SAF 67

3400 - 2800 min⁻¹

i _{tot}	İ _s		n _e = 3400	min ⁻¹			n _e = 3200	min ⁻¹			n _e = 2800	min ⁻¹	
		n _a min ⁻¹	M _{a_max} Nm	P _{Mot} kW	η %	n _a min ⁻¹	M _{a_max} Nm	P _{Mot} kW	η %	n _a min ⁻¹	M _{a_max} Nm	P _{Mot} kW	η %
217.41	42/1	15	465	1.2	63	14	465	1.2	62	12	465	1.0	62
190.11		17	465	1.4	63	16	465	1.3	63	14	465	1.2	62
180.60		18	465	1.4	63	17	465	1.4	63	15	465	1.2	63
158.45		21	465	1.6	64	20	465	1.5	64	17	465	1.4	63
134.40		25	465	1.9	65	23	465	1.8	65	20	465	1.6	64
121.33		28	455	2.0	65	26	465	2.0	65	23	465	1.7	65
106.75		31	405	2.1	65	29	430	2.1	66	26	465	2.0	65
100.80		33	380	2.1	65	31	410	2.1	66	27	465	2.1	66
85.83		39	320	2.0	65	37	345	2.1	65	32	400	2.1	66
78.00		43	285	2.0	65	41	310	2.0	65	35	365	2.1	66
67.57		50	235	1.9	64	47	260	2.0	65	41	315	2.1	66
58.80		57	184	1.8	62	54	215	1.9	64	47	270	2.1	65
75.06	29/2	45	435	2.6	80	42	435	2.4	80	37	435	2.1	79
65.63		51	435	2.9	80	48	435	2.8	80	42	435	2.4	80
62.35		54	435	3.1	81	51	435	2.9	80	44	435	2.6	80
54.70		62	435	3.5	81	58	435	3.3	81	51	435	2.9	81
46.40		73	395	3.7	81	68	415	3.7	81	60	435	3.4	81
41.89		81	355	3.7	81	76	380	3.7	81	66	430	3.7	81
36.85		92	310	3.7	81	86	335	3.8	81	75	380	3.7	81
34.80		97	295	3.7	81	91	315	3.7	81	80	365	3.8	81
29.63		114	250	3.7	81	107	270	3.8	81	94	310	3.8	81
26.93		126	220	3.6	80	118	240	3.7	81	103	280	3.7	81
23.33		145	182	3.5	80	137	200	3.6	80	120	245	3.8	81
20.30		167	141	3.1	79	157	164	3.4	80	137	205	3.7	81
24.44	27/5	139	315	5.2	89	130	315	4.9	89	114	315	4.3	88
23.22		146	315	5.4	89	137	315	5.1	89	120	315	4.5	89
20.37		166	315	6.2*	89	157	315	5.8*	89	137	315	5.1	89
17.28		196	270	6.3*	89	185	290	6.3*	89	162	315	6.0*	89
15.60		217	245	6.3*	89	205	260	6.3*	89	179	295	6.2*	89
13.73		247	215	6.3*	89	233	230	6.3*	89	203	265	6.4*	89
12.96		262	200	6.2*	89	246	215	6.3*	89	216	250	6.4*	89
11.03		308	169	6.2*	88	290	183	6.3*	89	253	215	6.4*	89
10.03		338	151	6.1*	88	319	164	6.2*	88	279	194	6.4*	89
8.69		391	124	5.8*	88	368	137	6.0*	88	322	166	6.3*	89
7.56		449	95	5.1	87	423	112	5.7*	88	370	141	6.2*	88

^{*} P_{Mot_max} = 5.5 kW

i _{tot}	İs		n _e = 2200	min ⁻¹			n _e = 1700	min ⁻¹			n _e = 1400	min ⁻¹	
		n _a min ⁻¹	M _{a_max} Nm	P _{Mot} kW	η %	n _a min ⁻¹	M _{a_max} Nm	P _{Mot} kW	η %	n _a min ⁻¹	M _{a_max} Nm	P _{Mot} kW	η %
217.41	42/1	10	520	0.91	61	7.8	520	0.72	59	6.4	520	0.60	58
190.11		11	520	1.0	62	8.9	520	0.81	60	7.3	520	0.68	59
180.60		12	520	1.1	62	9.4	520	0.85	61	7.7	520	0.71	59
158.45		13	520	1.2	63	10	520	0.95	61	8.8	520	0.80	60
134.40		16	520	1.4	64	12	520	1.1	62	10	520	0.93	61
121.33		18	520	1.5	64	14	520	1.2	63	11	520	1.0	62
106.75		20	520	1.7	65	15	520	1.4	64	13	520	1.1	63
100.80		21	510	1.8	65	16	520	1.4	64	13	520	1.2	63
85.83		25	490	2.0	66	19	520	1.7	65	16	520	1.4	64
78.00		28	465	2.1	66	21	510	1.8	66	17	520	1.5	65
67.57		32	410	2.1	67	25	495	2.0	66	20	520	1.7	66
58.80		37	360	2.1	67	28	460	2.1	67	23	500	1.9	66
75.06	29/2	29	480	1.9	79	22	480	1.5	78	18	480	1.2	77
65.63		33	480	2.1	79	25	480	1.7	78	21	480	1.4	78
62.35		35	480	2.2	80	27	480	1.7	79	22	480	1.5	78
54.70		40	480	2.5	80	31	480	2.0	79	25	480	1.6	78
46.40		47	480	3.0	81	36	480	2.3	80	30	480	1.9	79
41.89		52	480	3.3	81	40	480	2.5	80	33	480	2.1	80
36.85		59	475	3.6	81	46	480	2.9	81	37	480	2.4	80
34.80		63	450	3.7	82	48	480	3.0	81	40	480	2.5	80
29.63		74	395	3.8	82	57	480	3.5	82	47	480	2.9	81
26.93		81	360	3.8	82	63	455	3.7	82	51	480	3.2	81
23.33		94	320	3.9	82	72	405	3.8	82	60	480	3.7	82
20.30		108	280	3.9	82	83	360	3.8	82	68	425	3.7	82
24.44	27/5	90	340	3.6	88	69	340	2.8	87	57	340	2.3	87
23.22		94	340	3.8	88	73	340	3.0	88	60	340	2.5	87
20.37		108	340	4.3	88	83	340	3.4	88	68	340	2.8	87
17.28		127	340	5.1	89	98	340	4.0	88	81	340	3.3	88
15.60		141	340	5.6*	89	108	340	4.4	89	89	340	3.6	88
13.73		160	330	6.2*	89	123	340	5.0	89	101	340	4.1	89
12.96		169	315	6.3*	89	131	340	5.2	89	108	340	4.3	89
11.03		199	275	6.4*	89	154	340	6.2*	89	126	340	5.1	89
10.03		219	250	6.4*	89	169	315	6.3*	89	139	340	5.6*	89
8.69		253	220	6.6*	89	195	280	6.4*	89	161	335	6.3*	89
7.56		291	192	6.6*	89	224	250	6.6*	89	185	295	6.4*	89

^{*} P_{Mot_max} = 5.5 kW

S.. helical-worm gear unitsTechnical data of S.., SF.., SA.., SAF 67

1100 - 700 min⁻¹

i _{tot}	İs		n _e = 1100	min ⁻¹			n _e = 900	min ⁻¹			n _e = 700	min ⁻¹	
		n _a min ⁻¹	M _{a_max} Nm	P _{Mot} kW	η %	n _a min ⁻¹	M _{a_max} Nm	P _{Mot} kW	η %	n _a min ⁻¹	M _{a_max} Nm	P _{Mot} kW	η %
217.41	42/1	5	555	0.52	57	4.1	560	0.44	56	3.2	570	0.35	54
190.11		5.7	555	0.58	58	4.7	560	0.49	57	3.6	565	0.40	55
180.60		6	555	0.61	58	4.9	555	0.51	57	3.8	565	0.41	55
158.45		6.9	550	0.68	59	5.6	555	0.57	58	4.4	560	0.46	56
134.40		8.1	550	0.78	60	6.6	550	0.65	59	5.2	555	0.53	57
121.33		9	550	0.86	61	7.4	550	0.72	60	5.7	555	0.58	58
106.75		10	550	0.96	62	8.4	550	0.80	61	6.5	555	0.65	59
100.80		10	550	1.0	62	8.9	550	0.84	61	6.9	555	0.68	59
85.83		12	550	1.2	63	10	550	0.97	62	8.1	550	0.78	61
78.00		14	550	1.3	64	11	550	1.1	63	8.9	550	0.84	61
67.57		16	550	1.4	65	13	550	1.2	64	10	550	0.96	62
58.80		18	530	1.6	66	15	550	1.4	65	11	550	1.1	63
75.06	29/2	14	525	1.1	76	11	525	0.88	75	9.3	525	0.69	74
65.63		16	525	1.2	77	13	525	1.00	76	10	525	0.79	75
62.35		17	525	1.3	77	14	525	1.0	76	11	525	0.83	75
54.70		20	525	1.4	78	16	525	1.2	77	12	525	0.93	75
46.40		23	525	1.7	78	19	525	1.4	78	15	525	1.1	76
41.89		26	525	1.8	79	21	525	1.5	78	16	525	1.2	77
36.85		29	525	2.1	79	24	525	1.7	79	18	525	1.3	78
34.80		31	525	2.2	80	25	525	1.8	79	20	525	1.4	78
29.63		37	525	2.5	80	30	525	2.1	80	23	525	1.7	79
26.93		40	525	2.8	81	33	525	2.3	80	25	525	1.8	79
23.33		47	525	3.2	81	38	525	2.6	81	30	525	2.1	80
20.30		54	520	3.6	82	44	525	3.0	81	34	525	2.4	80
24.44	27/5	45	355	1.9	86	36	360	1.6	86	28	365	1.3	85
23.22		47	355	2.0	86	38	360	1.7	86	30	365	1.4	85
20.37		54	355	2.3	87	44	355	1.9	86	34	365	1.5	86
17.28		63	355	2.7	87	52	355	2.2	87	40	360	1.8	86
15.60		70	350	3.0	88	57	355	2.5	87	44	355	1.9	86
13.73		80	350	3.3	88	65	355	2.8	88	50	355	2.2	87
12.96		84	350	3.5	88	69	350	2.9	88	54	355	2.3	87
11.03		99	350	4.1	89	81	350	3.4	88	63	355	2.7	88
10.03		109	345	4.5	89	89	350	3.7	88	69	355	3.0	88
8.69		126	345	5.1	89	103	350	4.3	89	80	350	3.3	88
7.56		145	345	5.9*	89	119	345	4.8	89	92	350	3.8	89

^{*} P_{Mot_max} = 5.5 kW

500 - 10 min⁻¹

i _{tot}	İs		n _e = 500	min ⁻¹			n _e = 250	min ⁻¹			n _e = 10	min ⁻¹	
		n _a min ⁻¹	M _{a_max} Nm	P _{Mot} kW	η %	n _a min ⁻¹	M _{a_max} Nm	P _{Mot} kW	η %	n _a min ⁻¹	M _{a_max} Nm	P _{Mot} kW	η %
217.41	42/1	2.2	570	0.26	52	1.1	570	0.14	50	0.04	570	<0.05	51
190.11		2.6	570	0.30	53	1.3	570	0.16	50	0.05	570	<0.05	51
180.60		2.7	570	0.31	53	1.3	570	0.17	50	0.05	570	<0.05	51
158.45		3.1	570	0.35	54	1.5	570	0.19	51	0.06	570	<0.05	51
134.40	_	3.7	565	0.40	55	1.8	570	0.22	52	0.07	570	<0.05	51
121.33	_	4.1	560	0.43	56	2	570	0.24	52	0.08	570	<0.05	51
106.75		4.6	560	0.48	57	2.3	570	0.27	53	0.09	570	<0.05	51
100.80		4.9	560	0.51	57	2.4	570	0.28	53	0.09	570	<0.05	51
85.83		5.8	555	0.58	58	2.9	570	0.32	54	0.11	570	<0.05	51
78.00		6.4	555	0.63	59	3.2	570	0.35	55	0.12	570	<0.05	51
67.57		7.3	555	0.71	60	3.6	565	0.39	56	0.14	565	<0.05	51
58.80	_	8.5	550	0.80	61	4.2	560	0.44	57	0.17	560	<0.05	51
75.06	29/2	6.6	570	0.55	72	3.3	570	0.29	69	0.13	570	<0.05	70
65.63		7.6	570	0.62	73	3.8	570	0.33	70	0.15	570	<0.05	70
62.35		8	570	0.65	73	4	570	0.34	70	0.16	570	<0.05	70
54.70		9.1	570	0.74	74	4.5	570	0.39	71	0.18	570	<0.05	70
46.40		10	570	0.86	75	5.3	570	0.45	71	0.21	570	<0.05	70
41.89		11	570	0.95	75	5.9	570	0.50	72	0.23	570	<0.05	70
36.85		13	570	1.1	76	6.7	570	0.56	73	0.27	570	<0.05	70
34.80		14	570	1.1	76	7.1	570	0.59	73	0.28	570	<0.05	70
29.63		16	565	1.3	77	8.4	570	0.68	74	0.33	570	<0.05	70
26.93		18	565	1.4	78	9.2	570	0.75	74	0.37	570	<0.05	70
23.33	-	21	565	1.6	78	10	570	0.85	75	0.42	570	<0.05	70
20.30		24	565	1.8	79	12	570	0.97	76	0.49	570	<0.05	70
24.44	27/5	20	365	0.93	84	10	355	0.47	82	0.4	355	<0.05	81
23.22	-	21	365	0.98	84	10	355	0.49	82	0.43	355	<0.05	81
20.37		24	380	1.2	85	12	365	0.57	82	0.49	365	<0.05	81
17.28	-	28	365	1.3	85	14	435	0.80	83	0.57	435	<0.05	81
15.60	-	32	365	1.4	85	16	430	0.87	83	0.64	430	<0.05	81
13.73		36	365	1.6	86	18	415	0.95	84	0.72	415	<0.05	81
12.96		38	360	1.7	86	19	410	0.99	84	0.77	410	<0.05	81
11.03	-	45	355	1.9	87	22	390	1.1	84	0.9	390	<0.05	81
10.03	-	49	355	2.1	87	24	380	1.2	85	0.99	380	<0.05	81
8.69	_	57	355	2.4	87	28	370	1.3	85	1.1	370	0.06	81
7.56	-	66	355	2.8	88	33	365	1.5	86	1.3	365	0.06	81

11.14 Technical data of S.., SF.., SA.., SAF 77

3400 - 2800 min⁻¹

i _{tot}	İs		n _e = 3400	min ⁻¹			n _e = 3200	min ⁻¹			n _e = 2800	min ⁻¹	
		n _a min ⁻¹	M _{a_max} Nm	P _{Mot} kW	η %	n _a min ⁻¹	M _{a_max} Nm	P _{Mot} kW	η %	n _a min ⁻¹	M _{a_max} Nm	P _{Mot} kW	η %
256.47	40/1	13	1160	2.4	68	12	1160	2.2	67	10	1160	2.0	67
225.26		15	1130	2.6	68	14	1150	2.5	68	12	1160	2.2	68
214.00	_	15	1110	2.7	68	14	1140	2.6	68	13	1160	2.3	68
189.09	_	17	1080	3.0	69	16	1100	2.8	69	14	1140	2.6	68
161.60	_	21	1040	3.3	69	19	1050	3.1	69	17	1090	2.9	69
148.15	_	22	1010	3.5	70	21	1030	3.4	70	18	1070	3.1	69
130.00	_	26	970	3.8	70	24	990	3.7	70	21	1030	3.3	70
123.20	_	27	950	3.9	70	25	970	3.8	70	22	1010	3.4	70
107.83	_	31	900	4.2	70	29	920	4.1	70	25	970	3.8	70
97.14	_	35	860	4.5	71	32	880	4.3	71	28	930	4.0	71
85.22	_	39	770	4.6	71	37	820	4.6	71	32	880	4.3	71
75.20		45	675	4.5	70	42	725	4.6	71	37	830	4.6	71
66.67	_	50	585	4.5	70	47	635	4.5	70	41	745	4.6	71
56.92	_	59	485	4.4	69	56	530	4.5	70	49	635	4.6	71
75.09	40/3	45	1020	5.7	85	42	1020	5.4	85	37	1020	4.7	84
71.33		47	1020	6.0	85	44	1020	5.7	85	39	1020	5.0	84
63.03		53	1020	6.8	85	50	1020	6.4	85	44	1020	5.6	85
53.87		63	980	7.6	86	59	1000	7.3	85	51	1020	6.5	85
49.38		68	950	8.0	86	64	970	7.7	86	56	1010	7.0	85
43.33		78	910	8.7	86	73	930	8.4	86	64	970	7.7	86
41.07		82	900	9.1	86	77	910	8.7	86	68	950	7.9	86
35.94		94	800	9.2	86	89	850	9.2	86	77	910	8.6	86
32.38		105	725	9.3*	86	98	770	9.3*	86	86	880	9.3	86
28.41	_	119	635	9.3*	86	112	680	9.3*	86	98	780	9.3	86
25.07		135	560	9.3*	86	127	600	9.3*	86	111	695	9.4	86
22.22		153	485	9.1	85	144	525	9.2	86	126	615	9.4	86
18.97		179	395	8.7	85	168	440	9.1	85	147	520	9.4	86
22.89	34/6	148	590	10.*2	90	139	590	9.6*	90	122	590	8.4	90
20.99		161	590	11.1*	90	152	590	10.5*	90	133	590	9.1	90
18.42		184	590	12.7*	90	173	590	11.9*	90	152	590	10.4	90
17.45		194	590	13.4*	90	183	590	12.6*	90	160	590	11.0	90
15.28	_	222	530	13.8*	90	209	560	13.7*	90	183	590	12.6	90
13.76		247	480	13.9*	90	232	505	13.7*	90	203	585	13.9*	90
12.07	_	281	415	13.7*	89	265	445	13.8*	89	231	515	13.9*	90
10.65	_	319	365	13.7*	89	300	390	13.8*	89	262	455	14.0*	90
9.44	_	360	315	13.4*	89	338	345	13.8*	89	296	405	14.1*	89
8.06		421	260	13.0*	88	397	285	13.4*	89	347	340	13.9*	89

^{*} P_{Mot_max} = 9.2 kW

\mathbf{i}_{tot}	İs		n _e = 2200	min ⁻¹			n _e = 1700	min ⁻¹			n _e = 1400	min ⁻¹	
		n _a min ⁻¹	M _{a_max} Nm	P _{Mot} kW	η %	n _a min ⁻¹	M _{a_max} Nm	P _{Mot} kW	η %	n _a min ⁻¹	M _{a_max} Nm	P _{Mot} kW	η %
256.47	40/1	8.5	1260	1.7	66	6.6	1270	1.4	64	5.4	1270	1.1	63
225.26	-	9.7	1230	1.9	67	7.5	1270	1.5	65	6.2	1270	1.3	64
214.00	_	10	1220	2.0	67	7.9	1270	1.6	66	6.5	1270	1.4	64
189.09	-	11	1200	2.2	67	8.9	1240	1.8	66	7.4	1270	1.5	65
161.60	-	13	1160	2.4	68	10	1220	2.0	67	8.6	1260	1.7	66
148.15	-	14	1140	2.6	69	11	1200	2.1	68	9.4	1240	1.8	67
130.00	-	16	1100	2.8	69	13	1170	2.4	68	10	1210	2.0	67
123.20	_	17	1080	2.9	69	13	1150	2.4	68	11	1200	2.1	68
107.83	_	20	1040	3.2	70	15	1110	2.7	69	12	1170	2.3	68
97.14	_	22	1010	3.4	70	17	1090	2.9	70	14	1140	2.5	69
85.22	_	25	970	3.7	71	19	1050	3.1	70	16	1100	2.7	69
75.20	-	29	920	4.0	71	22	1010	3.4	71	18	1070	3.0	70
66.67	_	32	880	4.3	71	25	970	3.6	71	20	1040	3.2	71
56.92	_	38	830	4.7	72	29	920	4.0	72	24	990	3.6	71
75.09	40/3	29	1100	4.0	84	22	1100	3.1	83	18	1100	2.6	82
71.33	-	30	1100	4.2	84	23	1100	3.3	83	19	1100	2.7	82
63.03	-	34	1100	4.8	84	26	1100	3.7	84	22	1100	3.1	83
53.87	-	40	1100	5.5	85	31	1100	4.3	84	25	1100	3.6	83
49.38	_	44	1080	5.9	85	34	1100	4.7	84	28	1100	3.9	84
43.33	_	50	1050	6.5	85	39	1100	5.3	85	32	1100	4.4	84
41.07		53	1030	6.8	85	41	1100	5.6	85	34	1100	4.7	84
35.94	_	61	980	7.3	86	47	1060	6.2	85	38	1100	5.3	85
32.38	_	67	960	8.0	86	52	1040	6.7	86	43	1090	5.8	85
28.41	_	77	920	8.7	86	59	990	7.2	86	49	1050	6.3	86
25.07		87	870	9.3*	86	67	960	7.9	86	55	1020	7.0	86
22.22		99	790	9.5*	86	76	920	8.5	86	63	980	7.5	86
18.97	_	115	680	9.6*	86	89	860	9.3*	87	73	930	8.3	86
22.89	34/6	96	710	7.9	90	74	705	6.1	89	61	705	5.1	89
20.99	_	104	710	8.7	90	80	705	6.7	90	66	705	5.5	89
18.42	_	119	720	10.0*	90	92	710	7.6	90	76	705	6.3	90
17.45	_	126	720	10.5*	90	97	710	8.0	90	80	710	6.7	90
15.28	_	143	720	12.0*	90	111	720	9.3*	90	91	710	7.6	90
13.76	_	159	725	13.5*	90	123	720	10.3*	90	101	710	8.4	90
12.07	-	182	650	13.8*	90	140	725	11.8*	90	115	720	9.7*	90
10.65	-	206	580	13.9*	90	159	725	13.4*	90	131	720	11.0*	91
9.44		233	520	14.1*	90	180	655	13.7*	90	148	725	12.4*	91
8.06		272	445	14.1*	90	210	575	14.1*	90	173	680	13.7*	91

