

Addendum to the Assembly and Operating Instructions

Industrial Gear Units

X.. Series Helical and Bevel-Helical Gear Units

Oil-Water Cooler for Pressure Lubrication /OWP

Edition 03/2017 23059710/EN

Table of contents

1	Impo	ortant information	4
2	Oil-w	vater cooler for pressure lubrication /OWP	5
	2.1	Structure/function	5
	2.2	Wiring diagram (schematic illustration)	8
	2.3	Installation/assembly	10
	2.4	Notes on checking the oil level	13
	2.5	Startup	14
	2.6	Inspection/maintenance	16
	2.7	Malfunctions	17
	2.8	Permitted lubricants	18

1 Important information

INFORMATION

This addendum describes amendments to the Oil-Water Cooler operating instructions. Observe the additional information specified in this document.

This document does not replace the detailed operating instructions.

23059710/EN - 03/2017

2 Oil-water cooler for pressure lubrication /OWP

2.1 Structure/function

2.1.1 Structure

An oil-water cooling system can be used if the thermal rating of the naturally cooled gear unit or cooling using a fan on the input shaft is not sufficient. The prerequisite for using an oil-water cooling system is that appropriate cooling water is available on site.

INFORMATION

- Contact SEW-EURODRIVE if you use chemically aggressive cooling media such as brackish water or salt water.
- The following information applies for gear units with pressure lubrication.
- Also refer to the operating instructions of the cooling system manufacturer.

SEW-EURODRIVE uses 2 types of oil-water coolers:

- A plate heat exchanger is used for the oil-water cooling system OWP 005/015/025.
- A shell and tube heat exchanger is used for the oil-water cooling system OWP 10/20/30/40/50/60/70.

2.1.2 General information

The cooling system including the cooling circuit piping but without electrical wiring is mounted directly to the gear unit at factory.

Optionally, the cooling system can be delivered on a mounting frame for separate mounting but without electrical wiring and piping to the gear unit.

The standard delivery of the basic cooling system includes:

- Pump with directly connected asynchronous motor (pump always running)
- · Oil-water heat exchanger
- · Oil filter with filter element and electrical/optical maintenance indicator
- Pressure switch that monitors the pump pressure. Warning or switch-off signal when the oil pressure reaches < 0.5 bar
- Temperature switch/NTB with trip point for monitoring the cooling group, i.e. warning or gear unit shutdown at oil temperature > 90 °C

2.1.3 Optional accessories

The cooling system can be equipped with the following components as an option:

- Oil filter as duplex filter
 - The oil filter is available as single filter or duplex filter. For pressure lubrication sys-tems, a single filter is included as standard.
- Flow rate sensor
- Manometer
- Thermometer
- PT100 temperature sensor
- Thermostat valve

2.1.4 Function

Observe the following control information for the individual components.

Pump

The driving motor of the pump has to be switched on 10 s prior to gear unit startup and is always running during operation of the gear unit.

Oil-water cooler

The gear unit is cooled by an oil-water cooler.

SEW-EURODRIVE recommends using the cooling water at a temperature of 60 °C or higher. An optional thermostat valve can be used for controlling the cooling system if the user is required to adjust the switching temperature.

Temperature switch /NTB

The temperature of the plant is monitored via a temperature switch with a defined switching point.

• At T > 90 $^{\circ}$ C \rightarrow STOP GEAR UNIT/WARNING

PT100 temperature sensor (optional)

Optionally, a PT100 temperature sensor instead of a temperature switch/NTB can be used to control the cooling system. The evaluation of the temperature signal and the controlling of the operator's switching devices is performed by the operator's control.

• At T > 90 °C \rightarrow GEAR UNIT STOP / WARNING

Filter

The filter is monitored visually by a pressure deviation indicator, and electrically by a pressure deviation monitoring device.

When \triangle p > 2.2 bar \rightarrow **WARNING** (clean filter)

Pressure switch

The pressure switch requires a 10 s delay.