^{*} P_{Mot_max} = 9.2 kW

1100 - 700 min⁻¹

i _{tot}	İs		n _e = 1100	min ⁻¹			n _e = 900	min ⁻¹				n _e = 700	min ⁻¹	
		n _a min ⁻¹	M _{a_max} Nm	P _{Mot} kW	η %	n _a min ⁻¹	M _{a_max} Nm	P _{Mot} kW	η %		n _a min ⁻¹	M _{a_max} Nm	P _{Mot} kW	η %
256.47	40/1	4.2	1270	0.92	62	3.5	1270	0.77	61		2.7	1270	0.61	59
225.26		4.8	1270	1.0	63	3.9	1270	0.86	62		3.1	1270	0.69	60
214.00		5.1	1270	1.1	63	4.2	1270	0.90	62		3.2	1270	0.72	60
189.09		5.8	1270	1.2	64	4.7	1270	1.0	63		3.7	1270	0.81	61
161.60		6.8	1270	1.4	65	5.5	1270	1.2	64		4.3	1270	0.93	62
148.15		7.4	1270	1.5	65	6	1270	1.3	64		4.7	1270	1.0	63
130.00		8.4	1260	1.7	66	6.9	1270	1.4	65		5.3	1270	1.1	64
123.20		8.9	1250	1.8	67	7.3	1270	1.5	65		5.6	1270	1.2	64
107.83		10	1220	1.9	67	8.3	1260	1.7	66		6.4	1270	1.3	65
97.14		11	1200	2.1	68	9.2	1250	1.8	67		7.2	1270	1.5	66
85.22		12	1170	2.3	69	10	1220	2.0	68		8.2	1270	1.6	66
75.20		14	1140	2.5	69	11	1190	2.2	68		9.3	1250	1.8	67
66.67		16	1110	2.7	70	13	1160	2.4	69		10	1220	2.0	68
56.92		19	1060	3.0	71	15	1120	2.7	70		12	1190	2.2	69
75.09	40/3	14	1120	2.1	81	11	1130	1.8	81		9.3	1170	1.4	80
71.33		15	1120	2.2	82	12	1130	1.9	81		9.8	1120	1.4	80
63.03		17	1120	2.5	82	14	1120	2.1	81	-	11	1130	1.6	80
53.87		20	1120	2.9	83	16	1120	2.4	82		12	1120	1.9	81
49.38		22	1120	3.1	83	18	1120	2.6	82		14	1120	2.0	81
43.33		25	1130	3.6	84	20	1120	2.9	83		16	1120	2.3	82
41.07		26	1130	3.8	84	21	1120	3.1	83		17	1120	2.4	82
35.94		30	1150	4.4	84	25	1130	3.5	84		19	1120	2.8	83
32.38		33	1130	4.8	85	27	1130	3.9	84		21	1120	3.1	83
28.41		38	1110	5.3	85	31	1150	4.5	84		24	1130	3.5	84
25.07		43	1080	5.8	85	35	1120	5.0	85		27	1130	3.9	84
22.22		49	1050	6.4	86	40	1100	5.5	85		31	1150	4.5	85
18.97		57	1010	7.1	86	47	1060	6.1	86		36	1120	5.1	85
22.89	34/6	48	695	4.0	89	39	695	3.3	88		30	705	2.6	87
20.99		52	705	4.4	89	42	695	3.5	88		33	705	2.8	88
18.42		59	700	4.9	89	48	700	4.0	89		38	700	3.2	88
17.45		63	700	5.2	89	51	700	4.3	89		40	700	3.3	88
15.28		71	710	6.0	90	58	700	4.8	89		45	700	3.8	89
13.76		79	710	6.6	90	65	700	5.4	89		50	700	4.2	89
12.07		91	710	7.5	90	74	710	6.2	90		57	700	4.8	89
10.65		103	715	8.6	90	84	710	7.0	90		65	710	5.5	90
9.44		116	720	9.7*	91	95	715	7.9	90		74	710	6.1	90
8.06		136	725	11.4*	91	111	720	9.3*	91		86	710	7.2	90

^{*} P_{Mot_max} = 9.2 kW

500 - 10 min⁻¹

i _{tot}	İs		n _e = 500	min ⁻¹			n _e = 250	min ⁻¹			n _e = 10	min ⁻¹	
		n _a min ⁻¹	M _{a_max} Nm	P _{Mot} kW	η %	n _a min ⁻¹	M _{a_max} Nm	P _{Mot} kW	η %	n _a min ⁻¹	M _{a_max} Nm	P _{Mot} kW	η %
256.47	40/1	1.9	1270	0.45	57	0.97	1270	0.24	55	0.03	1270	<0.05	55
225.26	-	2.2	1270	0.51	58	1.1	1270	0.27	55	0.04	1270	<0.05	55
214.00	-	2.3	1270	0.53	58	1.1	1270	0.28	55	0.04	1270	<0.05	55
189.09	_	2.6	1270	0.59	59	1.3	1270	0.32	55	0.05	1270	<0.05	55
161.60	_	3	1270	0.68	60	1.5	1270	0.37	56	0.06	1270	<0.05	55
148.15	-	3.3	1270	0.74	61	1.6	1270	0.40	57	0.06	1270	<0.05	55
130.00	-	3.8	1270	0.83	62	1.9	1270	0.45	57	0.07	1270	<0.05	55
123.20	-	4	1270	0.87	62	2	1270	0.47	58	0.08	1270	<0.05	55
107.83	_	4.6	1270	0.98	63	2.3	1270	0.53	59	0.09	1270	<0.05	55
97.14	_	5.1	1270	1.1	64	2.5	1270	0.58	59	0.1	1270	<0.05	55
85.22	-	5.8	1270	1.2	64	2.9	1270	0.65	60	0.11	1270	<0.05	55
75.20	-	6.6	1270	1.4	65	3.3	1270	0.73	61	0.13	1270	<0.05	55
66.67	-	7.4	1270	1.5	66	3.7	1270	0.81	62	0.14	1270	<0.05	55
56.92	_	8.7	1260	1.7	67	4.3	1270	0.93	63	0.17	1270	<0.05	55
75.09	40/3	6.6	1160	1.0	78	3.3	1120	0.52	76	0.13	1120	<0.05	76
71.33	-	7	1110	1.0	78	3.5	1060	0.51	76	0.14	1060	<0.05	76
63.03	-	7.9	1230	1.3	79	3.9	1200	0.65	76	0.15	1200	<0.05	76
53.87	-	9.2	1180	1.4	80	4.6	1240	0.78	77	0.18	1240	<0.05	76
49.38	-	10	1160	1.5	80	5	1240	0.85	77	0.2	1240	<0.05	76
43.33	_	11	1120	1.7	81	5.7	1240	0.96	78	0.23	1240	<0.05	76
41.07	_	12	1120	1.8	81	6	1240	1.0	78	0.24	1240	<0.05	76
35.94	-	13	1120	2.0	81	6.9	1240	1.1	79	0.27	1240	<0.05	76
32.38	_	15	1120	2.2	82	7.7	1240	1.3	79	0.3	1240	0.05	76
28.41	_	17	1120	2.5	82	8.7	1190	1.4	80	0.35	1190	0.06	76
25.07	_	19	1120	2.8	83	9.9	1170	1.5	80	0.39	1170	0.06	76
22.22	_	22	1130	3.2	83	11	1130	1.6	81	0.45	1130	0.07	76
18.97	-	26	1130	3.7	84	13	1120	1.9	81	0.52	1120	0.08	76
22.89	34/6	21	690	1.8	86	10	675	0.92	84	0.43	675	<0.05	83
20.99	-	23	725	2.1	87	11	740	1.1	85	0.47	740	<0.05	83
18.42	_	27	705	2.3	87	13	830	1.4	85	0.54	830	0.06	83
17.45	=	28	705	2.4	87	14	810	1.4	85	0.57	810	0.06	83
15.28	_	32	705	2.8	88	16	785	1.6	86	0.65	785	0.06	83
13.76	_	36	695	3.0	88	18	770	1.7	86	0.72	770	0.07	83
12.07	-	41	695	3.4	88	20	750	1.9	86	0.82	750	0.08	83
10.65	-	46	695	3.9	89	23	725	2.1	87	0.93	725	0.09	83
9.44	=	52	705	4.4	89	26	705	2.2	87	1	705	0.09	83
8.06		62	705	5.1	90	31	705	2.6	88	1.2	705	0.11	83

11.15 Technical data of S.., SF.., SA.., SAF 87

3400 - 2800 min⁻¹

i _{tot}	İ _s		n _e = 3400	min ⁻¹			n _e = 3200	min ⁻¹			n _e = 2800	min ⁻¹	
		n _a min ⁻¹	M _{a_max} Nm	P _{Mot} kW	η %	n _a min ⁻¹	M _{a_max} Nm	P _{Mot} kW	η %	n _a min ⁻¹	M _{a_max} Nm	P _{Mot} kW	η %
288.00	40/1	11	2030	3.6	70	11	2070	3.4	70	9.7	2070	3.0	70
258.18		13	1990	3.9	71	12	2010	3.7	71	10	2070	3.4	70
222.40		15	1910	4.3	71	14	1950	4.1	71	12	2010	3.8	71
202.96		16	1850	4.6	71	15	1890	4.4	71	13	1970	4.0	71
180.00		18	1800	5.0	72	17	1830	4.8	72	15	1910	4.4	71
151.30	_	22	1690	5.5	72	21	1730	5.3	72	18	1800	4.9	72
139.05	_	24	1630	5.8	72	23	1680	5.6	72	20	1760	5.2	72
123.48	_	27	1570	6.3	72	25	1600	6.0	72	22	1690	5.6	72
110.40	_	30	1430	6.4	72	28	1540	6.4	73	25	1620	5.9	73
99.26	_	34	1260	6.3	72	32	1380	6.4	72	28	1550	6.3	73
86.15	-	39	1030	6.0	71	37	1150	6.2	72	32	1390	6.5	73
77.14	_	44	830	5.5	70	41	970	5.9	71	36	1220	6.4	72
64.00	_	53	500	4.3	65	50	620	4.8	68	43	960	6.2	72
91.20	38/3	37	1470	6.7	86	35	1470	6.3	86	30	1470	5.5	85
81.76	_	41	1470	7.5	86	39	1470	7.0	86	34	1470	6.2	86
70.43	-	48	1470	8.6	86	45	1470	8.1	86	39	1470	7.1	86
64.27	_	52	1470	9.4	86	49	1470	8.9	86	43	1470	7.8	86
57.00	_	59	1470	10.6	87	56	1470	10.0	87	49	1470	8.8	86
47.91	_	70	1470	12.6	87	66	1470	11.8	87	58	1470	10.4	87
44.03	_	77	1470	13.6	87	72	1470	12.8	87	63	1470	11.3	87
39.10	_	86	1300	13.6	87	81	1400	13.8	87	71	1470	12.6	87
34.96	_	97	1140	13.4	87	91	1240	13.6	87	80	1440	13.8	87
31.43	_	108	1000	13.1	87	101	1090	13.4	87	89	1290	13.8	87
27.28	_	124	810	12.3	86	117	910	12.9	87	102	1110	13.7	87
24.43	_	139	660	11.3	85	130	775	12.4	86	114	960	13.3	87
20.27	_	167	395	8.4	83	157	490	9.6	84	138	755	12.7	86
25.50	34/6	133	990	15.2*	91	125	990	14.3	91	109	990	12.6	91
21.43	_	158	990	18.1*	91	149	990	17.0*	91	130	990	14.9	91
19.70	_	172	990	20*	91	162	990	19*	91	142	990	16.2*	91
17.49	_	194	870	20*	90	182	930	20*	91	160	990	18.3*	91
15.64	_	217	760	19*	90	204	830	20*	90	179	960	20*	91
14.06	-	241	660	19*	90	227	725	19*	90	199	860	20*	91
12.21	-	278	540	17.6*	90	262	605	18.5*	90	229	730	19*	90
10.93	_	311	440	16.0*	89	292	510	17.4*	90	256	645	19*	90
9.07	_	374	255	11.5	87	352	325	13.5	89	308	500	18.0*	90
7.88	_	431	200	10.5	86	406	230	11.2	87	355	375	15.6*	89

^{*} P_{Mot_max} =15 kW

2200 - 1400 min⁻¹

i _{tot}	İs		n _e = 2200 min ⁻¹ n _a M _{a_max} P _{Mot} η min ⁻¹ Nm kW %					n _e = 1700	min ⁻¹			n _e = 1400	min ⁻¹	
		n _a min ⁻¹	M _{a_max} Nm	P _{Mot} kW	η %		n _a min ⁻¹	M _{a_max} Nm	P _{Mot} kW	η %	n _a min ⁻¹	M _{a_max} Nm	P _{Mot} kW	η %
288.00	40/1	7.6	2210	2.6	69		5.9	2280	2.1	67	4.8	2280	1.7	66
258.18	_	8.5	2170	2.8	69		6.5	2260	2.3	68	5.4	2280	1.9	67
222.40	_	9.8	2130	3.2	70		7.6	2210	2.6	69	6.2	2280	2.2	68
202.96		10	2080	3.4	70		8.3	2190	2.8	69	6.8	2260	2.4	68
180.00		12	2020	3.7	71		9.4	2130	3.0	70	7.7	2210	2.6	69
151.30		14	1940	4.1	71		11	2060	3.4	71	9.2	2150	3.0	70
139.05	_	15	1880	4.4	72		12	2020	3.6	71	10	2100	3.2	70
123.48	_	17	1820	4.7	72		13	1960	4.0	71	11	2060	3.5	71
110.40	_ [19	1770	5.1	72		15	1900	4.3	72	12	2000	3.7	71
99.26		22	1700	5.4	73		17	1840	4.6	72	14	1960	4.0	72
86.15		25	1620	5.9	73		19	1770	5.0	73	16	1880	4.4	72
77.14	_	28	1540	6.3	73		22	1700	5.4	73	18	1820	4.8	73
64.00	_	34	1360	6.7	73		26	1580	6.0	74	21	1700	5.3	73
91.20	38/3	24	1540	4.6	85		18	1520	3.5	84	15	1510	2.9	83
81.76		26	1600	5.3	85		20	1600	4.1	84	17	1600	3.4	84
70.43		31	1600	6.1	86		24	1600	4.8	85	19	1600	3.9	84
64.27		34	1600	6.7	86		26	1600	5.2	85	21	1600	4.3	85
57.00		38	1600	7.5	86		29	1600	5.8	86	24	1600	4.8	85
47.91		45	1600	8.9	87		35	1600	6.9	86	29	1600	5.7	86
44.03		49	1600	9.7	87		38	1600	7.5	86	31	1600	6.2	86
39.10	_	56	1600	10.8	87		43	1600	8.4	87	35	1600	7.0	86
34.96		62	1600	12.1	87		48	1600	9.4	87	40	1600	7.8	87
31.43	_	69	1600	13.4	88		54	1600	10.4	87	44	1600	8.6	87
27.28		80	1450	14.0	88		62	1600	11.9	88	51	1600	9.9	87
24.43		90	1310	14.1	88		69	1600	13.3	88	57	1600	11.0	87
20.27		108	1080	14.0	88		83	1420	14.2	88	69	1600	13.2	88
25.50	34/6	86	1240	12.4	91		66	1240	9.6	90	54	1240	7.9	90
21.43	_	102	1240	14.6	91		79	1240	11.4	91	65	1240	9.4	90
19.70	_	111	1240	15.9*	91		86	1240	12.3	91	71	1240	10.2	91
17.49		125	1240	17.9*	91		97	1240	13.9	91	80	1240	11.4	91
15.64	_	140	1230	20*	91		108	1240	15.5*	91	89	1240	12.8	91
14.06	_	156	1110	20*	91		120	1240	17.2*	91	99	1240	14.2	91
12.21	_	180	970	20*	91		139	1240	20*	91	114	1240	16.3*	91
10.93	_	201	870	20*	91		155	1130	20*	91	128	1240	18.2*	91
9.07	_	242	720	20*	91		187	950	20*	91	154	1140	20*	91
7.88		279	605	20*	90		215	830	21*	91	177	1010	21*	91

^{*} P_{Mot_max} = 15 kW

1100 - 700 min⁻¹

i _{tot}	İs		n _e = 1100	min ⁻¹			n _e = 900	min ⁻¹				n _e = 700	min ⁻¹	
		n _a min ⁻¹	M _{a_max} Nm	P _{Mot} kW	η %	n _a min ⁻¹	M _{a_max} Nm	P _{Mot} kW	η %		n _a min ⁻¹	M _{a_max} Nm	P _{Mot} kW	η %
288.00	40/1	3.8	2400	1.5	65	3.1	2450	1.3	64		2.4	2480	1.0	63
258.18		4.2	2380	1.6	66	3.4	2430	1.4	65		2.7	2470	1.1	63
222.40		4.9	2350	1.8	67	4	2400	1.6	66		3.1	2450	1.3	64
202.96		5.4	2330	2.0	67	4.4	2380	1.7	66		3.4	2430	1.4	65
180.00		6.1	2280	2.2	68	5	2350	1.8	67		3.8	2400	1.5	65
151.30		7.2	2240	2.5	69	5.9	2310	2.1	68		4.6	2350	1.7	67
139.05		7.9	2190	2.6	69	6.4	2260	2.2	68		5	2330	1.8	67
123.48		8.9	2150	2.9	70	7.2	2240	2.5	69		5.6	2310	2.0	68
110.40		9.9	2110	3.1	70	8.1	2190	2.7	70		6.3	2280	2.2	68
99.26		11	2070	3.4	71	9	2150	2.9	70		7	2240	2.4	69
86.15		12	2000	3.7	72	10	2090	3.2	71		8.1	2190	2.7	70
77.14		14	1940	4.0	72	11	2040	3.5	71	-	9	2150	2.9	70
64.00		17	1840	4.5	73	14	1960	4.0	72		10	2070	3.3	71
91.20	38/3	12	1490	2.3	83	9.8	1480	1.9	82		7.6	1460	1.4	81
81.76		13	1760	3.0	83	11	1760	2.5	83		8.5	1760	1.9	82
70.43		15	1760	3.4	84	12	1760	2.8	83		9.9	1760	2.2	82
64.27		17	1760	3.8	84	14	1760	3.1	84		10	1760	2.4	83
57.00		19	1760	4.2	85	15	1760	3.5	84		12	1760	2.7	83
47.91		22	1760	5.0	85	18	1760	4.1	85		14	1760	3.2	84
44.03		24	1760	5.4	85	20	1760	4.4	85		15	1760	3.5	84
39.10		28	1760	6.0	86	23	1760	5.0	85		17	1760	3.9	85
34.96		31	1760	6.7	86	25	1760	5.5	86		20	1760	4.3	85
31.43		34	1760	7.5	86	28	1760	6.1	86		22	1760	4.8	85
27.28		40	1760	8.6	87	32	1760	7.0	86		25	1760	5.5	86
24.43		45	1760	9.5	87	36	1760	7.8	87		28	1760	6.1	86
20.27		54	1760	11.4	88	44	1760	9.4	87		34	1760	7.3	87
25.50	34/6	43	1340	6.7	90	35	1340	5.6	89		27	1340	4.3	89
21.43		51	1340	8.0	90	41	1340	6.6	90		32	1340	5.1	89
19.70		55	1340	8.7	90	45	1340	7.1	90		35	1340	5.6	89
17.49		62	1340	9.8	91	51	1340	8.0	90		40	1340	6.3	90
15.64		70	1340	10.9	91	57	1340	8.9	90		44	1340	7.0	90
14.06		78	1340	12.1	91	64	1340	9.9	91		49	1340	7.8	90
12.21	-	90	1340	13.9	91	73	1340	11.4	91		57	1340	8.9	90
10.93		100	1340	15.5*	91	82	1340	12.7	91		64	1340	9.9	91
9.07		121	1340	19*	91	99	1340	15.2*	91		77	1340	11.9	91
7.88		139	1260	20*	92	114	1340	17.5*	92		88	1340	13.7	91

^{*} P_{Mot_max} = 15 kW

500 - 10 min⁻¹

i _{tot}	İs		n _e = 500 i	min ⁻¹			n _e = 250	min ⁻¹		 ,	n _e = 10 i	min ⁻¹	
		n _a min ⁻¹	M _{a_max} Nm	P _{Mot} kW	η %	n _a min ⁻¹	M _{a_max} Nm	P _{Mot} kW	η %	n _a min ⁻¹	M _{a_max} Nm	P _{Mot} kW	η %
288.00	40/1	1.7	2500	0.75	61	0.86	2500	0.39	58	0.03	2500	<0.05	58
258.18	-	1.9	2500	0.83	61	0.96	2500	0.44	58	0.03	2500	<0.05	58
222.40	-	2.2	2500	0.95	62	1.1	2500	0.50	59	0.04	2500	<0.05	58
202.96	-	2.4	2480	1.0	63	1.2	2500	0.55	59	0.04	2500	<0.05	58
180.00	-	2.7	2480	1.1	64	1.3	2500	0.61	60	0.05	2500	<0.05	58
151.30	-	3.3	2430	1.3	65	1.6	2500	0.71	61	0.06	2500	<0.05	58
139.05	-	3.5	2430	1.4	65	1.7	2500	0.77	61	0.07	2500	<0.05	58
123.48	-	4	2400	1.5	66	2	2500	0.86	62	0.08	2500	<0.05	58
110.40	-	4.5	2380	1.7	67	2.2	2500	0.95	63	0.09	2500	<0.05	58
99.26	-	5	2330	1.8	67	2.5	2470	1.0	63	0.1	2470	<0.05	58
86.15	-	5.8	2310	2.1	68	2.9	2450	1.2	64	0.11	2450	0.05	59
77.14	-	6.4	2260	2.2	69	3.2	2430	1.3	65	0.12	2430	0.06	59
64.00	-	7.8	2220	2.6	70	3.9	2400	1.5	66	0.15	2400	0.07	59
91.20	38/3	5.4	1450	1.0	80	2.7	1390	0.51	78	0.1	1390	<0.05	78
81.76	-	6.1	1960	1.6	81	3	1880	0.77	78	0.12	1880	<0.05	78
70.43	-	7	1980	1.8	81	3.5	1980	0.93	79	0.14	1980	<0.05	78
64.27		7.7	1980	2.0	82	3.8	1980	1.0	79	0.15	1980	<0.05	78
57.00		8.7	1980	2.2	82	4.3	1980	1.1	80	0.17	1980	<0.05	78
47.91		10	1980	2.6	83	5.2	1980	1.3	80	0.2	1980	0.06	78
44.03		11	1980	2.8	83	5.6	1980	1.5	81	0.22	1980	0.06	78
39.10		12	1980	3.2	84	6.3	1980	1.6	81	0.25	1980	0.07	79
34.96	-	14	1980	3.5	84	7.1	1980	1.8	82	0.28	1980	0.08	79
31.43		15	1980	3.9	84	7.9	1980	2.0	82	0.31	1980	0.08	79
27.28		18	1980	4.5	85	9.1	1980	2.3	83	0.36	1980	0.10	79
24.43		20	1980	5.0	85	10	1980	2.6	83	0.4	1980	0.11	79
20.27		24	1980	5.9	86	12	1980	3.1	84	0.49	1980	0.13	79
25.50	34/6	19	1430	3.3	88	9.8	1390	1.7	86	0.39	1390	0.07	85
21.43	_	23	1420	3.9	88	11	1510	2.1	87	0.46	1510	0.09	85
19.70	_	25	1410	4.2	89	12	1570	2.4	87	0.5	1570	0.10	85
17.49		28	1390	4.7	89	14	1570	2.7	87	0.57	1570	0.11	85
15.64	-	31	1390	5.2	89	15	1540	2.9	87	0.63	1540	0.12	85
14.06		35	1390	5.8	90	17	1510	3.2	88	0.71	1510	0.13	85
12.21	-	40	1390	6.6	90	20	1460	3.5	88	0.81	1460	0.15	85
10.93	-	45	1390	7.4	90	22	1430	3.9	89	0.91	1430	0.16	85
9.07	-	55	1410	9.0	91	27	1390	4.5	89	1.1	1390	0.19	85
7.88		63	1410	10.3	91	31	1390	5.2	89	1.2	1390	0.22	85

11.16 Technical data of S.., SF.., SA.., SAF 97

3400 - 2800 min⁻¹

i _{tot}	İs		n _e = 3400	min ⁻¹		,	n _e = 3200	min ⁻¹			n _e = 2800	min ⁻¹	
		n _a min ⁻¹	M _{a_max} Nm	P _{Mot} kW	η %	n _a min ⁻¹	M _{a_max} Nm	P _{Mot} kW	η %	n _a min ⁻¹	M _{a_max} Nm	P _{Mot} kW	η %
286.40	40/1	11	3520	6.0	73	11	3590	5.8	73	9.7	3700	5.2	72
262.22		12	3450	6.4	73	12	3520	6.2	73	10	3630	5.6	73
231.67		14	3310	6.9	73	13	3380	6.7	73	12	3520	6.1	73
196.52		17	3120	7.7	74	16	3210	7.4	74	14	3350	6.8	73
180.95		18	3030	8.1	74	17	3120	7.8	74	15	3250	7.2	74
161.74		21	2910	8.7	74	19	2970	8.3	74	17	3120	7.7	74
145.60		23	2760	9.1	74	21	2850	8.9	74	19	3000	8.2	74
131.85		25	2660	9.7	74	24	2740	9.4	74	21	2880	8.6	74
116.92		29	2320	9.6	74	27	2550	9.8	74	23	2740	9.2	74
105.71		32	1980	9.1	73	30	2210	9.5	74	26	2630	9.8	74
89.60		37	1280	7.3	70	35	1670	8.6	72	31	2210	9.8	74
78.26		43	920	6.2	67	40	1040	6.5	69	35	1770	9.1	73
65.45		51	675	5.7	64	48	775	6.0	66	42	1030	6.7	69
80.85	37/3	42	3150	15.7	88	39	3150	14.8	88	34	3150	13.0	88
71.43		47	3090	17.4	88	44	3150	16.8	88	39	3150	14.7	88
60.59		56	2910	19	88	52	2970	19	88	46	3120	17.1	88
55.79		60	2820	20	89	57	2880	20	89	50	3030	18.0	88
49.87		68	2710	22	89	64	2760	21	89	56	2910	19	89
44.89		75	2430	22	89	71	2630	22	89	62	2790	21	89
40.65		83	2170	22	88	78	2350	22	89	68	2680	22	89
36.05		94	1830	21	88	88	2020	21	88	77	2400	22	89
32.60		104	1560	19	88	98	1760	21	88	85	2150	22	89
27.63		123	1010	15.2	86	115	1320	18.4	87	101	1740	21	88
24.13		140	725	12.7	84	132	820	13.4	85	116	1390	19	88
26.39	35/6	128	1750	26*	92	121	1750	24*	92	106	1750	21	92
23.59		144	1750	29*	92	135	1750	27*	92	118	1750	24*	92
21.23		160	1750	32*	91	150	1750	30*	92	131	1750	26*	92
19.23		176	1550	31*	91	166	1680	32*	91	145	1750	29*	92
17.05		199	1320	30*	91	187	1450	31*	91	164	1730	33*	92
15.42		220	1110	28*	91	207	1260	30*	91	181	1540	32*	91
13.07		260	725	22	90	244	940	27*	91	214	1240	31*	91
11.41		297	515	18.1	89	280	585	19	90	245	1000	28*	91
9.55		356	375	16.0	87	335	435	17.3	88	293	580	20	90
8.26		411	290	14.6	86	387	335	15.6	87	338	455	18.1	89

^{*} P_{Mot_max} = 22 kW

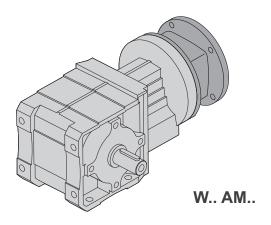
2200 - 1400 min⁻¹

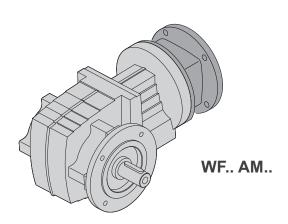
i _{tot}	İs		n _e = 2200	min ⁻¹			n _e = 1700	min ⁻¹			n _e = 1400	min ⁻¹	
		n _a min ⁻¹	M _{a_max} Nm	P _{Mot} kW	η %	n _a min ⁻¹	M _{a_max} Nm	P _{Mot} kW	η %	n _a min ⁻¹	M _{a_max} Nm	P _{Mot} kW	η %
286.40	40/1	7.6	3920	4.4	72	5.9	4000	3.5	70	4.8	4000	3.0	69
262.22		8.3	3840	4.7	72	6.4	4000	3.8	71	5.3	4000	3.2	70
231.67		9.4	3770	5.2	72	7.3	3960	4.3	72	6	4000	3.6	71
196.52		11	3580	5.8	73	8.6	3840	4.8	72	7.1	4000	4.2	71
180.95		12	3510	6.1	73	9.3	3770	5.1	73	7.7	3920	4.4	72
161.74		13	3410	6.6	74	10	3650	5.5	73	8.6	3840	4.8	72
145.60		15	3270	7.0	74	11	3550	5.9	73	9.6	3730	5.2	73
131.85		16	3170	7.5	74	12	3440	6.3	74	10	3650	5.6	73
116.92		18	3020	8.0	74	14	3340	6.9	74	11	3510	6.0	74
105.71		20	2930	8.6	75	16	3210	7.3	74	13	3440	6.5	74
89.60		24	2730	9.4	75	18	3020	8.0	75	15	3240	7.1	74
78.26		28	2540	10.0	75	21	2870	8.7	75	17	3080	7.7	75
65.45		33	2120	10.0	75	25	2650	9.6	75	21	2900	8.6	75
80.85	37/3	27	3300	10.8	87	21	3270	8.3	87	17	3230	6.8	86
71.43		30	3300	12.1	88	23	3300	9.4	87	19	3300	7.8	87
60.59		36	3300	14.3	88	28	3300	11.1	88	23	3300	9.2	87
55.79		39	3270	15.3	88	30	3300	12.0	88	25	3300	9.9	87
49.87		44	3170	16.6	88	34	3300	13.4	88	28	3300	11.1	88
44.89		49	3050	17.7	89	37	3300	14.8	88	31	3300	12.3	88
40.65		54	2950	19	89	41	3230	16.0	88	34	3300	13.5	88
36.05		61	2810	20	89	47	3110	17.3	89	38	3300	15.2	88
32.60		67	2700	21	89	52	2980	18.3	89	42	3200	16.3	89
27.63		79	2390	22	89	61	2810	20	89	50	3010	18.0	89
24.13		91	2060	22	89	70	2670	22	89	58	2870	20	89
26.39	35/6	83	2550	24*	92	64	2600	19	92	53	2600	15.8	92
23.59		93	2450	26*	92	72	2600	21	92	59	2600	17.6	92
21.23		103	2380	28*	92	80	2570	23*	92	65	2600	20	92
19.23		114	2280	30*	92	88	2500	25*	92	72	2600	21	92
17.05		129	2170	32*	92	99	2400	27*	92	82	2570	24*	92
15.42		142	2040	33*	92	110	2300	29*	92	90	2470	25*	92
13.07		168	1720	33*	92	130	2170	32*	92	107	2330	28*	92
11.41		192	1480	33*	92	148	2000	34*	92	122	2210	31*	92
9.55		230	1200	32*	91	178	1670	34*	92	146	2040	34*	92
8.26		266	980	30*	91	205	1440	34*	92	169	1770	34*	92

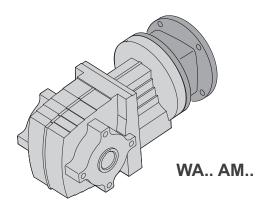
^{*} P_{Mot_max} = 22 kW

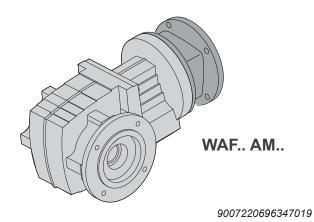
1100 - 700 min⁻¹

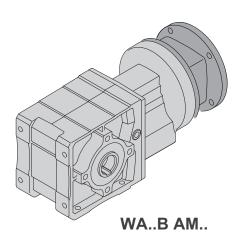
i _{tot}	İs		$n_e = 1100 \text{ min}^{-1}$ $n_a = M_{a_max} = P_{Mot} = \eta$					n _e = 900	min ⁻¹			n _e = 700	min ⁻¹	
		n _a min ⁻¹	M _{a_max} Nm	P _{Mot} kW	η %		n _a min ⁻¹	M _{a_max} Nm	P _{Mot} kW	η %	n _a min ⁻¹	M _{a_max} Nm	P _{Mot} kW	η %
286.40	40/1	3.8	4200	2.5	68		3.1	4200	2.1	67	2.4	4200	1.6	66
262.22		4.1	4200	2.7	69		3.4	4200	2.2	68	2.6	4200	1.8	66
231.67		4.7	4200	3.0	70		3.8	4200	2.5	68	3	4200	2.0	67
196.52		5.5	4160	3.5	70		4.5	4200	2.9	69	3.5	4200	2.3	68
180.95		6	4120	3.7	71		4.9	4200	3.1	70	3.8	4200	2.5	69
161.74		6.8	4030	4.0	71		5.5	4160	3.4	71	4.3	4200	2.8	69
145.60		7.5	3950	4.3	72		6.1	4080	3.7	71	4.8	4200	3.0	70
131.85		8.3	3880	4.7	72		6.8	4030	4.0	72	5.3	4200	3.3	70
116.92		9.4	3760	5.1	73		7.6	3910	4.4	72	5.9	4120	3.6	71
105.71		10	3650	5.4	73		8.5	3840	4.7	73	6.6	4030	3.9	72
89.60		12	3500	6.1	74		10	3690	5.3	73	7.8	3910	4.4	72
78.26		14	3370	6.7	74		11	3580	5.8	74	8.9	3800	4.9	73
65.45		16	3170	7.4	75		13	3400	6.6	75	10	3650	5.5	74
80.85	37/3	13	3230	5.4	86		11	3200	4.4	85	8.6	3170	3.4	84
71.43		15	3600	6.7	86		12	3600	5.5	86	9.7	3600	4.4	85
60.59		18	3600	7.9	87		14	3600	6.5	86	11	3600	5.1	85
55.79		19	3600	8.6	87		16	3600	7.0	86	12	3600	5.5	86
49.87		22	3600	9.5	87		18	3600	7.8	87	14	3600	6.2	86
44.89		24	3600	10.6	88		20	3600	8.7	87	15	3600	6.8	86
40.65		27	3600	11.6	88		22	3600	9.6	87	17	3600	7.5	87
36.05		30	3530	12.8	88		24	3600	10.7	88	19	3600	8.4	87
32.60		33	3420	13.7	88		27	3600	11.8	88	21	3600	9.3	87
27.63		39	3260	15.4	89		32	3460	13.4	88	25	3600	10.9	88
24.13		45	3130	16.8	89		37	3320	14.7	89	29	3560	12.3	88
26.39	35/6	41	2650	12.7	91		34	2620	10.3	91	26	2620	8.0	91
23.59		46	2650	14.1	92		38	2650	11.6	91	29	2620	9.0	91
21.23		51	2650	15.7	92		42	2650	12.9	91	32	2620	9.9	91
19.23		57	2650	17.3	92		46	2650	14.2	92	36	2620	11.0	91
17.05		64	2670	20	92		52	2650	16.0	92	41	2650	12.5	91
15.42		71	2670	22*	92		58	2650	17.6	92	45	2650	13.8	92
13.07		84	2540	24*	92		68	2670	21	92	53	2650	16.2	92
11.41		96	2420	26*	92		78	2590	23*	92	61	2650	18.5	92
9.55		115	2280	30*	92		94	2440	26*	93	73	2650	22	92
8.26		133	2140	32*	92		108	2320	29*	93	84	2540	24*	93

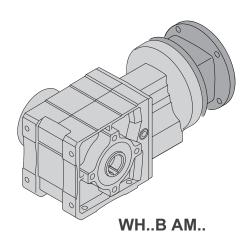

^{*} P_{Mot_max} = 22 kW

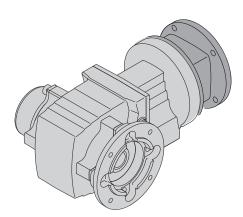

500 - 10 min⁻¹

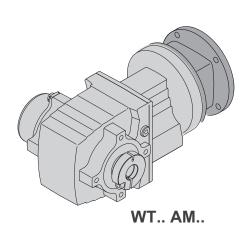

i _{tot}	İs		n _e = 500 i	min ⁻¹			n _e = 250	min ⁻¹			n _e = 10 i	min ⁻¹	
		n _a min ⁻¹	M _{a_max} Nm	P _{Mot} kW	η %	n _a min ⁻¹	M _{a_max} Nm	P _{Mot} kW	η %	n _a min ⁻¹	M _{a_max} Nm	P _{Mot} kW	η %
286.40	40/1	1.7	4200	1.2	64	0.87	4200	0.64	60	0.03	4200	<0.05	60
262.22		1.9	4200	1.3	64	0.95	4200	0.69	61	0.03	4200	<0.05	60
231.67		2.1	4200	1.5	65	1	4200	0.77	61	0.04	4200	<0.05	60
196.52		2.5	4200	1.7	66	1.2	4200	0.90	62	0.05	4200	<0.05	60
180.95		2.7	4200	1.8	67	1.3	4200	0.97	63	0.05	4200	<0.05	60
161.74		3	4200	2.0	67	1.5	4200	1.1	63	0.06	4200	<0.05	60
145.60		3.4	4200	2.2	68	1.7	4200	1.2	64	0.06	4200	0.05	60
131.85	_	3.7	4200	2.4	69	1.8	4200	1.3	65	0.07	4200	0.06	60
116.92	_	4.2	4200	2.7	69	2.1	4200	1.4	65	0.08	4200	0.06	60
105.71		4.7	4200	3.0	70	2.3	4200	1.6	66	0.09	4200	0.07	60
89.60		5.5	4160	3.4	71	2.7	4200	1.8	67	0.11	4200	0.08	60
78.26		6.3	4080	3.8	72	3.1	4200	2.1	68	0.12	4200	0.09	60
65.45		7.6	3910	4.3	73	3.8	4200	2.4	69	0.15	4200	0.11	60
80.85	37/3	6.1	3110	2.4	83	3	3010	1.2	81	0.12	3010	<0.05	80
71.43	_	6.9	4200	3.7	84	3.4	4160	1.9	82	0.13	4160	0.08	80
60.59		8.2	4200	4.3	84	4.1	4080	2.1	82	0.16	4080	0.09	80
55.79		8.9	4200	4.7	85	4.4	4200	2.4	82	0.17	4200	0.10	80
49.87		10	4200	5.2	85	5	4200	2.7	83	0.2	4200	0.11	80
44.89	-	11	4160	5.7	86	5.5	4200	2.9	83	0.22	4200	0.12	80
40.65	_	12	4120	6.2	86	6.1	4200	3.2	84	0.24	4200	0.13	80
36.05		13	4080	6.9	86	6.9	4200	3.6	84	0.27	4200	0.15	80
32.60		15	3990	7.4	87	7.6	4200	4.0	84	0.3	4200	0.17	80
27.63		18	3910	8.5	87	9	4200	4.7	85	0.36	4200	0.20	80
24.13	,	20	3800	9.4	87	10	4200	5.3	85	0.41	4200	0.23	80
26.39	35/6	18	2590	5.7	90	9.4	2540	2.9	88	0.37	2540	0.12	86
23.59		21	2590	6.4	90	10	2540	3.2	88	0.42	2540	0.13	86
21.23		23	2590	7.1	90	11	2570	3.6	89	0.47	2570	0.15	86
19.23		26	2620	7.9	91	13	2570	3.9	89	0.52	2570	0.16	86
17.05		29	2620	8.9	91	14	2570	4.4	89	0.58	2570	0.18	86
15.42	_	32	2620	9.8	91	16	2570	4.9	90	0.64	2570	0.20	86
13.07	-	38	2650	11.6	91	19	2590	5.8	90	0.76	2590	0.24	86
11.41		43	2650	13.3	92	21	2590	6.6	90	0.87	2590	0.27	87
9.55		52	2650	15.8	92	26	2620	7.9	91	1	2620	0.33	87
8.26		60	2650	18.2	92	30	2620	9.1	91	1.2	2620	0.38	87

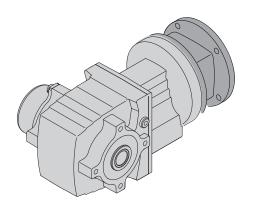

12 SPIROPLAN® W.. gear units


12.1 Selection tables for adapters for mounting IEC/NEMA motors (AM..)





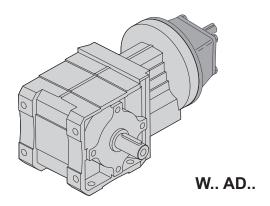


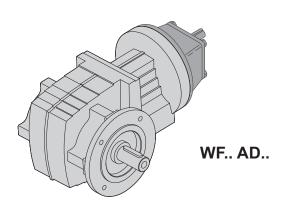


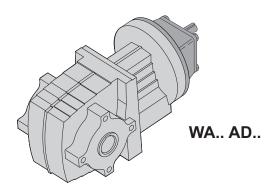
WHF.. AM..

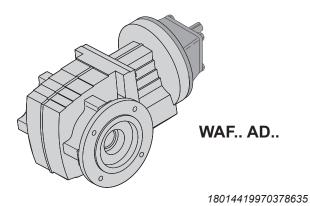
WH.. AM..

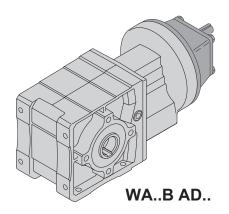
9007220696349451

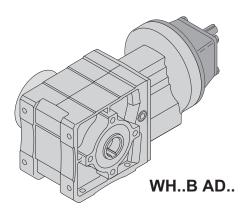

W37, n _e	= 1400	min ⁻¹ , M _a	_{max} /Nm					110 Nm
i	n _a	M _{a max G}	F _{Ra} 1)	φ _(/R)			AM	
	min ⁻¹	Nm	N	•	63	71	80	90
					d	3 3 2		
3.20	438	70	2220	-	14	14	44	44
3.93	356	70	2410	-	18	18	55	55
5.11	274	70	2680	-	24	24	70	70
5.77	243	70	2810	-	27	27	70	70
6.97	201	70	3020	-	33	33	70	70
8.55	164	70	3270	-	41	41	70	70
9.92	141	70	3460	-	47	47	70	
10.67	131	90	2880	-	46	46	90	90
11.65	120	70	3680	-	56	56		
12.70	110	70	3800	-	60	60		
13.89	101	90	3250	-	60	60	90	90
15.67	89	90	3430	-	68	68	90	90
18.94	74	90	3610	-	82	82	90	90
21.33	66	110	3320	-	81	81	110	110
23.25	60	90	3610	-	90	90	90	90
26.96	52	90	3610	-	90	90	90	
27.78	50	110	3320	-	104	104	110	110
31.33	45	110	3320	-	110	110	110	110
31.67	44	90	3610	-	90	90		
34.52	41	90	3610	-	90	90		
37.88	37	110	3320	-	110	110	110	110
46.49	30	110	3320	-	110	110	110	110
53.92	26	110	3320	-	110	110	110	
63.33	22	110	3320	-	110	110		
69.05	20	110	3320	-	110	110		
W37, m	/kg						AM	
	IE	C	s		63	71	80	90
144			ವಿಚಿ	2	8.2	8.5	11	11
W	N	EMA	s		-	56	143	145
			-23	2	-	8.8	11	11

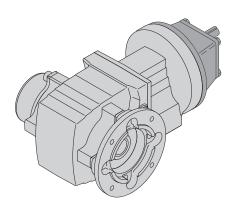

WF: + - kg / WA: + - kg / WAF: + - kg


W47, n _e	= 1400 ı	min ⁻¹ , M _a	_{max} /Nm					180 Nm
i	n _a	M _{a max G}	F _{Ra} 1)	φ _(/R)		A	AM	
	min ⁻¹	Nm	N	•	63	71	80	90
					6	2§ 2		
3.27	428	110	2660	-	15	15	46	46
3.89	360	110	2860	-	18	18	55	55
4.40	318	110	3020	-	20	20	62	62
5.23	268	110	3240	-	24	24	74	74
5.58	251	110	3320	-	26	26	79	79
6.53	214	110	3540	-	31	31	93	93
7.32	191	110	3710	-	35	35	104	104
8.61	163	110	3960	-	41	41	110	110
9.96	141	110	4190	-	48	48	110	110
10.66	131	110	4300	-	51	51	110	110
11.32	124	160	3460	-	49	49	149	149
12.30	114	110	4550	-	59	59	110	
13.44	104	160	3760	-	59	59	160	160
14.35	98	160	3880	-	63	63	160	160
16.80	83	160	4180	-	74	74	160	160
18.82	74	160	4410	-	83	83	160	160
22.15	63	160	4750	-	97	97	160	160
25.07	56	180	4430	-	99	99	180	180
25.62	55	160	5070	-	112	112	160	160
26.76	52	180	4580	-	106	106	180	180
27.41	51	160	5220	-	120	120	160	160
31.33	45	180	4950	-	123	123	180	180
31.62	44	160	5560	-	138	138	160	
35.09	40	180	5230	-	138	138	180	180
41.30	34	180	5650	-	161	161	180	180
47.78	29	180	6040	-	180	180	180	180
51.12	27	180	6230	-	180	180	180	180
58.98	24	180	6400	-	180	180	180	
68.93	20	180	6400	-	180	180		
74.98	19	180	6400	-	180	180		
W47, m	/kg					A	AM	
			T			1		

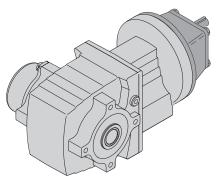

W47, m /kg				A	M	
	IEC	s	63	71	80	90
		∂3 3 2	14	15	17	17
W	NEMA	s	-	56	143	145
		₽ 2	-	15	17	17
WF: + 0.50 kg	/ WA: + -1.5	kg / WAF: + -0.	70 kg			


Selection tables for input shaft assembly (AD..) 12.2

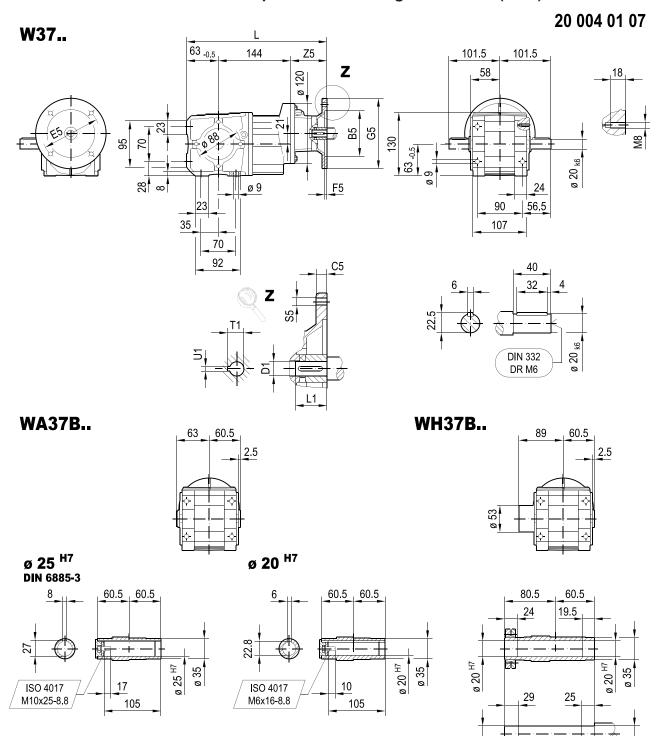








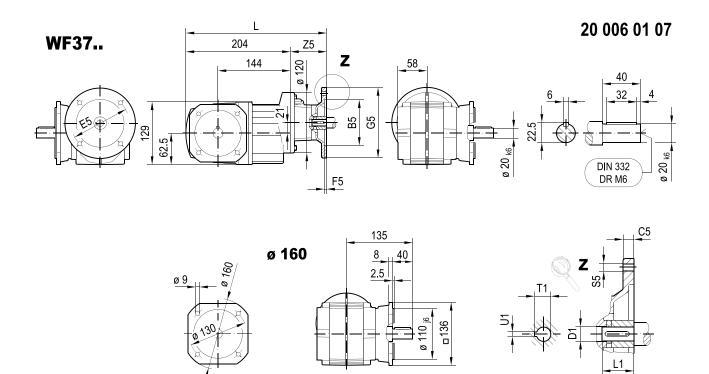
WHF.. AD..