Check valve

The check valve opens at a pressure of 1 bar.

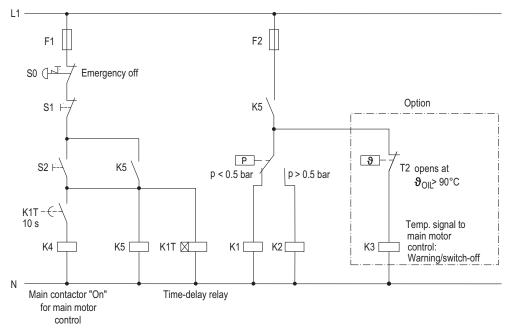
2.1.5 Interlocking specifications

Enabling of the gear unit

Gear unit enable if the following conditions are met:

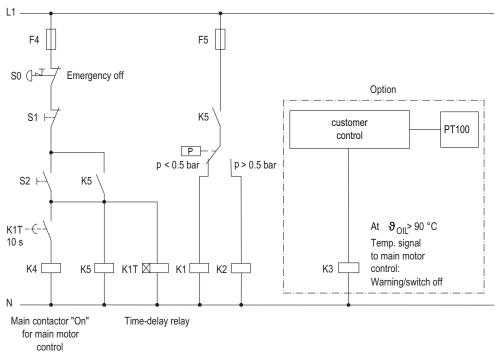
- Oil pressure p ≥ 0.5 bar (startup delay of 10 s)
- Oil temperature T < 90 °C

STOP gear unit/warning

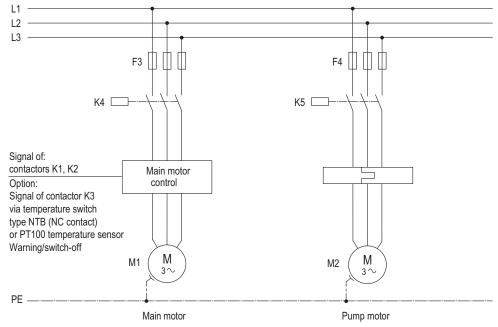

Gear unit STOP/warning if one of the following conditions is met:

- Oil temperature T > 90 °C
- Oil pressure p < 0.5 bar

2.2 Wiring diagram (schematic illustration)


The wiring diagrams show a possible setup of the control for the cooling system.

2.2.1 Control circuit with optional temperature switch/NTB


19120566411

2.2.2 Control circuit with optional PT100 temperature sensor

2.2.3 Main circuit

2.3 Installation/assembly

INFORMATION

First adhere to the operating instructions of the oil supply system manufacturer.

2.3.1 Installation and connection information

The cooling system is mounted directly on the gear unit as standard.

Optionally, the cooling system can be delivered as a complete unit on a mounting frame for separate mounting but without electrical wiring and piping. Ensure that the installation site is subject to minimal vibrations and is a maximum distance of 1 m from the gear unit. Install the cooling system at the same level as the gear unit or lower. If this is not possible, contact SEW-EURODRIVE.

INFORMATION

For the dimensions of the cooling system and detailed technical data, refer to the operating instructions of the cooling system manufacturer.

2.3.2 Mechanical connection

Connect the cooling system to the gear unit and the water supply according to the designations observing the country-specific regulations.

Adhere to the following basic conditions when connecting the cooling system to the gear unit:

- · Do not reduce the specified cable cross sections.
- It is important that you choose the correct wall thickness and material when selecting pipes, hoses and screw fittings. Preferably use screw fittings with non-metallic gaskets.

2.3.3 Electrical connection

Observe country-specific regulations during the electrical connection.

With the standard design, connect the following components:

- Pump motor
- Temperature switch/temperature sensor
- Pressure switch
- · Maintenance indicator of the oil filter

Observe the following information.

- Make sure that the pump rotates in the correct direction.
- Observe the motor data sheet.
- The pump motor has to be switched on 10 s prior to gear unit startup and is always running during operation of the gear unit.
- The pressure switch issues a warning signal when the pressure falls below 0.5 bar.
- If a temperature switch/NTB is used, it must be integrated in the circuit in a way that
 - Either a warning signal is activated or the main drive is switched off at the switching point (at 90 °C oil temperature).
- If a temperature sensor/PT100 is used, it must be integrated in the circuit in a way that
 - Either a warning signal is issued or the main drive is switched off when the oil temperature reaches 90 °C.
- The maintenance indicator of the filter indicates when the filter element needs to be replaced.

When using options:

• Connect the flow rate sensor to the customer-provided control.

2.3.4 Limit temperature for start-up of the oil supply system

To ensure a correct function of the oil supply system the gear unit oil must have at least the minimum oil viscosity. The viscosity depends on the used oil, and on the oil temperature in the oil pipes/hoses and in the oil pump. Observe chapter "Permitted lubricants" ($\rightarrow \blacksquare$ 18).

When the oil supply system is used at low ambient temperatures, it may be required to adjust the oil supply system. Contact SEW-EURODRIVE, if required.

2.3.5 Cooling media

INFORMATION

- Note that the service life, the efficiency, and the maintenance intervals of the heat exchanger depend to a great degree on the quality and ingredients of the cooling medium.
- Special measures have to be taken when using sea water or brackish water. Contact SEW-EURODRIVE.
- Observe the information in the supplied manufacturer's documentation regarding water quality.

Permitted cooling media

- · Water, water/glycol cooling liquids
- Cooling water temperature and flow rate of oil and cooling water according to the order documents.

2.4 Notes on checking the oil level

Using an oil supply system might influence the oil level. The fill quantities specified on the nameplate are guide values and refer only to the gear unit. The mark on the oil dipstick, oil level glass or oil sight glass is the decisive indicator of the correct oil quantity.

Observe the chapter "Checking the oil level" in the operating instructions for the gear unit.

2.4.1 Additionally required gear unit oil

The following table shows the lubricant fill quantity which has to be filled into the gear unit additionally for the oil supply system.

The information is based on the standard cross section of the pipes for a suction pipe length of 1.5 m and a pressure pipe length of 2.5 m.

Size	Additional oil quantity in the gear unit in I
OWP 005	2.5
OWP 010	2.5
OWP 015	4.5
OWP 020	5.5
OWP 025	5.5
OWP 030	5.5
OWP 040	7.0
OWP 050	7.0
OWP 060	10.0
OWP 070	10.0

2.5 Startup

2.5.1 Notes

NOTICE

Improper startup may result in damages to the gear unit or oil supply system.

Possible damage to property.

- · Observe the following information.
- Before startup, check the functionality of the monitoring devices. (Depending on the types of pressure switch, flow monitor, temperature switch/temperature sensor, maintenance indicator etc.)
- Before taking the gear unit into operation for the first time and after each oil change, run the oil pump at least 10 minutes to ensure that all oil chambers are filled with oil. Switch off the oil pump and control the oil level after a short period of time. Correct the oil level if necessary.
- Do not start up the gear unit if the pressure switch is not connected.
- Note that the pump must run 10 seconds before startup of the gear unit.
- If there is a risk of frost and the oil-water cooler is not operated for an extended time, drain the cooling water.
- The user party must provide for the necessary water connections.

A WARNING

Danger due to leaking and squirting gear unit oil. Serious injury.

- · You must wear safety goggles.
- Be very careful when you vent the pump.

If the pump does not supply oil immediately when the oil supply system starts, do the following:

- Fill the pump with oil.
- Vent the pump on the pressure side during start, if possible at the highest point.

2.5.3 Setting the thermostat valve (optional)

The thermostat valve is not preset upon delivery. The system must be set depending on the local conditions by the user during startup or during operation.