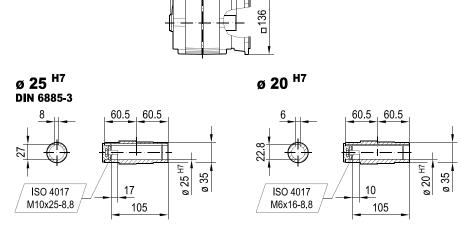

WH.. AD..

9007220715640075

W37 AD	, n _e = 140	00 min ⁻¹										110 Nm
i	n _a min ⁻¹	M _{amax} Nm	P _e kW	F _{Ra} ¹⁾ N	F _{Re} N	$\phi_{\text{(/R)}}$	\triangle			.	m kg	KEH
69.05	20	110	0.36	3320	555	-	-					
63.33	22	110	0.39	3320	550	-	-					
53.92	26	110	0.45	3320	545	-	-					
46.49	30	110	0.51	3320	540	-	-					
37.88	37	110	0.61	3320	525	-	-					
34.52	41	90	0.48	3610	400	-	-	w	37	AD1	7.7	641
31.67	44	90	0.52	3610	395	-	-	WF	37	AD1	7.7	641
31.33	45	110	0.72	3320	505	-	-	WA	37	AD1	7.7	641
27.78	50	110	0.80	3320	490	-	-	WAF	37	AD1	7.7	641
26.96	52	90	0.60	3610	380	-	-	WAI	01	AD I	1.1	041
23.25	60	90	0.69	3610	365	-	-					
21.33	66	110	1.0	3320	445	-	-					
18.94	74	90	0.84	3610	335	-	-					
15.67	89	90	1.0	3430	305	-	-					
13.89	101	90	1.1	3250	280	-	-					
12.70	110	70	0.91	3800	860	-	-					
11.65	120	70	0.99	3680	830	-	-					
10.67	131	90	1.4	2880	1670	-	-					
9.92	141	70	1.2	3460	1540	-	-	W	37	AD2	8.9	641
8.55	164	70	1.3	3270	1530	-	-	WF	37	AD2	8.9	641
6.97	201	70	1.6	3020	1510	-	-	WA	37	AD2	8.9	641
5.77	243	70	2.0	2810	1490	-	-	WAF	37	AD2	8.9	641
5.11	274	70	2.2	2680	1480	-	-					
3.93	357	70	2.9	2410	1430	-	-					
3.20*	438	70	3.5	2220	1380	-	-					

W47 AD.	. , n _e = 140	00 min ⁻¹								180 Nm
i	n _a min ⁻¹	M _{amax} Nm	P _e kW	F _{Ra} ¹⁾ N	F _{Re} N	$\phi_{\text{(/R)}}$	\triangle		m kg	KEN
74.98	19	180	0.52	6400	1490	-	-			
68.93	20	180	0.56	6400	1480	-	-			
58.98	24	180	0.63	6400	1690	-	-			
51.12	27	180	0.72	6230	1680	-	-			
47.78	29	180	0.76	6040	1680	-	-			
41.30	34	180	0.87	5650	1680	-	-			
35.09	40	180	1.0	5230	1670	-	-			
31.62	44	160	0.91	5560	1590	-	-			
31.33	45	180	1.1	4950	1670	-	-			
27.41	51	160	1.0	5220	1580	-	-			
26.76	52	180	1.3	4580	1660	-	-			
25.62	55	160	1.1	5070	1580	-	-			
25.07	56	180	1.4	4430	1650	-	-			
22.15	63	160	1.3	4750	1560	-	-	W 47 AD2	15	641
18.82	74	160	1.5	4410	1560	-	-	WF 47 AD2	15	641
16.80	83	160	1.6	4180	1550	-	-	WA 47 AD2	13	641
14.35	98	160	1.9	3880	1530	-	-	WAF 47 AD2	14	641
13.44	104	160	2.0	3760	1530	-	-			
12.30	114	110	1.4	4550	1400	-	-			
11.32	124	160	2.4	3460	1500	-	-			
10.66	131	110	1.6	4300	1390	-	-			
9.96	141	110	1.8	4190	1380	-	-			
8.61	163	110	2.0	3960	1360	-	-			
7.32	191	110	2.4	3710	1340	-	-			
6.53	214	110	2.6	3540	1320	-	-			
5.58	251	110	3.1	3320	1300	-	-			
5.23	268	110	3.3	3240	1280	-	-			
4.40	318	110	3.9	3020	1240	-	-			
3.89	360	110	4.4	2860	1200	-	-			
3.27	429	110	5.2	2660	1140					


12.3 Dimension sheets for adapters for mounting IEC motors (AM..)

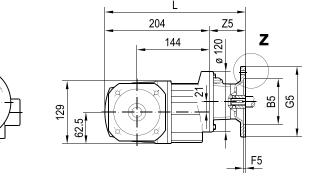

(→ [] 7.2.10)	B5	C5	E5	F5	G5	L	S5	Z 5	D1	L1	T1	U1
AM63	95	10	115	3.5	140	279	M8	72	11	23	12.8	4
AM71	110	10	130	4.0	160	279	M8	72	14	30	16.3	5
AM80	130	12	165	4.5	200	313	M10	106	19	40	21.8	6
AM90	130	12	165	4.5	200	313	M10	106	24	50	27.3	8

ø 20 _{h6}

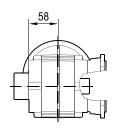
ø 20 _{hể}

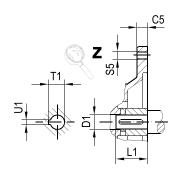
WAF37..

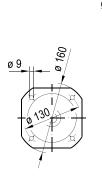
ø 160

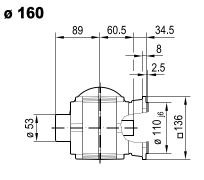

63

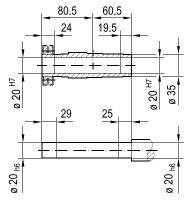
60.5

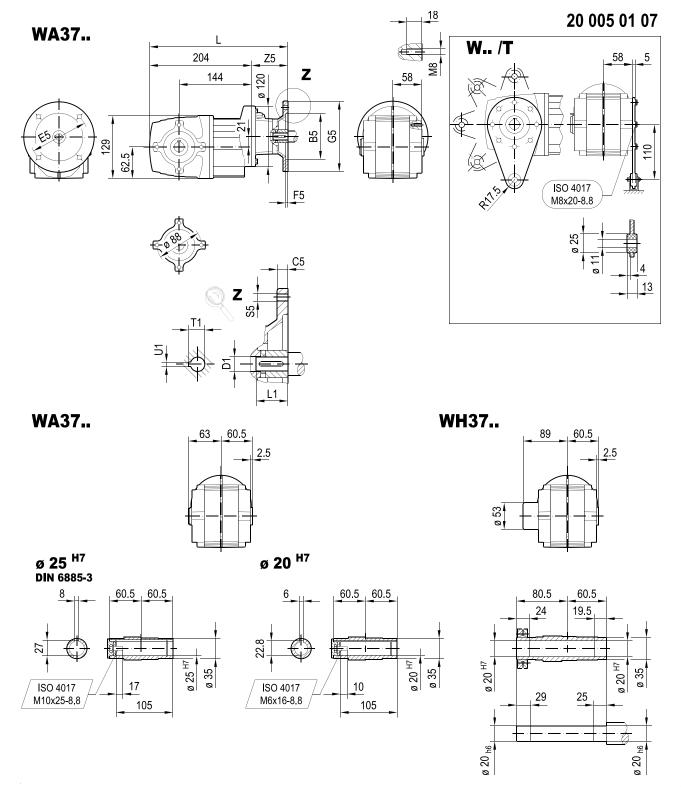

34.5

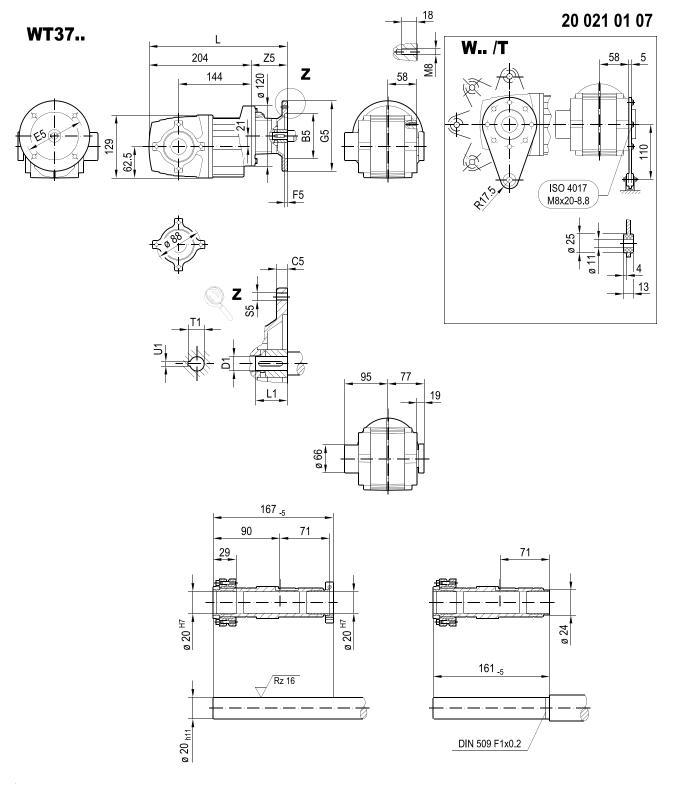

(→ [] 7.2.10)	B5	C5	E5	F5	G5	L	S5	Z5	D1	L1	T1	U1
AM63	95	10	115	3.5	140	276	M8	72	11	23	12.8	4
AM71	110	10	130	4.0	160	276	M8	72	14	30	16.3	5
AM80	130	12	165	4.5	200	310	M10	106	19	40	21.8	6
AM90	130	12	165	4.5	200	310	M10	106	24	50	27.3	8

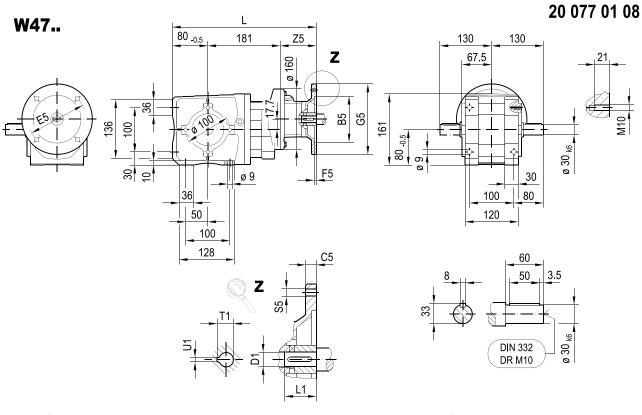

WHF37..

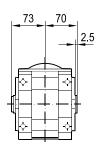


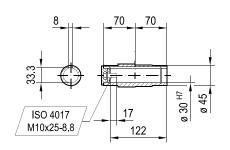




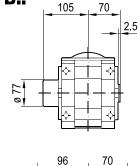


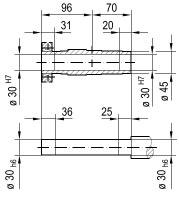

(→ [7.2.10)	B5	C5	E5	F5	G5	L	S5	Z5	D1	L1	T1	U1
AM63	95	10	115	3.5	140	276	M8	72	11	23	12.8	4
AM71	110	10	130	4.0	160	276	M8	72	14	30	16.3	5
AM80	130	12	165	4.5	200	310	M10	106	19	40	21.8	6
AM90	130	12	165	4.5	200	310	M10	106	24	50	27.3	8

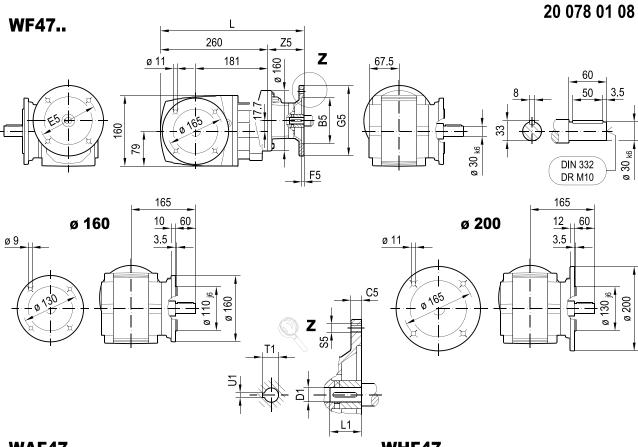

(→ [7.2.10)	B5	C5	E5	F5	G5	L	S5	Z 5	D1	L1	T1	U1
AM63	95	10	115	3.5	140	276	M8	72	11	23	12.8	4
AM71	110	10	130	4.0	160	276	M8	72	14	30	16.3	5
AM80	130	12	165	4.5	200	310	M10	106	19	40	21.8	6
AM90	130	12	165	4.5	200	310	M10	106	24	50	27.3	8

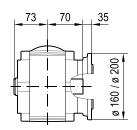


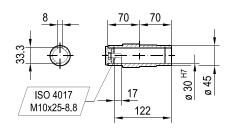
(→ [7.2.10)	B5	C5	E5	F5	G5	L	S5	Z 5	D1	L1	T1	U1
AM63	95	10	115	3.5	140	276	M8	72	11	23	12.8	4
AM71	110	10	130	4.0	160	276	M8	72	14	30	16.3	5
AM80	130	12	165	4.5	200	310	M10	106	19	40	21.8	6
AM90	130	12	165	4.5	200	310	M10	106	24	50	27.3	8



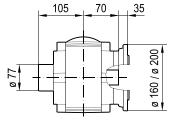

WA47B..

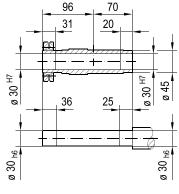


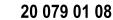


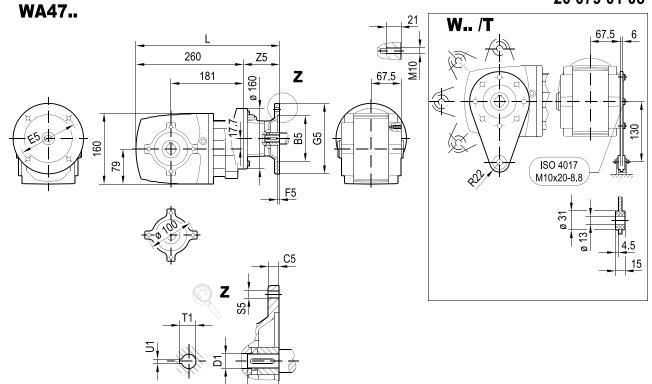


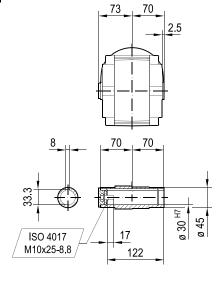
(→ [] 7.2.10)	B5	C5	E5	F5	G5	L	S5	Z 5	D1	L1	T1	U1
AM63	95	10	115	3.5	140	327	M8	66	11	23	12.8	4
AM71	110	10	130	4.0	160	327	M8	66	14	30	16.3	5
AM80	130	12	165	4.5	200	360	M10	99	19	40	21.8	6
AM90	130	12	165	4.5	200	360	M10	99	24	50	27.3	8



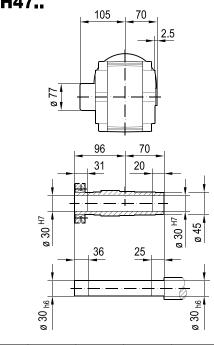

WAF47..

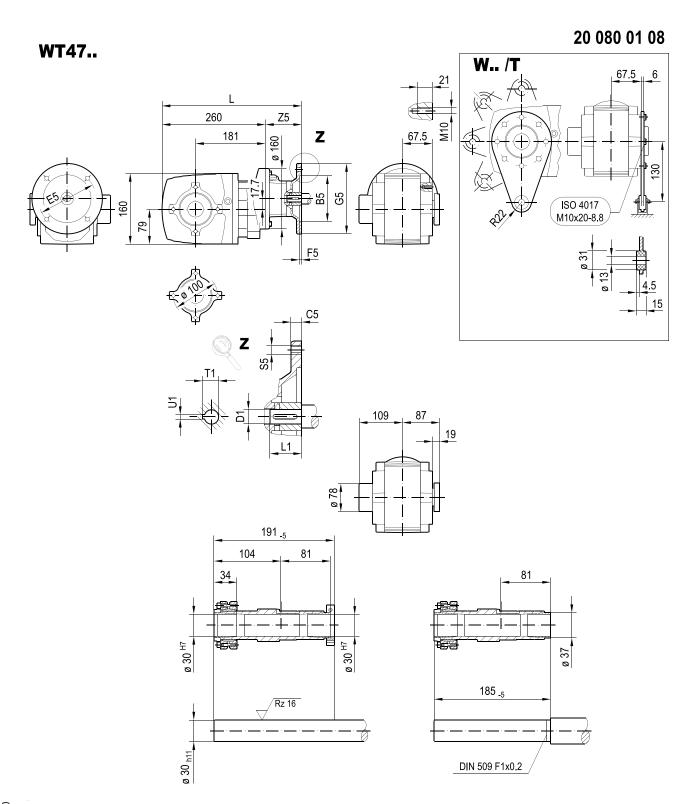




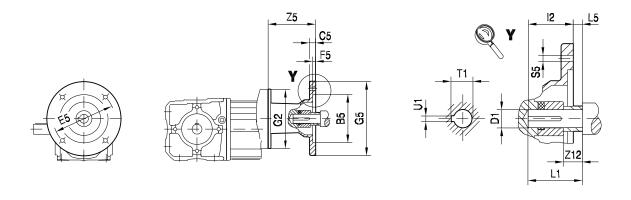


(→ [] 7.2.10)	B5	C5	E5	F5	G5	L	S5	Z 5	D1	L1	T1	U1
AM63	95	10	115	3.5	140	326	M8	66	11	23	12.8	4
AM71	110	10	130	4.0	160	326	M8	66	14	30	16.3	5
AM80	130	12	165	4.5	200	359	M10	99	19	40	21.8	6
AM90	130	12	165	4.5	200	359	M10	99	24	50	27.3	8




WA47..

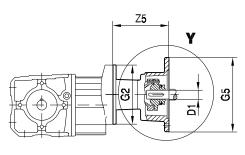
WH47..

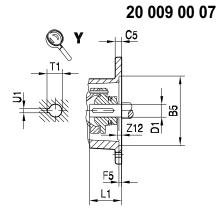

(→ []] 7.2.10)	B5	C5	E5	F5	G5	L	S5	Z 5	D1	L1	T1	U1
AM63	95	10	115	3.5	140	326	M8	66	11	23	12.8	4
AM71	110	10	130	4.0	160	326	M8	66	14	30	16.3	5
AM80	130	12	165	4.5	200	359	M10	99	19	40	21.8	6
AM90	130	12	165	4.5	200	359	M10	99	24	50	27.3	8

(→ []] 7.2.10)	B5	C5	E5	F5	G5	L	S5	Z 5	D1	L1	T1	U1
AM63	95	10	115	3.5	140	326	M8	66	11	23	12.8	4
AM71	110	10	130	4.0	160	326	M8	66	14	30	16.3	5
AM80	130	12	165	4.5	200	359	M10	99	19	40	21.8	6
AM90	130	12	165	4.5	200	359	M10	99	24	50	27.3	8

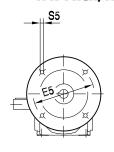
12.4 Dimension sheets for adapters for mounting NEMA motors (AM..)

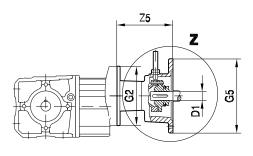

20 007 00 07

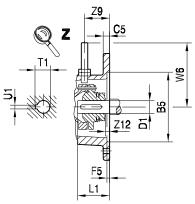



		B5	C5	E5	F5	G2	G5	12	L5	S5	Z5	Z12	D1	L1	T1	U1
	AM56	114.3	11	149.2	4.5	120	170	52.55	-4.8	10.5	93.5	16.5	15.875	47.75	18.1	4.76
W37	AM143	114.3	12	149.2	4.5	120	170	54.1	3.05	10.5	117	14.5	22.225	57.15	24.7	4.76
	AM145	114.3	12	149.2	4.5	120	170	54.1	3.05	10.5	117	14.5	22.225	57.15	24.7	4.76
	AM56	114.3	11	149.2	4.5	160	170	52.55	-4.8	10.5	87	16.5	15.875	47.75	18.1	4.76
W47	AM143	114.3	12	149.2	4.5	160	170	54.1	3.05	10.5	110.5	14.5	22.225	57.15	24.7	4.76
	AM145	114.3	12	149.2	4.5	160	170	54.1	3.05	10.5	110.5	14.5	22.225	57.15	24.7	4.76

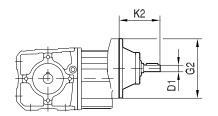
12.5 Dimension sheets for adapters with slip clutch (AR..)

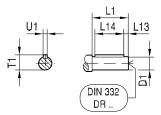

W.. AR..





W.. AR../W


		B5	C5	E5	F5	G2	G5	S5	W6	Z5	Z 9	Z12	D1	L1	T1	U1
	AR71	110	10	130	3.5		160	M8		104			14	30	16.3	5
W37	AR80	400	40	105	4.5	120	200	N440	120	440.5	37	0	19	40	21.8	6
	AR90	130	12	165	4.5		200	M10		140.5			24	50	27.3	8
	AR71	110	10	130	3.5		160	M8		104			14	30	16.3	5
W47	AR80	120	10	165	4 5	160	200	N440	120	124	37	0	19	40	21.8	6
	AR90	130	12	165	4.5		200	M10		134			24	50	27.3	8


12.6 Dimension sheets for input shaft assembly (AD..)

20 010 01 07

W.. AD..

		G2	K2	D1	L1	L13	L14	T1	U1
VAV. 27	AD1	100	102	16	40	4	32	18	5
W37	AD2	120	130	19	40	4	32	21.5	6
W47	AD2	160	123	19	40	4	32	21.5	6

For bore dimensions and weight of the motor platform, refer to the chapter "Bore dimensions and weight" (\rightarrow \bigcirc 70).