Set the thermostat valve so that the oil temperature at maximum operating power is within the range specified in the order.

2.6 Inspection/maintenance

INFORMATION

First adhere to the operating instructions of the oil supply system manufacturer.

2.6.1 Inspection and maintenance intervals

Adhere to the following inspection and maintenance intervals.

Ti	me interval	W	hat is to be done?
•	Depending on the operat- ing conditions, at least every 12 months	•	Check condition of oil-water cooler, replace filter element if necessary
•	Varying (depending on external factors)	•	Check all hose pipes for tightness.

2.6.2 Checking hose pipes

NOTICE

Hoses and hose pipes are subject to natural aging even if they are properly stored and used. This is why the period of use is limited.

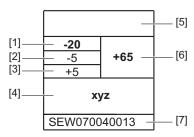
- The period of use of hose pipes should not exceed 6 years from the date of manufacture printed on them.
- The operator of the plant is responsible for making sure that hose pipes are replaced at adequate intervals even if they do not show any signs of safety-related defects.
- Have hose pipes checked by a specialist at least once a year to ensure operational safety.

Fault Possible cause		Measure		
No oil pump suction	Air in the pipes	Fill the suction line and oil pump with oil		
		Vent pressure pipe on startup		
	Not enough oil in the gear unit	Check oil level in gear unit		
	Wrong oil grade in the gear unit	Check oil grade (in particular when temperatures are low)		
	Motor not running	Check electrical connections		
	Wrong direction of rotation of the motor	Change the direction of rotation		
Delivery rate of oil	Oil circulation clogged	Open valves and plugs		
pump not sufficient	Wrong oil grade	Check oil grade (in particular when temperatures are low)		
	Wrong motor speed	Check pump motor speed		
	Negative pressure at pump suc-	Increase cross section of suction line		
	tion side too high	Decrease suction lift		
Oil pump very loud	Negative pressure at pump suc-	Increase cross section of suction line		
	tion side too high	Decrease suction lift		
		Avoid distortion of the suction line		
		Avoid reductions in the suction pipes		
Oil pump delivers froth	Not enough oil in the gear unit	Check oil level in gear unit		
	Suction line leaking	Check screw fittings for leaks		
Pressure switch does	Air in the suction line of the oil	Fill the suction line and oil pump with oil		
not switch	pump	Vent the pump at the pressure side		
	Pressure switch connected incor- rectly	Check the connection		
	Pressure switch defective	Replace pressure switch		
	Oil pump defective	Consult SEW-EURODRIVE.		
Cooling capacity is not	Cooling water supply closed	Check cooling water supply		
reached	Cooler dirty	Clean the cooler		

2.8 Permitted lubricants

This chapter describes the permitted lubricants and the permitted temperatures for industrial gear units from SEW-EURODRIVE.

INFORMATION



- The standard for viscosity and oil grade is the type of oil that is specified by SEW-EURODRIVE in the order (see order confirmation and nameplate).
- Contact SEW-EURODRIVE if you use bio and food grade lubricants or polyglycol oils.
- · Check the compatibility of the greases and oils used.
- The tables contain the lubricants approved by SEW-EURODRIVE.
- Oils of the same viscosity class from different manufacturers do not have the same characteristics. In particular, the minimum permitted oil bath temperatures are manufacturer-specific. These temperatures are specified in the lubricant tables.
- The minimum permitted oil bath temperatures depend on the lubrication type used. These temperatures are specified in the lubricant tables. The values correspond to the maximum viscosity of the individual lubricants.
- The values specified in the lubricant tables apply as of the time of printing of this
 document. The data of the lubricants are subject to dynamic change on the part of
 the lubricant manufacturers. For the latest information about the lubricants, visit:
 www.sew-eurodrive.de/lubricants

2.8.1 Explanation of the structure of the tables and abbreviations

Icons	Designation
CLP	= Mineral oil
CLP HC	= Synthetic polyalphaolefin (PAO)
E	= Oil based on esters
	= Mineral lubricant
	= Synthetic lubricant
Th	= Lubricant for the food industry (NSF H1-compliant)
	 Biodegradable oil (lubricant for agriculture, forestry, and water management)
1)	= Lubricants may only be used if service factor $F_s \ge 1.3$
RWDR	= Radial oil seal

2.8.2 Explanation of the various lubricants

18014416413363467

- [1] Lowest cold start temperature in °C for splash lubrication*
- [2] Lowest cold start temperature in °C for drives with pumps up to a max. oil viscosity of 5000 cSt*
- [3] Lowest cold start temperature in °C for drives with pumps up to a max. oil viscosity of 2000 cSt*
- [4] Trade name
- [5] Manufacturer
- [6] Highest oil bath temperature in °C. MUST NOT BE EXCEEDED.
- [7] Approvals

*In case of low temperatures, the oil must be heated to the specified minimum temperature, for example by using an oil heater. The maximally permitted oil viscosity per pump type is specified in the following chapter.

2.8.3 Explanation of the oil supply systems and the oil viscosity

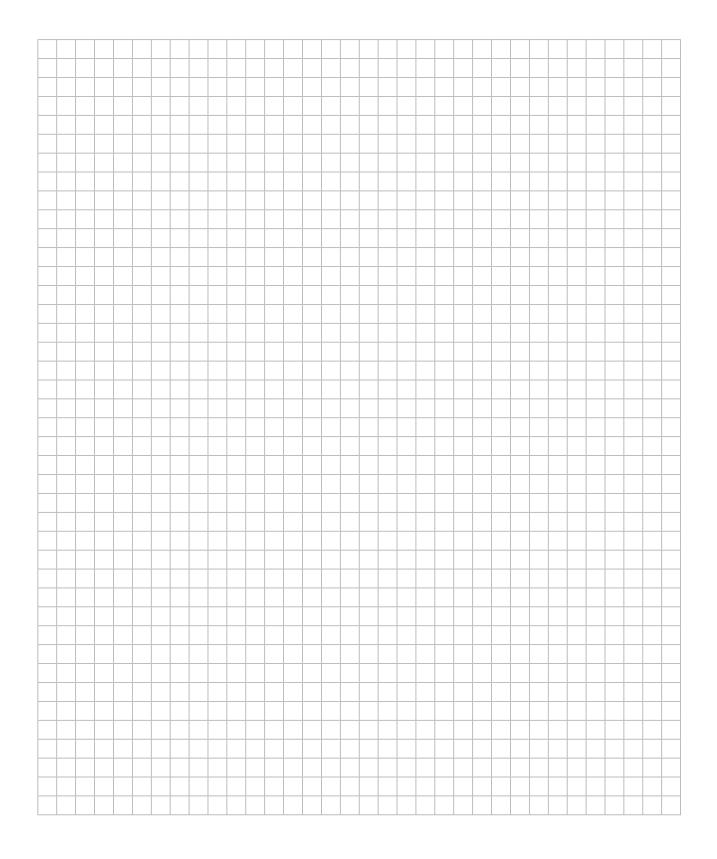
In standard design, the motor pump of the cooling system is dimensioned for an oil viscosity of **2000 cSt.**

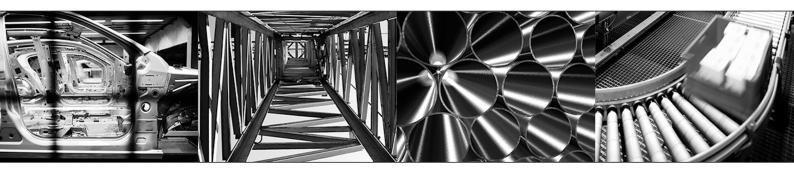
Optionally, a motor pump with an increased suction capacity can be used. This motor pump is dimensioned for an oil viscosity of **5000 cSt.** Contact SEW-EURODRIVE, if required.