Address directory SEW-EURODRIVE 13

Argentina			
Assembly	Buenos Aires	SEW EURODRIVE ARGENTINA S.A.	Tel. +54 3327 4572-84
Sales	Buchos Aires	Ruta Panamericana Km 37.5, Lote 35 (B1619IEA) Centro Industrial Garín Prov. de Buenos Aires	Fax +54 3327 4572-21 http://www.sew-eurodrive.com.ar sewar@sew-eurodrive.com.ar
	Córdoba	SEW EURODRIVE ARGENTINA S.A. Ruta Nacional 19, Manzana 97, Lote 5 (X5125) Malvinas Argentinas Prov. de Córdoba	Tel. +54 351-490-0010 http://www.sew-eurodrive.com.ar sewcor@sew-eurodrive.com.ar
	Santa Fe	SEW EURODRIVE ARGENTINA S.A. Ruta Prov. 21 Km 7, Lote 41 Parque Industrial Alvear (2126) Gral. Alvear Prov. de Santa Fe	Tel. +54 341-317-7277 http://www.sew-eurodrive.com.ar sewsfe@sew-eurodrive.com.ar
Service	Mendoza	SEW EURODRIVE ARGENTINA S.A. Francisco Gabrielli (ex Urquiza) 2060-Zona Industrial- Guaymallen- CP 5521	Tel. +54 261-4214150 http://www.sew-eurodrive.com.ar sewmen@sew-eurodrive.com.ar
Technical Offices	Tucumán	SEW EURODRIVE ARGENTINA S.A. Balcarce 609 (T4000IAM) S.M. de Tucumán Prov. de Tucumán	Tel. +54 381-400-4569 http://www.sew-eurodrive.com.ar sewtuc@sew-eurodrive.com.ar
	Bahía Blanca	SEW EURODRIVE ARGENTINA S.A. O'Higgins 95, 1er Piso A (B8000IVA) Bahía Blanca Prov. de Buenos Aires	Tel. +54 291-451-7345 http://www.sew-eurodrive.com.ar sewbb@sew-eurodrive.com.ar
	Neuquén	SEW EURODRIVE ARGENTINA S.A.	Tel. +549 299 588 7950 http://www.sew-eurodrive.com.ar sewnqn@sew-eurodrive.com.ar
Australia			
Assembly Sales Service	Melbourne	SEW-EURODRIVE PTY. LTD. 27 Beverage Drive Tullamarine, Victoria 3043	Tel. +61 3 9933-1000 Fax +61 3 9933-1003 http://www.sew-eurodrive.com.au enquires@sew-eurodrive.com.au
	Sydney	SEW-EURODRIVE PTY. LTD. 9, Sleigh Place, Wetherill Park New South Wales, 2164	Tel. +61 2 9725-9900 Fax +61 2 9725-9905 enquires@sew-eurodrive.com.au
Sales Service	Adelaide	SEW-EURODRIVE PTY. LTD. 9C Park Way Mawson Lakes, SA 5095	Tel. +61 8 8161 4000 Fax +61 8 8161 4002 enquires@sew-eurodrive.com.au
	Brisbane	SEW-EURODRIVE PTY. LTD. 1 /34 Collinsvale St Rocklea, Queensland, 4106	Tel. +61 7 3276 5100 Fax +61 7 3276 5102 enquires@sew-eurodrive.com.au
	Perth	SEW-EURODRIVE PTY. LTD. 10 Colin Jamieson Drive Welshpool, WA 6106	Tel. +61 8 9251-4900 Fax +61 8 9251-4903 enquires@sew-eurodrive.com.au
Sales	Townsville	SEW-EURODRIVE PTY. LTD. 12 Leyland Street Garbutt, QLD 4814	Tel. +61 7 4779 4333 Fax +61 7 4779 5333 enquires@sew-eurodrive.com.au
Austria			
Assembly Sales Service	Vienna	SEW-EURODRIVE Ges.m.b.H. Richard-Strauss-Straße 24 1230 Wien	Tel. +43 1 617 55 00-0 Fax +43 1 617 55 00-30 http://www.sew-eurodrive.at sew@sew-eurodrive.at
Technical Offices	Linz	SEW-EURODRIVE Ges.m.b.H. Jaxstraße 2-4 4020 Linz	Tel. +43 732 655 109-0 Fax +43 732 655 109-20 tb-linz@sew-eurodrive.at
	Graz	SEW-EURODRIVE Ges.m.b.H. Hagenbuchstraße 1 8054 Seiersberg-Pirka	Tel. +43 316 685 756-0 Fax +43 316 685 756-20 tb-graz@sew-eurodrive.at
	Dornbirn	SEW-EURODRIVE Ges.m.b.H. Lustenauerstraße 27/1 6850 Dornbirn	Tel. +43 5572 3725 99-0 Fax +43 5572 3725 99-20 tb-dornbirn@sew-eurodrive.at

Bangladesh			
Sales	Bangladesh	SEW-EURODRIVE INDIA PRIVATE LIMITED 345 DIT Road East Rampura Dhaka-1219, Bangladesh	Tel. +88 01729 097309 salesdhaka@seweurodrivebangladesh.com
Belarus			
Sales	Minsk	Foreign unitary production enterprise SEW- EURODRIVE RybalkoStr. 26 220033 Minsk	Tel. +375 17 298 47 56 / 298 47 58 Fax +375 17 298 47 54 http://www.sew.by sales@sew.by
Belgium			
Assembly Sales Service	Brussels	SEW-EURODRIVE n.v./s.a. Researchpark Haasrode 1060 Evenementenlaan 7 3001 Leuven	Tel. +32 16 386-311 Fax +32 16 386-336 http://www.sew-eurodrive.be info@sew-eurodrive.be
Service Competence Center	Industrial Gears	SEW-EURODRIVE n.v./s.a. Rue du Parc Industriel, 31 6900 Marche-en-Famenne	Tel. +32 84 219-878 Fax +32 84 219-879 http://www.sew-eurodrive.be info@sew.be
Brazil			
Production Sales Service	São Paulo	SEW-EURODRIVE Brasil Ltda. Estrada Municipal José Rubim, 205 – Rodovia Santos Dumont Km 49 Indaiatuba – 13347-510 – SP	Tel. +55 19 3835-8000 sew@sew.com.br
Assembly Sales Service	Rio Claro	SEW-EURODRIVE Brasil Ltda. Rodovia Washington Luiz, Km 172 Condomínio Industrial Conpark Caixa Postal: 327 13501-600 – Rio Claro / SP	Tel. +55 19 3522-3100 Fax +55 19 3524-6653 montadora.rc@sew.com.br
	Joinville	SEW-EURODRIVE Brasil Ltda. Jvl / Ind Rua Dona Francisca, 12.346 – Pirabeiraba 89239-270 – Joinville / SC	Tel. +55 47 3027-6886 Fax +55 47 3027-6888 filial.sc@sew.com.br
Bulgaria			
Sales	Sofia	BEVER-DRIVE GmbH Bogdanovetz Str.1 1606 Sofia	Tel. +359 2 9151160 Fax +359 2 9151166 bever@bever.bg
Cameroon			
Sales	Douala	SEW-EURODRIVE S.A.R.L. Ancienne Route Bonabéri P.O. Box B.P 8674 Douala-Cameroun	Tel. +237 233 39 02 10 Fax +237 233 39 02 10 sew@sew-eurodrive-cm
Canada			
Assembly Sales Service	Toronto	SEW-EURODRIVE CO. OF CANADA LTD. 210 Walker Drive Bramalea, ON L6T 3W1	Tel. +1 905 791-1553 Fax +1 905 791-2999 http://www.sew-eurodrive.ca l.watson@sew-eurodrive.ca
	Vancouver	SEW-EURODRIVE CO. OF CANADA LTD. Tilbury Industrial Park 7188 Honeyman Street Delta, BC V4G 1G1	Tel. +1 604 946-5535 Fax +1 604 946-2513 b.wake@sew-eurodrive.ca
	Montreal	SEW-EURODRIVE CO. OF CANADA LTD. 2001 Ch. de l'Aviation Dorval Quebec H9P 2X6	Tel. +1 514 367-1124 Fax +1 514 367-3677 n.paradis@sew-eurodrive.ca
Chile			
Assembly Sales Service	Santiago de Chile	SEW-EURODRIVE CHILE LTDA Las Encinas 1295 Parque Industrial Valle Grande LAMPA Santiago de Chile P.O. Box Casilla 23 Correo Quilicura - Santiago - Chile	Tel. +56 2 2757 7000 Fax +56 2 2757 7001 http://www.sew-eurodrive.cl ventas@sew-eurodrive.cl

China			
Production Assembly Sales Service	Tianjin	SEW-EURODRIVE (Tianjin) Co., Ltd. No. 78, 13th Avenue, TEDA Tianjin 300457	Tel. +86 22 25322612 Fax +86 22 25323273 http://www.sew-eurodrive.cn info@sew-eurodrive.cn
Assembly Sales Service	Suzhou	SEW-EURODRIVE (Suzhou) Co., Ltd. 333, Suhong Middle Road Suzhou Industrial Park Jiangsu Province, 215021	Tel. +86 512 62581781 Fax +86 512 62581783 suzhou@sew-eurodrive.cn
	Guangzhou	SEW-EURODRIVE (Guangzhou) Co., Ltd. No. 9, JunDa Road East Section of GETDD Guangzhou 510530	Tel. +86 20 82267890 Fax +86 20 82267922 guangzhou@sew-eurodrive.cn
	Shenyang	SEW-EURODRIVE (Shenyang) Co., Ltd. 10A-2, 6th Road Shenyang Economic Technological Develop- ment Area Shenyang, 110141	Tel. +86 24 25382538 Fax +86 24 25382580 shenyang@sew-eurodrive.cn
	Taiyuan	SEW-EURODRIVE (Taiyuan) Co,. Ltd. No.3, HuaZhang Street, TaiYuan Economic & Technical Development Zone ShanXi, 030032	Tel. +86-351-7117520 Fax +86-351-7117522 taiyuan@sew-eurodrive.cn
	Wuhan	SEW-EURODRIVE (Wuhan) Co., Ltd. 10A-2, 6th Road No. 59, the 4th Quanli Road, WEDA 430056 Wuhan	Tel. +86 27 84478388 Fax +86 27 84478389 wuhan@sew-eurodrive.cn
	Xi'An	SEW-EURODRIVE (Xi'An) Co., Ltd. No. 12 Jinye 2nd Road Xi'An High-Technology Industrial Development Zone Xi'An 710065	Tel. +86 29 68686262 Fax +86 29 68686311 xian@sew-eurodrive.cn
Sales Service	Hong Kong	SEW-EURODRIVE LTD. Unit No. 801-806, 8th Floor Hong Leong Industrial Complex No. 4, Wang Kwong Road Kowloon, Hong Kong	Tel. +852 36902200 Fax +852 36902211 contact@sew-eurodrive.hk
Colombia			
Assembly Sales Service	Bogota	SEW-EURODRIVE COLOMBIA LTDA. Calle 17 No. 132-18 Interior 2 Bodega 6, Manzana B Santafé de Bogotá	Tel. +57 1 54750-50 Fax +57 1 54750-44 http://www.sew-eurodrive.com.co sew@sew-eurodrive.com.co
Croatia			
Sales Service	Zagreb	KOMPEKS d. o. o. Zeleni dol 10 10 000 Zagreb	Tel. +385 1 4613-158 Fax +385 1 4613-158 kompeks@inet.hr
Czech Republic			
Assembly Sales Service	Hostivice	SEW-EURODRIVE CZ s.r.o. Floriánova 2459 253 01 Hostivice	Tel. +420 255 709 601 Fax +420 235 350 613 http://www.sew-eurodrive.cz sew@sew-eurodrive.cz
Assembly Service	Plzeň	SEW-EURODRIVE CZ s.r.o. Areal KRPA a.s. Zahradni 173/2 326 00 Plzeň	Tel. +420 378 775 320 Fax +420 377 970 710 sew@sew-eurodrive.cz
Technical Offices	Brno	SEW-EURODRIVE CZ s.r.o. Křenová 52 60200 Brno	Tel. +420 543 254 174 Fax +420 543 256 845 ilona.cermakova@sew-eurodrive.cz
	Hradec Králové	SEW-EURODRIVE CZ s.r.o. Čechova 498 50202 Hradec Králové	Tel. +420 495 510 141 Fax +420 495 521 313 miroslav.moravec@sew-eurodrive.cz
	Ostrava	SEW-EURODRIVE CZ s.r.o. Studentská 6202/17 708 00 Ostrava-Poruba	Tel. +420 597 329 044 david.kenkus@sew-eurodrive.cz

	Klatovy	SEW-EURODRIVE CZ s.r.o. Vídeňská 841 33901 Klatovy	Tel. +420 376 331 634 Fax +420 376 331 634 viktor.kubernat@sew-eurodrive.cz
Service	Přerov	SEW-EURODRIVE CZ s.r.o. Areál STS Přerov a.s. ul. 9. května 2452 750 02 Přerov I – Město	Tel. +420 581 224 374 Fax +420 581 224 374 servis@sew-eurodrive.cz
Denmark			
Assembly Sales Service	Copenhagen	SEW-EURODRIVEA/S Geminivej 28-30 2670 Greve	Tel. +45 43 95 8500 Fax +45 43 9585-09 http://www.sew-eurodrive.dk sew@sew-eurodrive.dk
Service	Vejle	SEW-EURODRIVE A/S Bødkervej 2 7100 Vejle	Tel. +45 43 9585 00 http://www.sew-eurodrive.dk sew@sew-eurodrive.dk
Egypt			
Sales Service	Cairo	Copam Egypt for Engineering & Agencies Building 10, Block 13005, First Industrial Zone, Obour City Cairo	Tel. +202 44812673 / 79 (7 lines) Fax +202 44812685 http://www.copam-egypt.com copam@copam-egypt.com
Estonia			
Sales	Tallin	ALAS-KUUL AS Loomäe tee 1, Lehmja küla 75306 Rae vald Harjumaa	Tel. +372 6593230 Fax +372 6593231 http://www.alas-kuul.ee info@alas-kuul.ee
Finland			
Assembly Sales Service	Hollola	SEW-EURODRIVE OY Vesimäentie 4 15860 Hollola	Tel. +358 201 589-300 Fax +358 3 780-6211 http://www.sew-eurodrive.fi sew@sew.fi
Service	Hollola	SEW-EURODRIVE OY Keskikankaantie 21 15860 Hollola	Tel. +358 201 589-300 Fax +358 3 780-6211 http://www.sew-eurodrive.fi sew@sew.fi
	Tornio	SEW-EURODRIVE Oy Lossirannankatu 5 95420 Tornio	Tel. +358 201 589 300 Fax +358 3 780 6211 http://www.sew-eurodrive.fi sew@sew.fi
Production Assembly	Karkkila	SEW Industrial Gears Oy Santasalonkatu 6, PL 8 03620 Karkkila, 03601 Karkkila	Tel. +358 201 589-300 Fax +358 201 589-310 http://www.sew-eurodrive.fi sew@sew.fi
Technical Offices	Helsinki	SEW-EURODRIVE OY Luutnantintie 5 00410 Helsinki	Tel. +358 201 589-300 sew@sew.fi
	Oulu	SEW Industrial Gears Oy Paulaharjuntie 22 90530 Oulu	Tel. +358 201 589 300 sew@sew.fi
	Vaasa	SEW Industrial Gears Oy Asemakatu 7 65100 Vaasa	Tel. +358 201 589-300 sew@sew.fi
	Kuopio	SEW Industrial Gears Oy Leväsentie 23 70780 Kuopio	Tel. +358 201 589-300 sew@sew.fi
	Tampere	SEW Industrial Gears Oy Kampusareena Korkeakoulunkatu 7, 7.krs 33720 Tampere	Tel. +358 201 589-300 sew@sew.fi
	Kotka	SEW Industrial Gears Oy Heikinkatu 7 48100 Kotka	Tel. +358 201 589 300 sew@sew.fi

Tel. +33 3 88 73 67 00 Fax +33 3 88 73 66 00

Service		B. P. 20185 67506 Haguenau Cedex	http://www.usocome.com sew@usocome.com
Production	Forbach	SEW USOCOME Zone industrielle Technopôle Forbach Sud B. P. 30269 57604 Forbach Cedex	Tel. +33 3 87 29 38 00
	Brumath	SEW USOCOME 1 Rue de Bruxelles 67670 Mommenheim Cedex	Tel. +33 3 88 37 48 00
Assembly Sales Service	Bordeaux	SEW USOCOME Parc d'activités de Magellan 62 avenue de Magellan – B. P. 182 33607 Pessac Cedex	Tel. +33 5 57 26 39 00 Fax +33 5 57 26 39 09
	Lyon	SEW USOCOME 75 rue Antoine Condorcet 38090 Vaulx-Milieu	Tel. +33 4 74 99 60 00 Fax +33 4 74 99 60 15
	Nantes	SEW USOCOME Parc d'activités de la forêt 4 rue des Fontenelles 44140 Le Bignon	Tel. +33 2 40 78 42 00 Fax +33 2 40 78 42 20
	Paris	SEW USOCOME Zone industrielle 2 rue Denis Papin 77390 Verneuil l'Étang	Tel. +33 1 64 42 40 80 Fax +33 1 64 42 40 88
Gabon			
Representation: 0	Cameroon		
Germany			

Germany			
Headquarters Production Sales	Bruchsal	SEW-EURODRIVE GmbH & Co KG Ernst-Blickle-Straße 42 76646 Bruchsal	Tel. +49 7251 75-0 Fax +49 7251 75-1970 http://www.sew-eurodrive.de sew@sew-eurodrive.de
Production / Industrial Gears	Bruchsal	SEW-EURODRIVE GmbH & Co KG Christian-Pähr-Str. 10 76646 Bruchsal	Tel. +49 7251 75-0 Fax +49 7251 75-2970
Production / Precision Gear Units	Bruchsal	SEW-EURODRIVE GmbH & Co KG Ernst-Blickle-Straße 42 76646 Bruchsal	Tel. +49 7251 75-0 Fax +49 7251 75-1970 sew@sew-eurodrive.de
Production	Graben	SEW-EURODRIVE GmbH & Co KG Ernst-Blickle-Straße 1 76676 Graben-Neudorf	Tel. +49 7251 75-0 Fax +49 7251-2970
Service Competence Center	Mechanics / Mechatronics	SEW-EURODRIVE GmbH & Co KG Ernst-Blickle-Straße 1 76676 Graben-Neudorf	Tel. +49 7251 75-1710 Fax +49 7251 75-1711 scc-mechanik@sew-eurodrive.de
	Electronics	SEW-EURODRIVE GmbH & Co KG Christian-Pähr-Straße 12 76646 Bruchsal	Tel. +49 7251 75-1780 Fax +49 7251 75-1769 scc-elektronik@sew-eurodrive.de
	MAXOLU- TION® Factory Automation	SEW-EURODRIVE GmbH & Co KG Eisenbahnstraße 11 76646 Bruchsal	Tel. +49 7251 75-0 Fax +49 7251 75-1970 sew@sew-eurodrive.de
Drive Technology Center	North	SEW-EURODRIVE GmbH & Co KG Alte Ricklinger Straße 43 30823 Garbsen (Hannover)	Tel. +49 5137 8798-30 Fax +49 5137 8798-55 dtc-nord@sew-eurodrive.de
	East	SEW-EURODRIVE GmbH & Co KG Dänkritzer Weg 1 08393 Meerane (Zwickau)	Tel. +49 3764 7606-0 Fax +49 3764 7606-20 dtc-ost@sew-eurodrive.de
	South	SEW-EURODRIVE GmbH & Co KG Domagkstraße 5 85551 Kirchheim (München)	Tel. +49 89 909551-21 Fax +49 89 909551-50 dtc-sued@sew-eurodrive.de
	West	SEW-EURODRIVE GmbH & Co KG Siemensstraße 1 40764 Langenfeld (Düsseldorf)	Tel. +49 2173 8507-10 Fax +49 2173 8507-50 dtc-west@sew-eurodrive.de

France

Sales

Production

Hagenau

SEW USOCOME

48-54 route de Soufflenheim

Germany			
Drive Center	Berlin	SEW-EURODRIVE GmbH & Co KG Alexander-Meißner-Straße 44 12526 Berlin	Tel. +49 306331131-30 Fax +49 306331131-36 dc-berlin@sew-eurodrive.de
	Hamburg	SEW-EURODRIVE GmbH & Co KG Hasselbinnen 44 22869 Schenefeld	Tel. +49 40298109-60 Fax +49 40298109-70 dc-hamburg@sew-eurodrive.de
	Ludwigshafen	SEW-EURODRIVE GmbH & Co KG c/o BASF SE c/o BASF SE Gebäude W130 67056 Ludwigshafen	Tel. +49 7251 75 3759 Fax +49 7251 75 503759 dc-ludwigshafen@sew-eurodrive.de
	Saarland	SEW-EURODRIVE GmbH & Co KG Gottlieb-Daimler-Straße 4 66773 Schwalbach Saar – Hülzweiler	Tel. +49 6831 48946 10 Fax +49 6831 48946 13 dc-saarland@sew-eurodrive.de
	Ulm	SEW-EURODRIVE GmbH & Co KG Dieselstraße 18 89160 Dornstadt	Tel. +49 7348 9885-0 Fax +49 7348 9885-90 dc-ulm@sew-eurodrive.de
	Würzburg	SEW-EURODRIVE GmbH & Co KG Nürnbergerstraße 118 97076 Würzburg-Lengfeld	Tel. +49 931 27886-60 Fax +49 931 27886-66 dc-wuerzburg@sew-eurodrive.de
Drive Service Hotline	e / 24 Hour Servic		0 800 SEWHELP 0 800 7394357
Technical Offices	Augsburg	SEW-EURODRIVE GmbH & Co KG August-Wessels-Straße 29 86156 Augsburg	Tel. +49 821 22779-10 Fax +49 821 22779-50 tb-augsburg@sew-eurodrive.de
	Lake Con- stance	SEW-EURODRIVE GmbH & Co KG Dornierstraße 4 88677 Markdorf	Tel. +49 7544 96590-90 Fax +49 7544 96590-99 tb-bodensee@sew-eurodrive.de
	Bremen	SEW-EURODRIVE GmbH & Co KG Bornstr.19 22 28195 Bremen	Tel. +49 421 33918-10 Fax +49 421 33918-22 tb-bremen@sew-eurodrive.de
	Dortmund	SEW-EURODRIVE GmbH & Co KG Hildastraße 8 44145 Dortmund	Tel. +49 231 229028-10 Fax +49 231 229028-20 tb-dortmund@sew-eurodrive.de
	Dresden	SEW-EURODRIVE GmbH & Co KG Hauptstraße 32 01445 Radebeul	Tel. +49 351 26338-0 Fax +49 351 26338-38 tb-dresden@sew-eurodrive.de
	Erfurt	SEW-EURODRIVE GmbH & Co KG Dubliner Straße 12 99091 Erfurt	Tel. +49 361 21709-70 Fax +49 361 21709-79 tb-erfurt@sew-eurodrive.de
	Güstrow	SEW-EURODRIVE GmbH & Co KG Glasewitzer Chaussee 33 B 18273 Güstrow P.O. Box Postfach 1216 – D-18262 Güstrow	Tel. +49 3843 8557-80 Fax +49 3843 8557-88 tb-guestrow@sew-eurodrive.de
	Hamburg	SEW-EURODRIVE GmbH & Co KG Hasselbinnen 44 22869 Schenefeld	Tel. +49 40298109-60 Fax +49 40298109-70 dc-hamburg@sew-eurodrive.de
	Hannover / Garbsen	SEW-EURODRIVE GmbH & Co KG Alte Ricklinger Str.40-42 30823 Garbsen	Tel. +49 5137 8798-10 Fax +49 5137 8798-50 tb-hannover@sew-eurodrive.de
	Heilbronn	SEW-EURODRIVE GmbH & Co KG Zeppelinstraße 7 74357 Bönnigheim	Tel. +49 7143 8738-0 Fax +49 7143 8738-25 tb-heilbronn@sew-eurodrive.de
	Herford	SEW-EURODRIVE GmbH & Co KG Goebenstraße 3 – 7 32052 Herford	Tel. +49 5221 9141-0 Fax +49 5221 9141-20 tb-herford@sew-eurodrive.de
	Karlsruhe	SEW-EURODRIVE GmbH & Co KG Ettlinger Weg 2 76467 Bietigheim P.O. Box Postfach 43 – D-76463 Bietigheim	Tel. +49 7245 9190-10 Fax +49 7245 9190-20 tb-karlsruhe@sew-eurodrive.de
	Kassel	SEW-EURODRIVE GmbH & Co KG Sonnenweg 3 34260 Kaufungen	Tel. +49 561 95144-80 Fax +49 561 95144-90 tb-kassel@sew-eurodrive.de