2.8.4 Lubricant tables

The lubricant table is valid when this document is printed. Please refer to www.sew-eurodrive.de/lubricants for the latest version of the table.

		!	<u>0</u>			DIN (ISO) API
VG 1000	VG 680	VG 460	VG 320	VG 220	VG 150 ¹)	ISO,SAE NLGI
+5 +20 +30 Optigear BM 1000	+15 +25 +25 Optigear BM 680	-5 +10 +20 +20 Optigear BM 460	-10 +5 +85 +85 Optigear BM 320	-15 0 +75 +10 +75 Optigear BM 220	-20 -5 +5 Optigear BM 150	(=Castrol
	15 +15 +25 +28 Alpha SP 680 S0	+90) Alpha SP 460	-10 +5 +15 +80 +15 Alpha SP 320	-15 0 +10 +10 Alpha SP 220 S0	-20 -5 +5 +65 Alpha SP 150	trol
	+15 +15 +25 +28 Renolin CLP 680 Plus	-5 +10 +20 +20 +20 Renolin CLP 460 Plus	-10 +5 +15 +180 Renolin CLP 320 Plus	-15 0 +75 +10 +75 Renolin CLP 220 Plus	-20 -5 +5 +65 Renolin CLP 150 Plus	FUG
	+15 +15 +25 +25 Renolin HighGear 680	+5 +10 +20 +20 Renolin HighGear 460	-10 +5 +80 115 Renolin HighGear 320	-15 0 +10 +10 Renolin HighGear 220	-20 -5 +5 +65 Renolin HighGear 150	FUCHS
	Mobilgear 600 XP 680 SEW070030013	-5 +10 +20 +20 Mobilgear 600 XP 460 SEW070030013	-10 +5 +80 +80 Mobilgear 600 XP 320 SEW070030013	-15 0 +75 +10 +75 Mobilgear 600 XP 220 SEW070030013	-20 -5 +5 Mobilgear 600 XP 150 SEW070030013	Mobil®
	115 +15 +25 Klüberoil GEM 1-680 N	-5 +10 +20 +20 Klüberoil GEM 1-460 N	-10 +5 +80 +15 Klüberoil GEM 1-320 N	-15 0 +75 +10 +75 Klüberoil GEM 1-220 N	-20 -5 +5 Klüberoil GEM 1-150 N	KL DBER WBRICATION
		-5 +10 +20 +20 Shell Omala Oil F 460	-10 +5 +15 +80 Shell Omala Oil F 320	-15 0 +10 +10 Shell Omala Oil F 220		Shell
	0 +15 +25 +26 Meropa 680	-5 +10 +20 +20 Meropa 460	-10 +5 +80 +15 Meropa 320	-15 0 +10 +10 Meropa 220	-20 -5 +5 +65 Meropa 150	TEXACO
	+15 +25 +28 Carter EP 680	+10 +20 +20 Carter EP 460	-10 +5 +15 +15 Carter EP 320	-15 0 +75 +10 +75 Carter EP 220	·	Тотаг


The lubricant table is valid when this document is printed. Please refer to www.sew-eurodrive.de/lubricants for the latest version of the table.