	Koblenz	SEW-EURODRIVE GmbH & Co KG Carl-Benz-Straße 8 56218 Mülheim-Kärlich	Tel. +49 2630 91930-10 Fax +49 2630 91930-90 tb-koblenz@sew-eurodrive.de
	Lahr	SEW-EURODRIVE GmbH & Co KG Europastraße 3/1 77933 Lahr / Schwarzwald	Tel. +49 7821 90999-60 Fax +49 7821 90999-79 tb-lahr@sew-eurodrive.de
	Langenfeld	SEW-EURODRIVE GmbH & Co KG Siemensstraße 1 40764 Langenfeld	Tel. +49 2173 8507-10 Fax +49 2173 8507-50 tb-langenfeld@sew-eurodrive.de
	Magdeburg	SEW-EURODRIVE GmbH & Co KG Breiteweg 53 39179 Barleben	Tel. +49 39203 7577-1 Fax +49 39203 7577-9 tb-magdeburg@sew-eurodrive.de
	Mannheim	SEW-EURODRIVE GmbH & Co KG Besselstraße 26 68219 Mannheim	Tel. +49 621 71683-10 Fax +49 621 71683-22 tb-mannheim@sew-eurodrive.de
	München	SEW-EURODRIVE GmbH & Co KG Domagkstraße 5 85551 Kirchheim	Tel. +49 89 90955-110 Fax +49 89 90955-150 tb-muenchen@sew-eurodrive.de
	Münster	SEW-EURODRIVE GmbH & Co KG Hafenplatz 4 48155 Münster	Tel. +49 251 41475-11 Fax +49 251 41475-50 tb-muenster@sew-eurodrive.de
	Nuremberg	SEW-EURODRIVE GmbH & Co KG Lina-Ammon-Straße 22 90471 Nürnberg	Tel. +49 911 98884-50 Fax +49 911 98884-60 tb-nuemberg@sew-eurodrive.de
	Regensburg	SEW-EURODRIVE GmbH & Co KG Im Gewerbepark A15 93059 Regensburg	Tel. +49 941 46668-68 Fax +49 941 46668-66 tb-regensburg@sew-eurodrive.de
	Rhine-Main	SEW-EURODRIVE GmbH & Co KG Niederstedter Weg 5 61348 Bad Homburg	Tel. +49 6172 9617-0 Fax +49 6172 9617-50 tb-rheinmain@sew-eurodrive.de
	Stuttgart	SEW-EURODRIVE GmbH & Co KG Friedrich-List-Straße 46 70771 Leinfelden-Echterdingen	Tel. +49 711 16072-0 Fax +49 711 16072-72 tb-stuttgart@sew-eurodrive.de
	Zwickau / Meerane	SEW-EURODRIVE GmbH & Co KG Dänkritzer Weg1 08393 Meerane	Tel. +49 3764 7606-0 Fax +49 3764 7606-20 tb-zwickau@sew-eurodrive.de
Great Britain			
Assembly Sales Service	Normanton	SEW-EURODRIVE Ltd. DeVilliers Way Trident Park Normanton West Yorkshire WF6 1GX	Tel. +44 1924 893-855 Fax +44 1924 893-702 http://www.sew-eurodrive.co.uk info@sew-eurodrive.co.uk
Service Competence Center	Southern Eng- land	SEW-EURODRIVE Ltd. Unit 41 Easter Park Benyon Road Silchester Reading Berkshire RG7 2PQ	Tel. +44 1189 701-699 Fax +44 1189 701-021
Technical Offices	Midlands	SEW-EURODRIVE Ltd. 5 Sugar Brook court Aston Road Bromsgrove Worcs. B60 3EX	Tel. +44 1527 877-319 Fax +44 1527 575-245
	Scotland	SEW-EURODRIVE Ltd. No 37 Enterprise House Springkerse Business Park Stirling FK7 7UF	Tel. +44 17 8647-8730 Fax +44 17 8645-0223
	Northern Ire- land	Heyn Engineering (NI) Ltd. 1 Corry Place, Belfast, BT3 9AH	Tel. +44 02890350022 Fax +44 02890350012 http://www.heyn.co.uk info@heyn.co.uk

Greece			
Sales	Athens	Christ. Boznos & Son S.A. 12, K. Mavromichali Street P.O. Box 80136 18545 Piraeus	Tel. +30 2 1042 251-34 Fax +30 2 1042 251-59 http://www.boznos.gr info@boznos.gr
Technical Office	Thessaloniki	Christ. Boznos & Son S.A. Asklipiou 26 562 24 Evosmos, Thessaloniki	Tel. +30 2 310 7054-00 Fax +30 2 310 7055-15 info@boznos.gr
Hungary			
Sales Service	Budapest	SEW-EURODRIVE Kft. Csillaghegyí út 13. 1037 Budapest	Tel. +36 1 437 06-58 Fax +36 1 437 06-50 http://www.sew-eurodrive.hu office@sew-eurodrive.hu
Iceland			
Sales	Reykjavik	Varma & Vélaverk ehf. Knarrarvogi 4 104 Reykjavík	Tel. +354 585 1070 Fax +354 585)1071 https://vov.is/ vov@vov.is
India			
Registered Office Assembly Sales Service Assembly	Vadodara	SEW-EURODRIVE India Private Limited Plot No. 4, GIDC POR Ramangamdi • Vadodara - 391 243 Gujarat SEW-EURODRIVE India Private Limited	Tel. +91 265 3045200 Fax +91 265 3045300 http://www.seweurodriveindia.com salesvadodara@seweurodriveindia.com Tel. +91 44 37188888
Sales Service	Chemia	Plot No. K3/1, Sipcot Industrial Park Phase II Mambakkam Village Sriperumbudur - 602105 Kancheepuram Dist, Tamil Nadu	Fax +91 44 37188811 saleschennai@seweurodriveindia.com
	Pune	SEW-EURODRIVE India Private Limited Plant: Plot No. D236/1, Chakan Industrial Area Phase- II, Warale, Tal- Khed, Pune-410501, Maharashtra	Tel. +91 21 35 628700 Fax +91 21 35 628715 salespune@seweurodriveindia.com
Sales Service	Gurgaon	SEW-EURODRIVE India Private Limited Drive Center Gurugram Plot no 395, Phase-IV, UdyogVihar Gurugram , 122016 Haryana	Tel. +91 99588 78855 salesgurgaon@seweurodriveindia.com
Technical Offices	Ahmedabad	SEW-EURODRIVE India Private Limited 306, Shaan office complex, Behind Sakar-IV, Ellisebridge, Ashram Road Ahmedabad – 380006, Gujarat	Tel. +91 79 40072067 / 68 Fax +91 79 40072069 salesahmedabad@seweurodriveindia.com
	Aurangabad	SEW-EURODRIVE India Private Limited Flat.No.403 , Prism Appt. The Venus Housing Society. Beed Bypass Road, Behind Nishant Park Hotel, Aurangabad – 431003, Maharashtra.	Tel. +91 86000 12333 salesaurangabad@seweurodriveindia.com
	Bangalore	SEW-EURODRIVE India Private Limited Sy.no:41-P3, Peenya1, Phase 1A, Peenya Vil- lage, Yeswanthapura Hobli, Bangalore North Taluk, Bangalore - 560058, Karnataka	Tel. +91 80 28370664 Fax +91 80 28370665 salesbangalore@seweurodriveindia.com
	Bangalore	SEW-EURODRIVE India Private Limited # C-104, 3rd Block, KSSIDC Complex, Electronic City. Bangalore – 560100, Karnataka	Tel. +91 80 28522662 / 28522663 salesbangalore@seweurodriveindia.com
	Bangladesch	SEW-EURODRIVE India Private Limited Genetic Udayanchal, House-96 (6th Floor), Road-23/A, Block-B, Banani, Dhaka-1213, Bangladesh	Tel. +88 01729 097309 salesdhaka@seweurodrivebangladesh.com
	Bellary	SEW-EURODRIVE India Private Limited Door no-56/279 Ward No-15, Sindhigi compound, Near Raghavendra talkies, Bellary-583101, Karnataka	Tel. +91 77609 88668 salesbellary@seweurodriveindia.com

\subset	•
Ō	
\subset	
5	,
03/2020	
\subset	
1	
$\overline{}$,
_	
Ш	
\geq	•
\subset	
Ц	
C	
$\overline{}$	ŀ
Ц	
$\overline{}$	
σ	Ì
20154650/FN	

Chandigarh	SEW-EURODRIVE India Private Limited #699, Type -3, Power Colony, Chandigarh - Rupnagar Highway Rupnagar - 140001, Punjab	Tel. +91 81462 67606 saleschandigarh@seweurodriveindia.com
Chennai	SEW-EURODRIVE India Private Limited 2nd Floor, Josmans Complex, No. 5, McNichols Road, Chetpet Chennai - 600031, Tamil Nadu	Tel. +91 44 42849812 / 13 / 14 / 15 Fax +91 44 42849816 saleschennai@seweurodriveindia.com
Coimbatore	SEW-EURODRIVE India Private Limited 687/2, Sri Sakthivel Towers (Near Deepam Hospital) Trichy Road, Ramanathapuram Coimbatore - 641 045, Tamil Nadu	Tel. +91 422 2322420 Fax +91 422 2323988 salescoimbatore@seweurodriveindia.com
Cuttack	SEW-EURODRIVE India Private Limited Plot No.: F/56, Chandaka Industrial Estate, P.O K I I T, Bhubaneswar – 751024. Orissa	Tel. +91 9937446333 salescuttack@seweurodriveindia.com
Faridabad	SEW-EURODRIVE India Private Limited H.No.:-1172 ,Sector-9 , Near St Anthony School Faridabad 121006	Tel. +91 99580 09275 salesfaridabad@seweurodriveindia.com
Gandhinagar	SEW-EURODRIVE India Private Limited Office No. 304, Siddhraj Zavod, Between Kh-0 & G-0 Circle, Sarkhej Gandhinagar Highway, Sargasan, Gandhinagar – 382423	Tel. +91 787 8601656 salesgandhinagar@seweurodriveindia.com
Hyderabad	SEW-EURODRIVE India Private Limited 408, 4th Floor, Meridian Place Green Park Road, Amerpeet Hyderabad - 500016, Telangana	Tel. +91 40 23414698 Fax +91 40 23413884 saleshyderabad@seweurodriveindia.com
Indore	SEW-EURODRIVE India Private Limited 103, Abhishek Avenue, Slide-4, Sch. No. 78, Indore - 452010, Madhya Pradesh	Tel. +91 97524 12068 salesindore@seweurodriveindia.com
Jamshedpur	SEW-EURODRIVE India Private Limited Flat No :- S1 "Kashi Kunj",h. No. 60, New Rani Kudar Road No - 3, P.o. + P.s Kadma Jamshedpur - 831005, Jharkhand	Tel. +91 99341 23671 salesjamshedpur@seweurodriveindia.com
Kochi	SEW-EURODRIVE India Private Limited House No: 30/1168 A Kaniyampuzha Road Vyttila Post Office Cochin – 682019, Kerala	Tel. +91 98951 30375 salescochin@seweurodriveindia.com
Kolhapur	SEW-EURODRIVE India Private Limited C/O. Mr.S.V.Pawar.461/37, Abhideep Residency, Opp-Shriram Petrol Pump, Kasaba Bawada, Kolhapur - 416 122, Maharashtra	Tel. +91 86000 20846 saleskolhapur@seweurodriveindia.com
Kolkata	SEW-EURODRIVE India Private Limited 2nd floor, Room No. 35 Chowringhee Court 55, Chowringhee Road Kolkata - 700 071, West Bengal	Tel. +91 33 22827457 Fax +91 33 22894204 saleskolkata@seweurodriveindia.com
Lucknow	SEW-EURODRIVE India Private Limited 69, Shiv Vihar Colony Vikas Nagar – Sector 5 Lucknow - 226022, Uttar Pradesh	Tel. +91 97936 27333 saleslucknow@seweurodriveindia.com
Mumbai	SEW-EURODRIVE India Private Limited 312 A, 3rd Floor, Acme Plaza, J.B. Nagar, Andheri Kurla Road, Andheri (E) Mumbai - 400059, Maharashtra	Tel. +91 22 28348440 Fax +91 22 28217858 salesmumbai@seweurodriveindia.com
Nagpur	SEW-EURODRIVE India Private Limited Plot No 49, New Kailash Nager, Samta colony, Nagpur-440027, Maharashtra	Tel. +91 95610 89525 salesnagpur@seweurodriveindia.com
Nashik	SEW-EURODRIVE India Private Limited 107, "YOG" Bunglow, Mahatama Nagar, Trimbak Road, Nashik – 422 007, Maharashtra	Tel. +91 96657 52978 salesnashik@seweurodriveindia.com

	New Delhi	SEW-EURODRIVE India Private Limited # B-206 DLF Towers-B District Centre Jasola New Delhi -110044	Tel. +91 11 26944551 Fax +91 11 26944467 salesdelhi@seweurodriveindia.com
	Navi Mumbai	SEW-EURODRIVE India Private Limited No.202, Shivam Yeshoram Plot No. 262/257, Sector 19 Kopar Khairane, Navi Mumbai - 400 709, Maharashtra	Tel. +91 99677 21324 salesmumbai@seweurodriveindia.com
	Pune	SEW-EURODRIVE India Private Limited Plot No. 7, "Shri Shantadurga Niwas" Shivaji Co –operative Housing Society Ltd., Behind J.W. Marriot. Off Senapati Bapat Marg. Pune –411 016, Maharashtra	Tel. +91 20 25635466 / 467 salespune@seweurodriveindia.com
	Pune	SEW-EURODRIVE India Private Limited Jai Tulajabhavani Complex. Office No:- 15 First Floor, Opp. Century Enka Company, MIDC Bhosari , Pune 411 026	Tel. +91 20-65118890 / 91 Fax +91 20 25380721 salespune@seweurodriveindia.com
	Raipur	SEW-EURODRIVE India Private Limited Shop No. 204, 2nd Floor, Lalganga Business Park, Pachpedi Naka, NH -43 Dhamtari Road, Raipur 492 001 - Chhattisgarh	Tel. +91 771 4090765 Fax +91 771 4090765 salesraipur@seweurodriveindia.com
	Rajkot	SEW-EURODRIVE India Private Limited Block No:64, Ajanta Park, Sadhu Vaswani Marg, University Road Rajkot 360005 - Gujarat	Tel. +91 8978861212
	Ranchi	SEW-EURODRIVE India Private Limited 1D- Shail Madhuri Apartment, Near Kokar Pool, H.B Road, Kokar Ranchi - 834001, Jharkhand.	Tel. +91 82946 30772 salesranchi@seweurodriveindia.com
	Tiruchirappalli	SEW-EURODRIVE India Private Limited Plot No.24, Door No.64A Rajaram Salai, K.K Nagar Trichy-620 021, Tamilnadu	Tel. +91 97899 79855 salestrichy@seweurodriveindia.com
	Vadodara	SEW-EURODRIVE India Private Limited Unit No. 301, Savorite Bldg, Plot No. 143, Vinayak Society, off old Padra Road, Vadodara - 390 007, Gujarat	Tel. +91 265 2325258 / 6560482 salesvadodara@seweurodriveindia.com
	Vellore	SEW-EURODRIVE India Private Limited 23/2, 3rd Main road, Vani Vidyalaya School Road, Bharathi Nagar Extension, Katpadi Vellore - 632007, Tamilnadu	Tel. +91 96000 02247 salesvellore@seweurodriveindia.com
	Vijayawada	SEW-EURODRIVE India Private Limited III Floor, H NO. 8-164, Masjid Street, Gollapdudi, Vijayawada - 521225 Andhra Pradesh	Tel. +91 8978861212
ndonesia			
Sales	Medan	PT. Serumpun Indah Lestari Jl.Pulau Solor no. 8, Kawasan Industri Medan II Medan 20252	Tel. +62 61 687 1221 Fax +62 61 6871429 / +62 61 6871458 / +62 61 30008041 sil@serumpunindah.com serumpunindah@yahoo.com http://www.serumpunindah.com
	Jakarta	PT. Cahaya Sukses Abadi Komplek Rukan Puri Mutiara Blok A no 99, Sunter Jakarta 14350	Tel. +62 21 65310599 Fax +62 21 65310600 csajkt@cbn.net.id
	Jakarta	PT. Agrindo Putra Lestari JL.Pantai Indah Selatan, Komplek Sentra In- dustri Terpadu, Pantai indah Kapuk Tahap III, Blok E No. 27 Jakarta 14470	Tel. +62 21 2921-8899 Fax +62 21 2921-8988 aplindo@indosat.net.id http://www.aplindo.com

Indonesia			
	Surabaya	PT. TRIAGRI JAYA ABADI Jl. Sukosemolo No. 63, Galaxi Bumi Permai G6 No. 11	Tel. +62 31 5990128 Fax +62 31 5962666 sales@triagri.co.id
	Surabaya	Surabaya 60111 CV. Multi Mas Jl. Raden Saleh 43A Kav. 18 Surabaya 60174	http://www.triagri.co.id Tel. +62 31 5458589 Fax +62 31 5317220 sianhwa@sby.centrin.net.id
Ireland			http://www.cvmultimas.com
	Dublin	Alporton Engineering Ltd	Tel. +353 1 830-6277
Sales Service	Dubiiii	Alperton Engineering Ltd. 48 Moyle Road Dublin Industrial Estate Glasnevin, Dublin 11	Fax +353 1 830-6458 http://www.alperton.ie info@alperton.ie
Israel			
Sales	Tel Aviv	Liraz Handasa Ltd. Ahofer Str 34B / 228 58858 Holon	Tel. +972 3 5599511 Fax +972 3 5599512 http://www.liraz-handasa.co.il office@liraz-handasa.co.il
Italy			
Assembly Sales Service	Milan	SEW-EURODRIVE S.a.s. di SEW S.r.l. & Co. Via Bernini,12 20020 Solaro (Milano)	Tel. +39 02 96 980229 Fax +39 02 96 980 999 http://www.sew-eurodrive.it milano@sew-eurodrive.it
Drive Center	Bologna	SEW-EURODRIVE S.a.s. di SEW S.r.l. & Co. Via della Grafica, 47 40064 Ozzano dell'Emilia (Bo)	Tel. +39 051 65-23-801 Fax +39 02 96 980 499 bologna@sew-eurodrive.it
	Caserta	SEW-EURODRIVE S.a.s. di SEW S.r.l. & Co. Viale Carlo III Km. 23,300 81020 S. Nicola la Strada (Caserta)	Tel. +39 0823 219011 Fax +39 02 96 980 599 caserta@sew-eurodrive.it
	Pescara	SEW-EURODRIVE S.a.s. di SEW S.r.l. & Co. Viale Europa,132 65010 Villa Raspa di Spoltore (PE)	Tel. +39 085 41-59-427 Fax +39 02 96 980 699 pescara@sew-eurodrive.it
	Turin	SEW-EURODRIVE S.a.s. di SEW S.r.l. & Co. Filiale Torino c.so Unione Sovietica 612/15 - int. C 10135 Torino	Tel. +39 011 3473780 Fax +39 02 96 980 799 torino@sew-eurodrive.it
	Verona	SEW-EURODRIVE S.a.s. di SEW S.r.l. & Co. Via Antonio Meucci, 5 37042 - Caldiero (VR)	Tel. +39 045 89-239-11 Fax +39 02 96 980 814 verona@sew-eurodrive.it
Ivory Coast			
Sales	Abidjan	SEW-EURODRIVE SARL Ivory Coast Rue des Pêcheurs, Zone 3 26 BP 916 Abidjan 26	Tel. +225 21 21 81 05 Fax +225 21 25 30 47 info@sew-eurodrive.ci http://www.sew-eurodrive.ci
Japan			
Assembly Sales Service	Iwata	SEW-EURODRIVE JAPAN CO., LTD 250-1, Shimoman-no, Iwata Shizuoka 438-0818	Tel. +81 538 373811 Fax +81 538 373814 http://www.sew-eurodrive.co.jp sewjapan@sew-eurodrive.co.jp
Technical Offices	Kyoto	SEW-EURODRIVE JAPAN CO., LTD Kyoto Operation Center 9-1-11 Seikadai, Seika-cho, Souraku-gun, Kyoto 619-0238	Tel. +81 774 98-2750 Fax +81 774 93-2100 kyoto@sew-eurodrive.co.jp
	Tokio	SEW-EURODRIVE JAPAN CO., LTD Renai Partire Shiodome 5th floor 2-18-3 Higashi-Shinbashi, Minato-Ku, Tokyo 105-0021	Tel. +81 3 5408-0521 Fax +81 3 5408-7550 tokyo@sew-eurodrive.co.jp
	Nagoya	SEW-EURODRIVE JAPAN CO., LTD Nagoya Toho building, 1-2-7, Sakae, Naka-ku Nagoya 460-0008, Aichi	Tel. +81 52-228-8608 Fax +81 52-203-2820 nagoya@sew-eurodrive.co.jp

	Osaka	SEW-EURODRIVE JAPAN CO., LTD Higobashi Shimizu Bldg. 10th flor 1-3-7 Tosabori, Nishi-ku Osaka, 550-0001	Tel. +81 6 64448330 Fax +81 6 64448338 osaka@sew-eurodrive.co.jp
	Fukuoka	SEW-EURODRIVE JAPAN CO., LTD 8th-floor, Imon-Hakata-BldgEast. 2-2-1, Sumiyoshi, Hakata-ku Fukuoka, 812-0018	Tel. +81 92 291-3600 Fax +81 92 291-3602 fukuoka@sew-eurodrive.co.jp
Kazakhstan			
Sales Service	Almaty	SEW-EURODRIVE LLP 291-291A, Tole bi street 050031, Almaty	Tel. +7 (727) 350 5156 Fax +7 (727) 350 5156 http://www.sew-eurodrive.kz sew@sew-eurodrive.kz
	Tashkent	Representative Office SEW-EURODRIVE Representative office in Uzbekistan 95A Amir Temur ave, office 401/3 100084 Tashkent	Tel. +998 97 134 01 99 Fax http://www.sew-eurodrive.uz sew@sew-eurodrive.uz
	Ulaanbaatar	IM Trading LLC Olympic street 28B/3 Sukhbaatar district, Ulaanbaatar 14230, MN	Tel. +976-77109997 Fax +976-77109997 imt@imt.mn
Technical Offices	Karagandy	SEW-EURODRIVE LLP 82, Molokov Street 100004, Karagandy	Tel. +7 (7212) 955 956 Fax +7 (7212) 955 956 karagandy@sew-eurodrive.kz
	Oskemen	SEW-EURODRIVE LLP 62 Satpaev ave. office 313 070016, Ust-Kamenogorsk	Tel. +7 (723) 291 37 48 (ext 760) Fax +7 (727) 350 5156 (ext 709) oskemen@sew-eurodrive.kz
	Aktobe	SEW-EURODRIVE LLP 52/1 Marat Ospanov str., office 11 030000, Aktobe	Tel. +7 (771) 993 0915 aktobe@sew-eurodrive.kz
	Pavlodar	SEW-EURODRIVE LLP 6/2, Lunacharsky str., office 46 140000, Pavlodar	Tel. +7 (771) 993 09 16 pavlodar@sew-eurodrive.kz
Latvia			
Sales	Riga	SIA Alas-Kuul Katlakalna 11C 1073 Riga	Tel. +371 6 7139253 Fax +371 6 7139386 http://www.alas-kuul.lv info@alas-kuul.com
Lebanon			
Sales (Lebanon)	Beirut	Gabriel Acar & Fils sarl B. P. 80484 Bourj Hammoud, Beirut	Tel. +961 1 510 532 Fax +961 1 494 971 ssacar@inco.com.lb
Sales (Jordan, Kuwait Saudi Arabia, Syria)	, Beirut	Middle East Drives S.A.L. (offshore) Sin El Fil. B. P. 55-378 Beirut	Tel. +961 1 494 786 Fax +961 1 494 971 http://www.medrives.com info@medrives.com
Lithuania			
Sales	Alytus	UAB Irseva Statybininku 106C 63431 Alytus	Tel. +370 315 79204 Fax +370 315 56175 http://www.irseva.lt irmantas@irseva.lt
Luxembourg			
Representation: Belgiu	ım		
Macedonia			
Sales	Skopje	Boznos DOOEL Dime Anicin 2A/7A 1000 Skopje	Tel. +389 23256553 Fax +389 23256554 http://www.boznos.mk

Malaysia			
Assembly Sales Service	Johor	SEW-EURODRIVE SDN BHD No. 95, Jalan Seroja 39, Taman Johor Jaya 81000 Johor Bahru, Johor West Malaysia	Tel. +60 7 3549409 Fax +60 7 3541404 sales@sew-eurodrive.com.my
Technical Offices	Kuala Lumpur	SEW-EURODRIVE SDN BHD No. 2, Jalan Anggerik Mokara 31/46 Kota Kemuning Seksyen 31 40460 Shah Alam Selangor Darul Ehsan West Malaysia	Tel. +60 3 51229633 Fax +60 3 51229622 sewsa@sew-eurodrive.com.my
	Penang	SEW-EURODRIVE SDN BHD No. 38, Jalan Bawal Kimsar Garden 13700 Prai, Penang West Malaysia	Tel. +60 4 3999349 Fax +60 4 3999348 sewpg@sew-eurodrive.com.my
	Kuching	SEW-EURODRIVE SDN BHD No. 69, Lot 10899 1st Floor, Jalan Tun Jugah 93350 Kuching Sarawak East Malaysia	Tel. +60 82 572780 Fax +60 82 571780 sewswk@sew-eurodrive.com.my
	Kota Kinabalu	SEW-EURODRIVE SDN BHD East Malaysia	Tel. +60 19 7539395 sales@sew-eurodrive.com.my
	lpoh	SEW-EURODRIVE SDN BHD West Malaysia	Tel. +60 19 7177366 sewsa@sew-eurodrive.com.my
Mexico			
Assembly Sales Service	Quéretaro	SEW-EURODRIVE MEXICO S.A. de C.V. SEM-981118-M93 Tequisquiapan No. 102 Parque Industrial Quéretaro C.P. 76220 Querétaro, México	Tel. +52 442 1030-300 Fax +52 442 1030-301 http://www.sew-eurodrive.com.mx scmexico@seweurodrive.com.mx
Sales Service	Puebla	SEW-EURODRIVE MEXICO S.A. de C.V. Calzada Zavaleta No. 3922 Piso 2 Local 6 Col. Santa Cruz Buenavista C.P. 72154 Puebla, México	Tel. +52 (222) 221 248 http://www.sew-eurodrive.com.mx scmexico@seweurodrive.com.mx
Mongolia			
Technical Office	Ulaanbaatar	IM Trading LLC Olympic street 28B/3 Sukhbaatar district, Ulaanbaatar 14230, MN	Tel. +976-77109997 Tel. +976-99070395 Fax +976-77109997 http://imt.mn/ imt@imt.mn
Morocco			
Sales Service Assembly	Bouskoura	SEW-EURODRIVE Morocco SARL Parc Industriel CFCIM, Lot. 55/59 27182 Bouskoura Grand Casablanca	Tel. +212 522 88 85 00 Fax +212 522 88 84 50 http://www.sew-eurodrive.ma sew@sew-eurodrive.ma
Namibia			
Sales	Swakopmund	DB MINING & INDUSTRIAL SUPPLIES CC Einstein Street Strauss Industrial Park Unit1 Swakopmund	Tel. +264 64 462 738 Fax +264 64 462 734 anton@dbminingnam.com
Netherlands			
Assembly Sales Service	Rotterdam	SEW-EURODRIVE B.V. Industrieweg 175 3044 AS Rotterdam Postbus 10085 3004 AB Rotterdam	Tel. +31 10 4463-700 Fax +31 10 4155-552 Service: 0800-SEWHELP http://www.sew-eurodrive.nl info@sew-eurodrive.nl

New Zealand			
Assembly Sales Service	Auckland	SEW-EURODRIVE NEW ZEALAND LTD. P.O. Box 58-428 82 Greenmount drive East Tamaki Auckland	Tel. +64 9 2745627 Fax +64 9 2740165 http://www.sew-eurodrive.co.nz sales@sew-eurodrive.co.nz
	Christchurch	SEW-EURODRIVE NEW ZEALAND LTD. 30 Lodestar Avenue, Wigram Christchurch	Tel. +64 3 384-6251 Fax +64 3 384-6455 sales@sew-eurodrive.co.nz
Technical Office	Palmerston North	SEW-EURODRIVE NEW ZEALAND LTD. C/-Grant Shearman, RD 5, Aronui Road Palmerston North	Tel. +64 6 355-2165 Fax +64 6 355-2316 sales@sew-eurodrive.co.nz
Nigeria			
Sales	Lagos	Greenpeg Nig. Ltd Plot 296A, Adeyemo Akapo Str. Omole GRA Ikeja Lagos-Nigeria	Tel. +234-701-821-9200-1 http://www.greenpegltd.com sales@greenpegltd.com
Norway			
Assembly Sales Service	Moss	SEW-EURODRIVE A/S Solgaard skog 71 1599 Moss	Tel. +47 69 24 10 20 Fax +47 69 24 10 40 http://www.sew-eurodrive.no sew@sew-eurodrive.no
Pakistan			
Sales	Karachi	Industrial Power Drives Al-Fatah Chamber A/3, 1st Floor Central Com- mercial Area, Sultan Ahmed Shah Road, Block 7/8, Karachi	Tel. +92 21 452 9369 Fax +92-21-454 7365 seweurodrive@cyber.net.pk
Paraguay			
Sales	Fernando de la Mora	SEW-EURODRIVE PARAGUAY S.R.L De la Victoria 112, Esquina nueva Asunción Departamento Central Fernando de la Mora, Barrio Bernardino	Tel. +595 991 519695 Fax +595 21 3285539 sewpy@sew-eurodrive.com.py
Peru			
Assembly Sales Service	Lima	SEW EURODRIVE DEL PERU S.A.C. Los Calderos, 120-124 Urbanizacion Industrial Vulcano, ATE, Lima	Tel. +51 1 3495280 Fax +51 1 3493002 http://www.sew-eurodrive.com.pe sewperu@sew-eurodrive.com.pe
Philippines			
Sales	Makati	P.T. Cerna Corporation 4137 Ponte St., Brgy. Sta. Cruz Makati City 1205	Tel. +63 2 519 6214 Fax +63 2 890 2802 mech_drive_sys@ptcerna.com http://www.ptcerna.com
Poland			
Assembly Sales Service	Łódź	SEW-EURODRIVE Polska Sp.z.o.o. ul. Techniczna 5 92-518 Łódź	Tel. +48 42 293 00 00 Fax +48 42 293 00 49 http://www.sew-eurodrive.pl sew@sew-eurodrive.pl
	Service	Tel. +48 42 293 0030 Fax +48 42 293 0043	24 Hour Service Tel. +48 602 739 739 (+48 602 SEW SEW) serwis@sew-eurodrive.pl
Technical Offices	Tychy	SEW-EURODRIVE Polska Sp.z.o.o. ul. Strzelecka 66 43-109 Tychy	Tel. +48 32 32 32 610 Fax +48 32 32 32 648 +48 32 32 32 648
	Bydgoszcz	SEW-EURODRIVE Polska Sp.z.o.o. ul. Fordońska 246 85-766 Bydgoszcz	Tel.+48 52 567 30 00 Fax +48 52 567 30 09
	Gdansk	SEW-EURODRIVE Polska Sp.z.o.o. ul. Galaktyczna 30A 80-299 Gdańsk	Tel. +48 58 762 70 00 Fax +48 58 762 70 09
	Posen	SEW-EURODRIVE Polska Sp.z.o.o. ul. Wschodnia 7B	Tel. +48 61 6465500 Fax +48 61 6465519

	Radom	SEW-EURODRIVE Polska Sp.z.o.o. ul. Słowackiego 84 26-600 Radom	Tel. +48 48 679 47 00 Fax +48 48 679 47 09
	Rzeszów	SEW-EURODRIVE Polska Sp.z.o.o. ul. Armii Krajowej 80 35-307 Rzeszów	Tel. +48 17 784 27 00 Fax +48 17 784 27 09
Portugal			
Assembly Sales Service	Coimbra	SEW-EURODRIVE, LDA. Av. da Fonte Nova, n.º 86 3050-379 Mealhada	Tel. +351 231 20 9670 Fax +351 231 20 3685 http://www.sew-eurodrive.pt infosew@sew-eurodrive.pt
Service Competence Center	Lisbon	SEW-EURODRIVE, LDA. Núcleo Empresarial I de São Julião do Tojal Rua de Entremuros, 54 Fracção I 2660-533 São Julião do Tojal	Tel. +351 21 958-0198 / +351 939 598 717 Fax +351 21 958-0245 esc.lisboa@sew-eurodrive.pt
Technical Office	Porto	SEW-EURODRIVE, LDA. Rua Monte da Bela, N.º 191, Fração X 4445-294 Ermesinde	Tel. +351 229 350 383 / +351 932 559 110 Fax +351 229 350 384 esc.porto@sew-eurodrive.pt
Romania			
Sales Service	Bucharest	Sialco Trading SRL str. Brazilia nr. 36 011783 Bucuresti	Tel. +40 21 230-1328 Fax +40 21 230-7170 http://www.sialco.ro sialco@sialco.ro
Russia			
Assembly Sales Service	St. Petersburg	ЗАО «СЕВ-ЕВРОДРАЙФ» 188660, Russia, Leningrad Region, Vse- volozhsky District, Korabselki, Aleksandra Nevskogo str. building 4, block 1 P.O. Box 36 195220 St. Petersburg	Tel. +7 812 3332522 / +7 812 5357142 Fax +7 812 3332523 http://www.sew-eurodrive.ru sew@sew-eurodrive.ru
Technical Offices	Ekaterinburg	ЗАО «СЕВ-ЕВРОДРАЙФ» Kominterna Str. 16 Office 614 620078 Ekaterinburg	Tel. +7 343 310 3977 Fax +7 343 310 3978 eso@sew-eurodrive.ru
	Irkutsk	3AO «СЕВ-ЕВРОДРАЙФ» 5-Armii Str., 31 664011 Irkutsk	Tel. +7 3952 25 5880 Fax +7 3952 25 5881 iso@sew-eurodrive.ru
	Moscow	ЗАО «СЕВ-ЕВРОДРАЙФ» Malaja Semjonowskaja Str. д. 9, корпус 2 107023 Moskau	Tel. +7 495 9337090 Fax +7 495 9337094 mso@sew-eurodrive.ru
	Novosibirsk	ЗАО «СЕВ-ЕВРОДРАЙФ» pr. K Marksa 30 630087 Novosibirsk	Tel. +7 383 3350200 Fax +7 383 3462544 nso@sew-eurodrive.ru
	Perm	3AO «СЕВ-ЕВРОДРАЙФ» Stakhanovskaya str., 45 Office 512 614066 Perm	Tel. +7 342 2219494 Fax +7 342 2219444 pso@sew-eurodrive.ru
	Togliatti	ЗАО «СЕВ-ЕВРОДРАЙФ» Sportivnaya Str. 4B, office 2 Samarskaya obl. 445057 Togliatti	Tel. +7 8482 710529 Fax +7 8482 810590 tso@sew-eurodrive.ru

Representation: South Africa

Seriegai		
Sales	Dakar	SENEME
		Mécanique

SENEMECA Mécanique Générale Km 8, Route de Rufisque B.P. 3251, Dakar Tel. +221 338 494 770 Fax +221 338 494 771 http://www.senemeca.com senemeca@senemeca.sn

Serbia			
Sales	Belgrade	DIPAR d.o.o. Ustanicka 128a PC Košum, IV floor 11000 Beograd	Tel. +381 11 347 3244 / +381 11 288 0393 Fax +381 11 347 1337 office@dipar.rs
Singapore			
Assembly Sales Service	Singapore	SEW-EURODRIVE PTE. LTD. No 9, Tuas Drive 2 Jurong Industrial Estate Singapore 638644	Tel. +65 68621701 Fax +65 68612827 http://www.sew-eurodrive.com.sg sewsingapore@sew-eurodrive.com
Slovakia			
Sales	Bernolákovo	SEW-Eurodrive SK s.r.o. Priemyselná ulica 6267/7 900 27 Bernolákovo	Tel.+421 2 33595 202, 217, 201 Fax +421 2 33595 200 http://www.sew-eurodrive.sk sew@sew-eurodrive.sk
Slovenia			
Sales Service	Celje	Pakman - Pogonska Tehnika d.o.o. UI. XIV. divizije 14 3000 Celje	Tel. +386 3 490 83-20 Fax +386 3 490 83-21 pakman@siol.net
South Africa			
Assembly Sales Service	Johannesburg	SEW-EURODRIVE (PROPRIETARY) LIMITED Eurodrive House Cnr. Adcock Ingram and Aerodrome Roads Aeroton Ext. 2 Johannesburg 2013 P.O.Box 90004 Bertsham 2013	Tel. +27 11 248-7000 Fax +27 11 248-7289 http://www.sew.co.za info@sew.co.za
	Cape Town	SEW-EURODRIVE (PROPRIETARY) LIMITED Rainbow Park Cnr. Racecourse & Omuramba Road Montague Gardens Cape Town P.O.Box 36556 Chempet 7442	Tel. +27 21 552-9820 Fax +27 21 552-9830 Telex 576 062 bgriffiths@sew.co.za
	Durban	SEW-EURODRIVE (PROPRIETARY) LIMITED 48 Prospecton Road Isipingo Durban P.O. Box 10433, Ashwood 3605	Tel. +27 31 902 3815 Fax +27 31 902 3826 cdejager@sew.co.za
	Nelspruit	SEW-EURODRIVE (PROPRIETARY) LIMITED 7 Christie Crescent Vintonia P.O.Box 1942 Nelspruit 1200	Tel. +27 13 752-8007 Fax +27 13 752-8008 robermeyer@sew.co.za
Technical Office	Port Elizabeth	SEW-EURODRIVE (PROPRIETARY) LIMITED 8 Ruan Access Park Old Cape Road Greenbushes 6000 Port Elizabeth	Tel. +27 41 3722246 Fax +27 41 3722247 http://www.sew.co.za fsieberhagen@sew-co-za
South Korea			
Assembly Sales Service	Ansan	SEW-EURODRIVE Korea Co., Ltd. 7, Dangjaengi-ro, Danwon-gu, Ansan-si, Gyeonggi-do, Zip 425-839	Tel. +82 31 492-8051 Fax +82 31 492-8056 http://www.sew-eurodrive.kr master.korea@sew-eurodrive.com
	Busan	SEW-EURODRIVE Korea Co., Ltd. 28, Noksansandan 262-ro 50beon-gil, Gangseo-gu, Busan, Zip 618-820	Tel. +82 51 832-0204 Fax +82 51 832-0230
Assembly Service	Siheung	SEW-EURODRIVE Korea Co., Ltd. 35, Emtibeui 26-ro 58beon-gil, Siheung-si, Gyeonggi-do	http://www.sew-eurodrive.kr

Technical Offices	Daegu	SEW-EURODRIVE Korea Co., Ltd. No.303 Sungan officetel, 1834, Dalgubeol-daero, Dalseo-gu, Daegu, Zip 704-712	Tel. +82 53 650-7111 Fax +82 53 650-7112
	Daejeon	SEW-EURODRIVE Korea Co., Ltd. No.302 Hongin officetel, 28, Daehak-ro, Yuseong-gu, Daejeon, Zip 305-710	Tel. +82 42 828-6461 Fax +82 42 828-6463
	Gwangju	SEW-EURODRIVE Korea Co., Ltd. 5fl., Hyundai B/D B, 40, Bungmun-daero, Buk-gu, Gwangju, Zip 500-855	Tel. +82 62 511-9172 Fax +82 62 511-9174
	Seoul	SEW-EURODRIVE Korea Co., Ltd. No.1804 Ace Hiend Tower 8th, 84, Gasan digital 1-ro, Geumcheon-gu, Seoul, Zip 153-797	Tel. +82 2 862-8051 Fax +82 2 862-8199
Spain			
Assembly Sales Service	Bilbao	SEW-EURODRIVE ESPAÑA, S.L. Parque Tecnológico, Edificio, 302 48170 Zamudio (Vizcaya)	Tel. +34 94 43184-70 http://www.sew-eurodrive.es sew.spain@sew-eurodrive.es
Technical Offices	Barcelona	SEW-EURODRIVE ESPAÑA, S.L. Avda. Francesc Macià, 60 – Planta 16, porta 1 Eix Macià – "Torre Milenium" 08208 Sabadell (Barcelona)	Tel. +34 93 7162200
	Madrid	SEW-EURODRIVE ESPAÑA, S.L. Gran Via. 48-2° A-D 28220 Majadahonda (Madrid)	Tel. +34 91 6342250
Sri Lanka			
Sales	Colombo	SM International (Pte) Ltd 254, Galle Raod Colombo 4, Sri Lanka	Tel. +94 1 2584887 Fax +94 1 2582981
Swaziland			
Sales	Manzini	C G Trading Co. (Pty) Ltd Simunye street Matsapha, Manzini	Tel. +268 7602 0790 Fax +268 2 518 5033 charles@cgtrading.co.sz www.cgtradingswaziland.com
Sweden			
Assembly Sales Service	Jönköping	SEW-EURODRIVE AB Gnejsvägen 6-8 553 03 Jönköping Box 3100 S-550 03 Jönköping	Tel. +46 36 34 42 00 Fax +46 36 34 42 80 http://www.sew-eurodrive.se jonkoping@sew.se
Sales	Gothemburg	SEW-EURODRIVE AB Gustaf Werners gata 8 421 32 Västra Frölunda	Tel. +46 31 709 68 80 Fax +46 31 709 68 93 goteborg@sew.se
	Stockholm	SEW-EURODRIVE AB Björkholmsvägen 10 141 46 Huddinge	Tel. +46 8 449 86 80 Fax +46 8 449 86 93 stockholm@sew.se
	Malmö	SEW-EURODRIVE AB Borrgatan 5 211 24 Malmö	Tel. +46 40 680 64 80 Fax +46 40 680 64 93 malmo@sew.se
	Skellefteå	SEW-EURODRIVE AB Trädgårdsgatan 8 931 31 Skellefteå	Tel. +46 910 71 53 80 Fax +46 910 71 53 93 skelleftea@sew.se
Switzerland			
Assembly Sales Service	Basel	Alfred Imhof A.G. Jurastrasse 10 4142 Münchenstein bei Basel	Tel. +41 61 417 1717 Fax +41 61 417 1700 http://www.imhof-sew.ch info@imhof-sew.ch
Technical Offices	Rhaetian Switzerland	Ivan Grumelli Z.I. Moulin du choc C 1122 Romanel-sur-Morges, VD	Tel. +41 79 725 4499 Fax +41 61 417 1700

	Bern / Solo- thurn	Rudolf Bühler Muntersweg 5 2540 Grenchen	Tel. +41 32 652 2339 Fax +41 32 652 2331
	Central Switzerland, Aargau	Armin Pfister Stierenweid 4950 Huttwil, BE	Tel. +41 62 962 54 55 Fax +41 62 962 54 56
	Zürich, Ticino	Gian-Michele Muletta Fischerstrasse 61 8132 Egg bei Zürich	Tel. +41 44 994 81 15 Fax +41 44 994 81 16
	Lake Con- stance and East Switzer- land	Markus Künzle Eichweg 4 9403 Goldach	Tel. +41 71 845 2808 Fax +41 71 845 2809
aiwan			
Sales	Taipei	Ting Shou Trading Co., Ltd. 6F-3, No. 267, Sec. 2 Tung Huw S. Road Taipei	Tel. +886 2 27383535 Fax +886 2 27368268 Telex 27 245 sewtwn@ms63.hinet.net http://www.tingshou.com.tw
	Nan Tou	Ting Shou Trading Co., Ltd. No. 55 Kung Yeh N. Road Industrial District Nan Tou 540	Tel. +886 49 255353 Fax +886 49 257878 sewtwn@ms63.hinet.net http://www.tingshou.com.tw
Tanzania			
Sales	Daressalam	SEW-EURODRIVE PTY LIMITED TANZANIA Plot 52, Regent Estate PO Box 106274 Dar Es Salaam	Tel. +255 0 22 277 5780 Fax +255 0 22 277 5788 http://www.sew-eurodrive.co.tz info@sew.co.tz
Thailand			
Assembly Sales Service	Chonburi	SEW-EURODRIVE (Thailand) Ltd. 700/456, Moo.7, Donhuaroh Muang Chonburi 20000	Tel. +66 38 454281 Fax +66 38 454288 sewthailand@sew-eurodrive.com
Technical Offices	Bangkok	SEW-EURODRIVE (Thailand) Ltd. 6th floor, TPS Building 1023, Phattanakarn Road Suanluang Bangkok,10250	Tel. +66 2 7178149 Fax +66 2 7178152 sewthailand@sew-eurodrive.com
	Hat Yai	SEW-EURODRIVE (Thailand) Ltd. Hadyai Country Home Condominium 59/101 Soi.17/1 Rachas-Utid Road. Hadyai, Songkhla 90110	Tel. +66 74 359441 Fax +66 74 359442 sewthailand@sew-eurodrive.com
	Khon Kaen	SEW-EURODRIVE (Thailand) Ltd. 4th Floor, Kaow-U-HA MOTOR Bldg, 359/2, Mitraphab Road. Muang District Khonkaen 40000	Tel. +66 43 225745 Fax +66 43 324871 sewthailand@sew-eurodrive.com
Tunisia		_	
Sales	Tunis	T. M.S. Technic Marketing Service Zone Industrielle Mghira 2 Lot No. 39 2082 Fouchana	Tel. +216 79 40 88 77 Fax +216 79 40 88 66 http://www.tms.com.tn tms@tms.com.tn
Turkey			
Assembly Sales Service	Kocaeli-Gebze	SEW-EURODRIVE Ana Merkez Gebze Organize Sanayi Böl. 400 Sok No. 401 41480 Gebze Kocaeli	Tel. +90 262 9991000 04 Fax +90 262 9991009 http://www.sew-eurodrive.com.tr sew@sew-eurodrive.com.tr
		SEW-EURODRIVE Home Ofis	Tel. +90 533 491 81 77 / +90 542 660 34 89