DIN (ISO) API	ISO,SAE NLGI	(Castrol	strol	ָּטָל.	FUCHS	Mobil®		KALOBER	Shell	TEXACO	TOTAL
	VG 32 ¹⁾					-40 -30 -25 SHC 624					
	VG 68 ¹⁾			-35 -20 -10 Renolin Unisyn CLP 68 S0		3HC 626		-35 -20 -10 Klübersynth GEM 4-68 N	20 +50 -10 Omala S4 GX 68		
	VG 150 ¹)	-25 -10 0 Alphasyn EP 150	-30 -10 0 Optigear Synthetic X 150	-30 -10 +0 Renolin Unisyn CLP 150		-30 -10 0 -10 SHC 629	-35 -15 -5 -5 SHC Gear 150	-25 70 -10 0 Klübersynth GEM 4-150 N	-30 -10 0 Omala 84 GX 150	25 -10 0 -10 Pinnacle EP 150	25 +75 -5 Carter SH 150
CLP HC	VG 220	-25 +80 -5 +80 -45 Aphasyn EP 220	-25 -5 +5 Optigear Synthetic X 220	-25 -5 +5 Renolin Unisyn CLP 220	-20 0 +10 HighGear Synth 220	-25 -5 0 SHC 630	30 +5 +5 SHC Gear 220	-25 +80 -45 Klübersynth GEM 4-220 N	-25 -5 +5 Omala S4 GX 220	25 +80 +5 Pinnacle EP 220	25 -5 +5 Carter SH 220
]	VG 320	-20 0 +10 Alphasyn EP 320	-20 0 +10 +90 Optigear Synthetic X 320	-20 0 +10 Renolin Unisyn CLP 320	-15 0 +15 HighGear Synth 320	-20 0 +10 SHC 632	-5 -10 +10 HC Gear 320	20 -20 +10 +10 Kiübersynth GEM 4-320 N	20 -20 +10 +10 Omala \$4 GX 320 S0	20 +90 +90 +10 Finnacle EP 320	20 +90 Carter SH 320 SO
	VG 460	-15 +15 +100 +15 Alphasyn EP 460	-15 +15 +100 +17 Optigear Synthetic X 460	-15 +5 +15 Renolin Unisyn CLP 460	+95 ghGear /nth 460	3HC 634	20 +15 +15 SHC Gear 460 SO	+5 +20 Klübersynth GEM 4-460 N	-15 +15 +15 Omala S4 GX 460	+15 +100 +15 Finnacle EP 460	-15 +15 Carter SH 460
	VG 680		-10 +10 +25 Optigear Synthetic X 680	-10 +10 +25 Renolin Unisyn CLP 680	-5 +10 +25 HighGear Synth 680	-10 +10 +25 SHC 636	-15 +10 +25 SHC Gear 680	-10 +10 +25 Klübersynth GEM 4-680 N	-10 +10 +25 Omala S4 GX 680 S0		-10 +10 +25 Carter SH 680 SO
	VG 1000					3HC 639	3HC Gear 1000	#20 +110 +30 Klübersynth EG4-1000			

The lubricant table is valid when this document is printed. Please refer to www.sew-eurodrive.de/lubricants for the latest version of the table.

т	CLP HC NSF H1			DIN (ISO) API
VG 460	VG 460 ¹⁾	VG 220 ¹⁾	VG 68 ¹⁾	ISO,SAE NLGI
	-15 +5 +20 +20 Cassida Fluid GL 460	-20 -5 +5 +5 Cassida Fluid GL 220	-35 -20 -10 -10 Cassida Fluid HF 68	() bremer & leguil
	-15 +5 +20 +20 Optileb GT 460	-25 -5 +5 +75 Optileb GT 220	-40 -25 -15 +45 Optileb HY 68	<i>Jourses</i>
				strol
-15 +5 +15 +15 +15 +15 +15 +160 S +160 S				FUCHS
				SHS
-15 +5 +15 +15 **************************	+15 +15 +16 Klüberoil 4UH1-460 N	-25 -5 +5 +5 Klüberoil 4UH1-220 N	-35 -20 -10 Klüberoil 4UH1-68 N	KALÜBER LUBRICATION

SEW

SEW-EURODRIVE GmbH & Co KG Ernst-Blickle-Str. 42 76646 BRUCHSAL GERMANY Tel. +49 7251 75-0

Fax +49 7251 75-0 Fax +49 7251 75-1970 sew@sew-eurodrive.com

→ www.sew-eurodrive.com