	Bursa	SEW-EURODRIVE Bursa Ofis Beşevler Mah. Yıldırım Cd. No: 254 Karya Güçlü İş Merkezi B Blok Kat:5 No: 28 Nilüfer/Bursa	Tel. +90 224 443 45 60
	Istanbul	SEW-EURODRIVE İstanbul Ofis Yakuplu Merkez Mh. Hürriyet Bulvarı Skyport Residence No:1 D:66 Beylikdüzü/ISTANBUL	Tel. +90 212 438 41 62-63
	Izmir	SEW-EURODRIVE İzmir Ofis IAOSB Küçük Parseller Grubu Sosyal Tesis merkezi 1030 Sokak No: 16 / 110 Kara Hasan Atlı İş Merkezi Kat:6 Çiğli/İzmir	Tel. +90 232 469 62 64
United Arab Emirat	tes		
Drive Technology Center	Dubai	SEW-EURODRIVE FZE PO Box 263835 Jebel Ali Free Zone – South, P.O. Box Dubai, United Arab Emirates	Tel. +971 (0)4 8806461 Fax +971 (0)4 8806464 info@sew-eurodrive.ae
Ukraine			
Assembly Sales Service	Dnipropetrovsk	s SEW-EURODRIVE, LLC Robochya str., bld. 23-B, office 409 49008 Dnipro	Tel. +380 56 370 3211 Fax +380 56 372 2078 http://www.sew-eurodrive.ua sew@sew-eurodrive.ua
Sales	Kiev	SEW-EURODRIVE, LLC S. Oleynika str, bld. 21 02068 Kiev	Tel. +380 44 503 95 77 Fax +380 44 503 95 78 kso@sew-eurodrive.ua
	Ivano- Frankivsk	SEW-EURODRIVE, LLC Nezavisimosty str, bld. 4, office 303 76000 Ivano-Frankovsk	Tel. +380 342 725 190 Fax +380 342 725 191 ifso@sew-eurodrive.ua
Uruguay			
Assembly Sales	Montevideo	SEW-EURODRIVE Uruguay, S. A. Jose Serrato 3569 Esqina Corumbe CP 12000 Montevideo	Tel. +598 2 21181-89 Fax +598 2 21181-90 sewuy@sew-eurodrive.com.uy
USA			
Production Assembly Sales Service	Southeast Region	SEW-EURODRIVE INC. 1295 Old Spartanburg Highway P.O. Box 518 Lyman, S.C. 29365	Tel. +1 864 439-7537 Fax Sales +1 864 439-7830 Fax Production +1 864 439-9948 Fax Assembly +1 864 439-0566 Fax Confidential/HR +1 864 949-5557 http://www.seweurodrive.com cslyman@seweurodrive.com
Assembly Sales Service	Northeast Region	SEW-EURODRIVE INC. Pureland Ind. Complex 2107 High Hill Road, P.O. Box 481 Bridgeport, New Jersey 08014	Tel. +1 856 467-2277 Fax +1 856 845-3179 csbridgeport@seweurodrive.com
	Midwest Region	SEW-EURODRIVE INC. 2001 West Main Street Troy, Ohio 45373	Tel. +1 937 335-0036 Fax +1 937 332-0038 cstroy@seweurodrive.com
	Southwest Region	SEW-EURODRIVE INC. 3950 Platinum Way Dallas, Texas 75237	Tel. +1 214 330-4824 Fax +1 214 330-4724 csdallas@seweurodrive.com
	Western Region	SEW-EURODRIVE INC. 30599 San Antonio St. Hayward, CA 94544	Tel. +1 510 487-3560 Fax +1 510 487-6433 cshayward@seweurodrive.com
	Wellford	SEW-EURODRIVE INC. 148/150 Finch Rd. Wellford, S.C. 29385	Tel. +1 864 439-7537 Fax +1 864 661 1167 IGOrders@seweurodrive.com
	Additional addr	resses for service provided on request!	

Vietnam			
Sales	Ho Chi Minh City	SEW-EURODRIVE PTE. LTD. RO at Hochim- inh City Floor 8, KV I, Loyal building, 151-151 Bis Vo Thi Sau street, ward 6, District 3, Ho Chi Minh	Tel. +84 937 299 700 huytam.phan@sew-eurodrive.com
	Hanoi	City, Vietnam MICO LTD Quang Tri - North Vietnam / All sectors except	
		Construction Materials 8th Floor, Ocean Park Building, 01 Dao Duy Anh St, Ha Noi, Viet Nam	nam_ph@micogroup.com.vn http://www.micogroup.com.vn

Index

A	
Abbreviation key 44	4
Adapter flange	
Breather valve, oil drain plug 75	5
Additional documentation	3
Agitator drive	
Strength class of the screws 157	1
Agitator gear unit)
ATEX, explosion protection	1
ATEX-compliant explosion protection 2	1
В	
Bearing greases 112	2
Breather valve 132, 176	3
Compound gear unit	3
Breather valve in the adapter flange 75	5
С	
Changing the mounting position	- 5
Churning losses	
Compound gear unit	
Breather valve	3
Oil drain plug73	3
Oil level plug73	3
Screw plug bore	3
Condition monitoring	9
DUO 10A 18	3
DUV40A 168	3
Oil aging sensor 18	3
Vibration monitoring 168	3
Copyright notice)
D	
Decimal separator)
Designs	
Helical gearmotors 33	3
Helical-bevel gearmotors	3
Helical-worm gearmotors 40)
Parallel-shaft helical gearmotors 34	4
Designs, possible	
For international markets 14	4
Reduced backlash133	3
SPIROPLAN® gear units 13	3

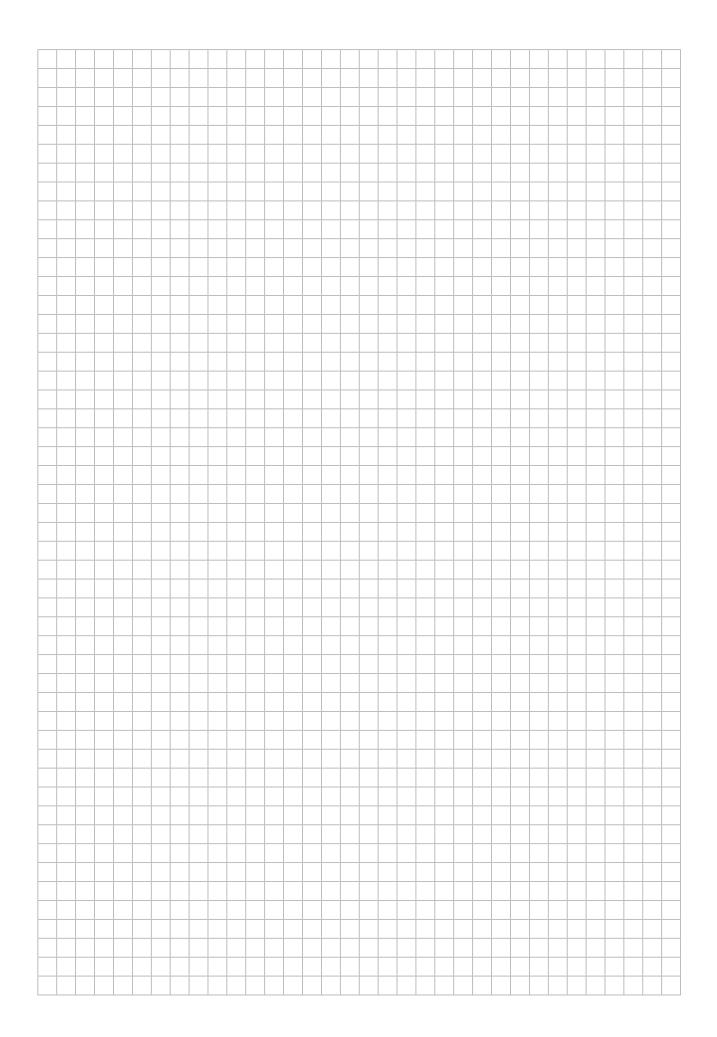
Diagnostic unit				
Oil aging sensor DUO10A	. 18			
Dismounting using the SEW-EURODRIVE as- sembly/disassembly kit				
Documentation, additional				
Drive and gear unit selection data				
Drive solution				
DUO 10A				
Technical data	166			
DUV40A				
Technical data	168			
E				
Efficiency				
Efficiency of R, F, K, S, W gear units				
Extended storage	. 17			
F				
Fixed safety cover	162			
Part numbers and dimensions 163, 164,				
Flange contours				
FAF., KAF., SAF. and WAF	158			
FF, KF, SF and WF				
RF and RF				
Force application definition				
• •	. 0			
G				
Gear unit mounting	151			
Strength class	151			
Gear units				
Extended storage	. 17			
Gear units with hollow shaft	141			
Special motor/gear unit combinations	142			
Gear units with hollow shafts and key				
Installation/removal kit	134			
Gearmotor				
Accessibility	12			
Heat dissipation	. 12			
Installation altitude	. 12			
Noise	12			
Painting	12			
Gearmotor dimensions	178			
Dimension designations of motors	178			
Grease filling	112			

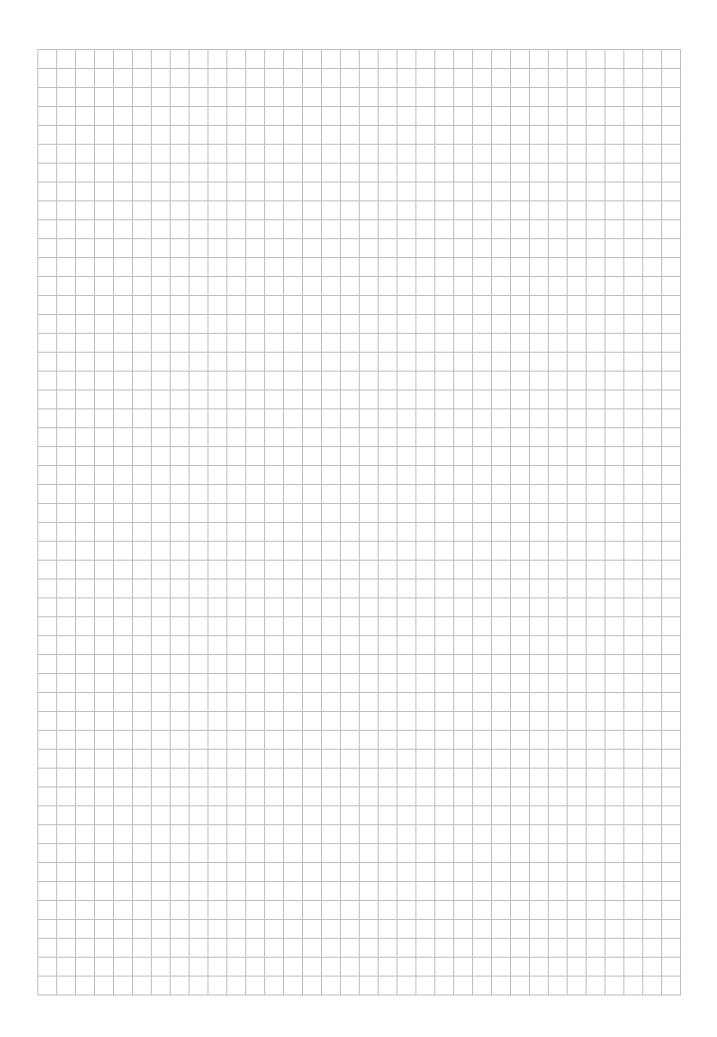
Index

Н	
Helical gear units	
Type designation	27
Helical gearmotors	
Mounting positions	80
Helical-bevel gear units	
Type designation	28
Helical-bevel gearmotors	
Designs	, 37, 38
Mounting positions	88
Helical-worm gear units	
Type designation	28
Helical-worm gearmotors	
Designs	40
Mounting positions	101
Higher permitted overhung loads	
Gear units	
Hollow shaft and key, assembly/disassembly	· 134
1	
Information on combination overviews	172
Installation altitude	12
Installation kit for gear units with hollow shaft	and
key	134
International markets	14
L	
Lubricant	
Compatibility with oil seal	114
Lubricant table	113
Lubricant fill quantities	127
Lubricant table	
Notes	113
M	
Modular automation system	6
Motor	
Operating temperature	11
Motor mounting positions	
Mounting gear units with hollow shaft and ke	
Supplied fastening parts	134
Using the assembly/disassembly kit by	
SEW-EURODRIVE	136
Mounting of gear units	151
Mounting position	
Mounting position MX	75

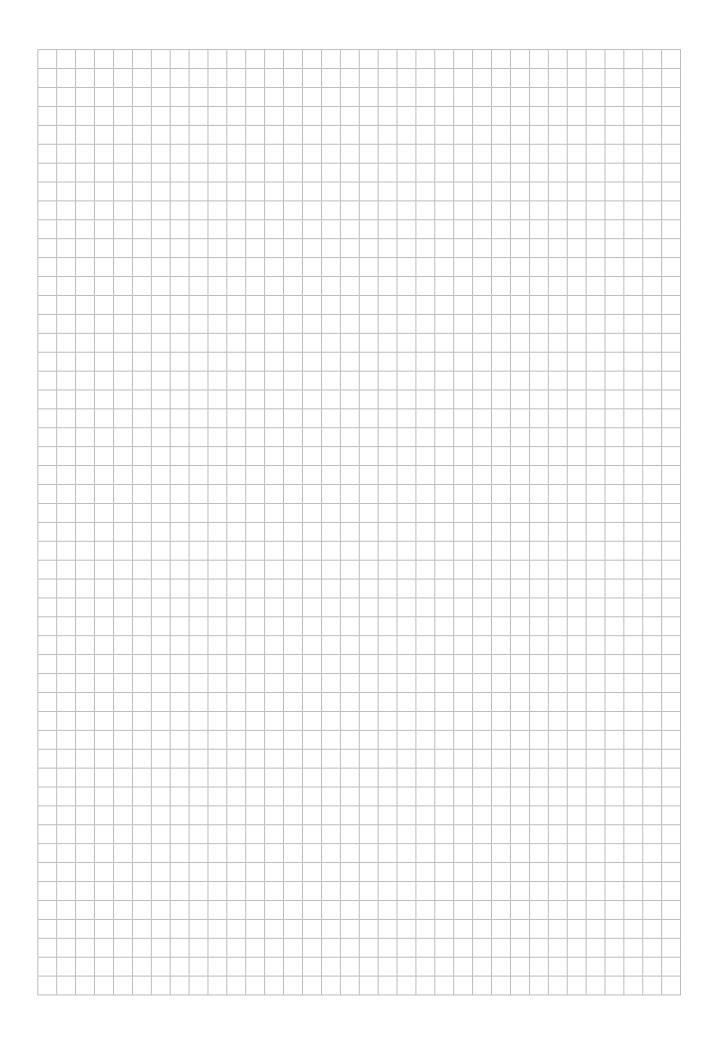
Mounting position sheets, key	79
Mounting positions	90
Helical gearmotors	
Helical worm goarmeters	
Helical-worm gearmotors Overview	
Parallel-shaft helical gearmotorsSPIROPLAN® gearmotors	
Multi-stage gearmotors	
	12
N	
Nameplate	31
NOCO® fluid	16
Notes on the gearmotor dimension sheets	174
0	
Oil aging sensor	18
Oil aging sensor DUO10A	
Technical data	166
Oil drain plug	
Compound gear unit	73
Oil drain plug in the adapter flange	75
Oil expansion tank	
Oil level plug	
Compound gear unit	73
Oil quantity	127
Oil seal	
Lubricant compatibility	114
Operating temperature	
Gear units	11
Motor	11
Options	
TorcLOC®	144
Type designation	29
Order information	76
Overhung load	
Permitted overhung load	52
Reduced overhung load	52
Overhung load conversion, gear unit constants	s 55
Overview of types and type designation	
Type designation	32
P	
Parallel-shaft helical gear units	
Type designation	27

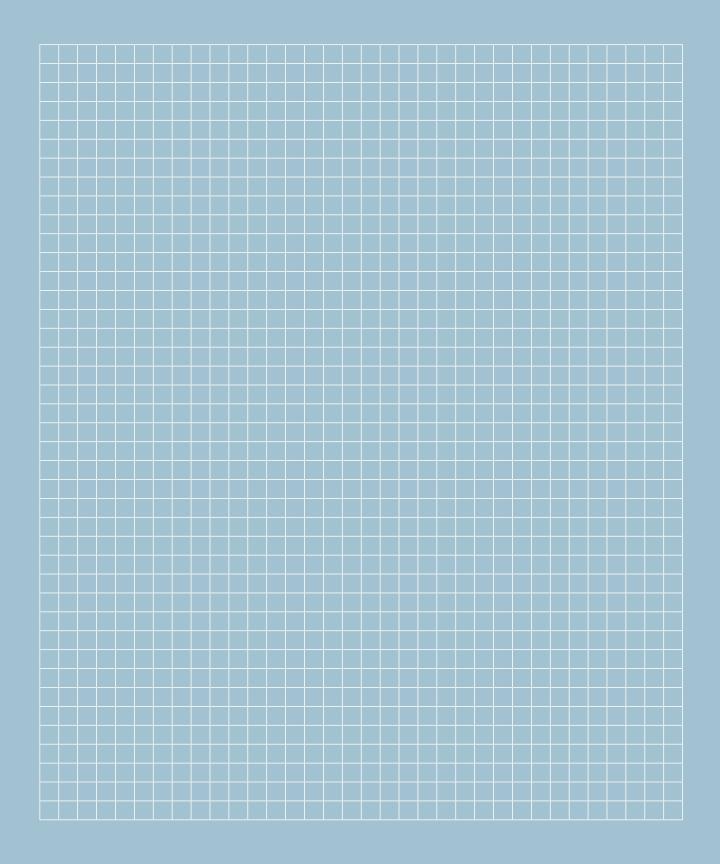
Parallel-shaft helical gearmotors		Stainless shrink disk or output shaft	
Designs	34	Notes	150
Mounting positions	85	Stainless steel shrink disk or output shaft	
Performance data	31	Notes	150
Permitted axial load	54	Storage conditions	17
Product names	10	Strength class	
Project Planning for Drives		Gear unit mounting	151
Multi-stage gearmotors	72	Surface protection	17
Project Planning for Gear Units		Swing base	14
Service factor	48	Т	
R			
		Technical data	400
R, F, K, S, W gear units		DUO 10A	
Operating temperature		DUV40A	
Reduced backlash gear units 13		Oil aging sensor DUO10A	
Removal kit for gear units with hollow shaft and		Thermal rating	47
	_	Tolerances	174
Rubber buffer for FA/FH/FV/FT	. 1//	Flanges	176
S		Hollow shafts	175
Safety cover	160	Multiple-spline shafts	176
Fixed		Shaft ends	174
Flat		Shaft heights	174
		TorqLOC [®]	
Rotating	. 160	Options	144
Screw plug bore	70	TorqLOC® hollow shaft mounting system	143
Compound gear unit		Torque arm	177
Self-locking helical-worm or SPIROPLAN® gea units		Torque arm position	177
Service factor	40	Trademarks	10
Determining the service factor	48	Type designation	
SEW fB		Input shaft assembly	30
SEW service factor		Options for input shaft assembly	30
SEW-EURODRIVE	40	Adapter options	30
Group of companies	6	Adapters	29
Shouldered hollow shaft with shrink disk		Helical gear units	
		Helical-bevel gear units	
Helical worm goor unit		Helical-worm gear units	
Helical-worm gear unit		Options	
Parallel-shaft helical gear units		Parallel-shaft helical gear units	
Shrink disk connection	. 1//	SPIROPLAN® gear units	
SPIROPLAN® gear units	00		
Type designation	29	<u>V</u>	
SPIROPLAN® gearmotors	40=	Variants, possible	
Mounting positions		RM Gearmotors	13
Splined hollow shaft	. 177	Vibration monitoring system	18
		Vibration SmartCheck	




29154650/EN - 03/20

Inquiry/order




Department:	Customer no.:			
	Fax: Email:			
Zip code/city:				
Contact at SEW:	Dhana			
Name: Technical office:	Phone: Fax:			
Technical data:				
Quantity: Catalog designation:	Desired delivery date:			
Gear unit type: ☐ Helical gear units ☐ Double gear units ☐ Servo gear units ☐ Variable-speed gear	it ☐ Helical-worm gear unit ☐ Spiroplan [®] gear unit ☐ Electrified monorail system ☐ Miscellaneous:			
Power: kW Output speed:	rpm Output torque: Nm			
Cycles/hour: c/h Cyclic of the cyclic	duration factor: S / % cdf 3-shift operation Very irregular			
Mounting position: 1) M1 M2 M3 M4 M5 M6 Pivoted □ □ □ □ □ □ □ □ □ □ □ Torque arm				
Shaft design: ☐ Solid shaft with key ☐ Hollow shaft with key ☐ TorqLOC®	Shaft/hollow shaft Ø : mm Flange Ø : mm			
Shaft position (for right-angle gear units):	tion: Cable entry: Cable entry:			
Degree of protection: Thermal class: IP54 IP55 IP56 IP65 IP66 IP69K 130(B) 155(F □ □ □ □ □ □ □				
Line voltage: V Connection type: Line frequency:	(
For inverter operation: Max. frequency:	Hz Control range:			
Required options: Brake: Voltage V Braking torque: Manual brake release: HR or HF Forced cooling fan: Forced cooling fan voltage: Motor protection: TF or TH Encoder: Plug connector connection: Inverter: RAL 7031 or RAL				
Special ambient conditions: Temperature: from °C to °C Operation outdoors >1000m above NN Further environmental conditions:				
Miscellaneous:				
1) see back				
Place, date Sign	ature:			

SEW-EURODRIVE GmbH & Co KG Ernst-Blickle-Str. 42 76646 BRUCHSAL GERMANY

Tel. +49 7251 75-0 Fax +49 7251 75-1970 sew@sew-eurodrive.com

→ www.sew-eurodrive.com

